Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries
Abstract
:1. Introduction
2. Framework and Literature Review
3. Data and Methodology
3.1. Data and Selected Variables
3.2. Methodology: Cointegration in Panel Data
3.2.1. Diagnostic Tests
3.2.2. Unit Root Tests
3.2.3. Estimation Methodology
4. Empirical Results
5. Discussion and Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol on Its Fourth Session. Held in Poznan from 1 to 12 December 2008. Framework Convention on Climate Change. FCCC/KP/CMP/2008/11/Add.2 19 March 2009. GE.09-60537. Available online: https://unfccc.int/resource/docs/2008/cmp4/eng/11a02.pdf (accessed on 15 January 2021).
- Rezai, A.; Foley, D.K.; Taylor, L. Global warming and economic externalities. Econ. Theory 2012, 49, 329–351. [Google Scholar] [CrossRef] [Green Version]
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- European Commission 2016. EUR-Lex—32016L2284—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.344.01.0001.01.ENG&toc=OJ:L:2016:344:TOC (accessed on 15 January 2021).
- European Parliament 2015. COP 21—PARIS AGREEMENT | Legislative Train Schedule | European Parliament. Available online: http://www.europarl.europa.eu/legislative-train/theme-resilient-energy-union-with-a-climate-change-policy/file-cop-21-paris-agreement (accessed on 4 February 2021).
- Comunidade Europeia. Diretiva (UE) 2016/2284 do Parlamento Europeu e do Conselho de 14 de Dezembro de 2016 Relativa à Redução das Emissões Nacionais de Certos Poluentes Atmosféricos, que Altera a Diretiva 2003/35/CE e Revoga a Diretiva 2001/81/CE. J. Of. União Eur. 2015, 8, 48–53. Available online: http://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32016L2284&from=PT (accessed on 28 January 2021).
- WHO. World Health Organization. WHO Health and Climate Change Survey Report: Tracking Global Progress. 2019. WHO Reference Number: WHO-CED-PHE-EPE-19.11. Available online: https://www.who.int/globalchange/publications/country-profiles-global-report-2019/en/ (accessed on 9 February 2021).
- CCAC. Climate and Clean Air Coalition Annual Report 2017–2018. Available online: https://www.ccacoalition.org/en/resources/climate-and-clean-air-coalition-annual-report-2017-2018 (accessed on 11 January 2021).
- Brock, W.; Taylor, M. The Green Solow model. J. Econ. Growth 2010, 15, 127–153. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Background Document for Agenda Item 2: Consideration of the Contribution of the UN Environment Assembly to the 2019 High-Level Political Forum on Sustainable Development. 2019. Available online: https://www.unenvironment.org/interactive/end-of-year-2019/ (accessed on 23 January 2021).
- Pacto Ecológico Europeu. O Objetivo de Neutralidade Climática da UE até 2050. Conselho Europeu. Conselho da União Europeia. 2019. Available online: https://www.consilium.europa.eu/pt/policies/green-deal/ (accessed on 7 February 2021).
- Vandyck, T.; Keramidas, K.; Tchung-Ming, S.; Weitzel, M.; Van Dingenen, R. Quantifying air quality co-benefits of climate policy across sectors and regions. Clim. Chang. 2020, 163, 1501–1517. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Sinha, A. Environmental Kuznets curve for CO2 Emission: A literature survey. J. Econ. Stud. 2019, 46, 106–168. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Rosa, E.A.; York, R. Environmentally efficient well-being: Is there a Kuznets curve? Appl. Geogr. 2012, 32, 21–28. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Venevsky, S.; Shi, X.; Wang, L.; Wright, J.S.; Wu, C. Econometrics of the environmental Kuznets curve: Testing advancement to carbon intensity-oriented sustainability for eight economic zones in China. J. Clean. Prod. 2021, 283, 124561. [Google Scholar] [CrossRef]
- Dinda, S.; Coondoo, D.; Pal, M. Air quality and economic growth: An empirical study. Ecol. Econ. 2000, 34, 409–423. [Google Scholar] [CrossRef]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of ecological footprint. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [Google Scholar] [CrossRef] [PubMed]
- Marrero, G. Greenhouse gases emissions, growth and the energy mix in Europe. Energy Econ. 2010, 32, 1356–1363. [Google Scholar] [CrossRef]
- Lapinskienė, G.; Tvaronaviciene, M.; Vaitkus, P. Greenhouse gases emissions and economic growth—evidence substantiating the presence of environmental Kuznets curve in the EU. Technol. Econ. Dev. Econ. 2014, 20, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhou, Z.; Huang, J.; Li, G. A bibliometric analysis of the impacts of air pollution on children. Int. J. Environ. Res. Public Health 2020, 17, 1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Huang, G.; Cheng, G.; Zheng, M.; Zhou, N. Nanomaterials in the environment: Research hotspots and trends. Int. J. Environ. Res. Public Health 2019, 16, 5138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koondhar, M.A.; Shahbaz, M.; Memon, K.A.; Ozturk, I.; Kong, R. A visualization review analysis of the last two decades for environmental Kuznets curve “EKC” based on co-citation analysis theory and pathfinder network scaling algorithms. Environ. Sci. Pollut. Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Pope III, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Becchetti, L.; Beccari, G.; Conzo, G.; Conzo, P.; De Santis, D.; Salustri, F. Air quality and COVID-19 adverse outcomes: Divergent views and experimental findings. Environ. Res. 2021, 193, 110556. [Google Scholar] [CrossRef]
- Boubellouta, B.; Kusch-Brandt, S. Testing the environmental Kuznets Curve hypothesis for E-waste in the EU28+2 countries. J. Clean. Prod. 2020, 277, 123371. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641. [Google Scholar] [CrossRef]
- Panayotou, T. Empirical Test and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; Working Paper WP238; World Employment Research Programme, International Labour Office: Geneva, Switzerland, 1993. [Google Scholar]
- Panayotou, T. Demystifying the environmental Kuznets curve: Turning a black box into a policy tool. Environ. Dev. Econ. 1997, 2, 465–484. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.A.; Huynh, T.L.D.; Tram, H.T.X. Role of financial development, economic growth & foreign direct investment in driving climate change: A case of emerging ASEAN. J. Environ. Manag. 2019, 242, 131–141. [Google Scholar]
- Moutinho, V.; Varum, C.; Madaleno, M. How economic growth affects emissions? An investigation of the environmental Kuznets curve in Portuguese and Spanish economic activity sectors. Energy Policy 2017, 106, 326–344. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Elheddad, M. Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. J. Clean. Prod. 2020, 271, 122642. [Google Scholar] [CrossRef]
- Dogan, B.; Madaleno, M.; Tiwari, A.K.; Hammoudeh, S. Impacts of export quality on environmental degradation: Does income matter? Environ. Sci. Pollut. Res. 2020, 27, 13735–13772. [Google Scholar] [CrossRef]
- Lyubimov, I. Income inequality revisited 60 years later: Piketty vs Kuznets. Russ. J. Econ. 2017, 3, 42–53. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Quart. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Christou, C.; Gupta, R. Are there environmental Kuznets curves for US state-level CO2 emissions? Renew. Sustain. Energy Rev. 2017, 69, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N. Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions. Energy Econ. 2016, 54, 263–271. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing environmental Kuznets curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Wang, S.; Yang, F.; En Wang, X.; Song, J. A microeconomics explanation of the environmental Kuznets curve (EKC) and an empirical investigation. Pol. J. Environ. Stud. 2017, 26, 1757–1764. [Google Scholar] [CrossRef]
- Haider, A.; Bashir, A.; Husnain, M.I. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, H.; Zhu, Q.; Peng, C.; Yang, G.; Yang, Y.; Zhang, Y. Relationship between air pollutants and economic development of the provincial capital cities in China during the past decade. PLoS ONE 2014, 9, e104013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Och, M. Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia. Int. J. Energy Econ. Policy 2017, 7, 117–128. [Google Scholar]
- Wang, Y.; Han, R.; Kubota, J. Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China. Renew. Sustain. Energy Rev. 2016, 54, 1182–1188. [Google Scholar] [CrossRef]
- Roca, J.; Padilla, E.; Farre, M.; Galletto, V. Economic Growth and Atmospheric Pollution in Spain: Discussing the Environmental Kuznets Curve by Hypothesis; Working Papers; Department of Applied Economics at Universitat Autonoma of Barcelona: Bellaterra, Spain, 2001. [Google Scholar]
- Danish, D.; Ulucak, R.; Khan, S.U.D. Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Saqib, M.; Benhmad, F. Does ecological footprint matter for the shape of the environmental Kuznets curve? Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 1–15. [Google Scholar] [CrossRef]
- Yin, J.; Zheng, M.; Chen, J. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China. Energy Policy 2015, 77, 97–108. [Google Scholar] [CrossRef]
- Husnain, M.I.U.; Haider, A.; Khan, M.A. Does the environmental Kuznets curve reliably explain a developmental issue? Environ. Sci. Pollut. Res. 2020, 28, 11469–11485. [Google Scholar] [CrossRef]
- Goldstein, E. Introduction to Environmental Economics; By Nick Hanley, Jason F. Shogren and Ben White (Oxford University Press, 2001); and “Environmental Economics: Theory, Application and Policy”. Europ. J. Polit. Econ. 2003, 19, 391–392. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Selden, T.M. Stoking the fires? CO2 emissions and economic growth. J. Public Econ. 1995, 57, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Pol. 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef]
- Armeanu, D.; Vintilă, G.; Andrei, J.V.; Gherghina, Ş.C.; Drăgoi, M.C.; Teodor, C. Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve? PLoS ONE 2018, 13, e0195708. [Google Scholar] [CrossRef] [Green Version]
- Lu, I.J.; Lin, S.J.; Lewis, C. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Pol. 2007, 35, 3226–3235. [Google Scholar] [CrossRef]
- Altıntaş, H.; Kassouri, Y. Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2 emissions? Ecol. Indic. 2020, 113, 106187. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass energy, technological process and the environmental Kuznets curve: Evidence from selected European countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Ali, M.; Raza, S.A.; Khamis, B. Environmental degradation, economic growth, and energy innovation: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 28306–28315. [Google Scholar] [CrossRef]
- Erdal, G.; Erdal, H.; Esengün, K. The causality between energy consumption and economic growth in Turkey. Energy Pol. 2008, 36, 3838–3842. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Pol. 2009, 37, 5167–5172. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, F.; Ulucak, R.; Koçak, E.; Ilkay, S. Does globalization matter for environmental sustainability? Empirical investigation for Turkey by Markov regime switching models. Environ. Sci. Pollut. Res. 2020, 27, 1087–1100. [Google Scholar] [CrossRef]
- Gozgor, G.; Ranjan, P. Globalisation, inequality and redistribution: Theory and evidence. World Econ. 2017, 40, 2704–2751. [Google Scholar] [CrossRef]
- Gill, A.R.; Viswanathan, K.K.; Hassan, S. Is Environmental Kuznets Curve Still Relevant? Int. J. Energy Econ. Policy 2017, 7, 156–165. [Google Scholar]
- Armeanu, D.; Vintilă, G.; Gherghina, Ş.C. Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- World Bank. World Development Report 1992: Development and the Environment; License: CC BY 3.0 IGO; Oxford University Press © World Bank: New York, NY, USA; Available online: https://openknowledge.worldbank.org/handle/10986/5975 (accessed on 3 February 2021).
- Markandya, A.; Golub, A.; Galinato, S. Empirical Analysis of National Income and SO2 Emissions in Selected European Countries. Environ. Res. Econ. 2006, 35, 221–257. [Google Scholar] [CrossRef]
- Mazzanti, M.; Zoboli, R. Municipal Waste Kuznets Curves: Evidence on Socio-Economic Drivers and Policy Effectiveness from the EU. Environ. Res. Econ. 2009, 44, 203. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Newey, W.; West, K. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 1987, 55, 703–708. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Hansen, B.E. Statistical Inference in Instrumental Variables Regression with I (1) Processes. Rev. Econ. St. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Phillips, P. Time Series Regression with a Unit Root. Econometrica 1987, 55, 277–301. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Loretan, M. Estimating Long-run Economic Equilibria. Rev. Econ. Stud. 1991, 58, 407–436. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.-H.; Chu, Y.-P.; Yang, H.-Y. An Environment Kuznets Curve for GHG Emissions: A Panel Cointegration Analysis. Energy Sources Part B Econ. Plan. Policy 2014, 9, 120–129. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Ind. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Erdogan, S.; Okumuş, İ.; Güzel, A. Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: The role of renewable, non-renewable energy, and oil prices. Environ. Sci. Pollut. Res. 2020, 27, 23655–23663. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic Growth, Energy, and Environmental Kuznets Curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- De Pascale, G.; Sardaro, R.; Faccilongo, N.; Contò, F. What is the influence of FDI and international people flows on environment and growth in OECD countries? A panel study. Environ. Impact Assess. Rev. 2020, 84, 106434. [Google Scholar] [CrossRef]
- Pesaran, M.; Shin, Y.; Smith, R. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Pesaran, H.; Smith, R.; Shin, Y. Bound Testing Approaches to the Analysis of Level Relationship. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Pesaran, H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econ. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Baltagi, B.H., Fomby, T.B., Carter Hill, R., Eds.; Econometrics; Emerald Group Publishing Limited: Bingley, UK, 2001; Volume 15, pp. 93–130. [Google Scholar]
- Kao, C.; Chiang, M.H. On the Estimation and Inference of a Cointegrated Regression in Panel Data. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Baltagi, B., Ed.; Econometrics; JAI Press: Amsterdam, The Netherlands, 2000; pp. 161–178. [Google Scholar]
- De Hoyos, R.E.; Sarafidis, V. Testing for cross-sectional dependence in panel-data models. Stata J. 2006, 6, 482–496. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2020, 60, 13–50. [Google Scholar] [CrossRef]
- Sulaiman, C.; Abdul-Rahim, A.S. The Impact of Wood Fuel Energy on Economic Growth in Sub-Saharan Africa: Dynamic Macro-Panel Approach. Sustainability 2020, 12, 3280. [Google Scholar] [CrossRef] [Green Version]
- Baum, C. Residual diagnostics for cross-section time series regression models. Stata J. 2001, 1, 101–104. [Google Scholar] [CrossRef] [Green Version]
- EC. A Clean Planet for All a European Long Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- EC. Une Planète Propre Pour Tous Une Vision Européenne Stratégique à Long Terme Pour Une’ Economie Prospère, Moderne, Compétitive Et Neutre Pour Le Climat; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Mongo, M.; Belaïd, F.; Ramdani, B. The effects of environmental innovations on CO2 emissions: Empirical evidence from Europe. Environ. Sci. Policy 2021, 118, 1–9. [Google Scholar] [CrossRef]
- Madaleno, M.; Vieira, E. Corporate performance and sustainability: Evidence from listed firms in Portugal and Spain. Energy Rep. 2020, 6, 141–147. [Google Scholar] [CrossRef]
- Badulescu, D.; Badulescu, A.; Simut, R.; Bac, D.; Iancu, E.-A.; Iancu, N. Exploring environmental Kuznets curve. An investigation on EU economies. Technol. Econ. Dev. Econ. 2020, 26, 1–20. [Google Scholar] [CrossRef]
- Ahmad, M.; Muslija, A.; Satrovic, E. Does economic prosperity lead to environmental sustainability in developing economies? Environmental Kuznets curve theory. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Yang, H.; He, J.; Chen, S. The fragility of the environmental Kuznets curve: Revisiting the hypothesis with Chinese data via an extreme bound analysis. Ecol. Econ. 2015, 109, 41–58. [Google Scholar] [CrossRef]
Acronym | Variables Selected | Source |
---|---|---|
GHG pc/area | Greenhouse Gases per capita by surface area (sq. km) | Eurostat |
LEdu pc/area | The percentage of the working-age population with an advanced level of education, per capita, and per area | World Bank |
GDP pc/area | Gross domestic product per capita (pc) and per area | Eurostat |
GDP pe2/area | Gross domestic product squared per capita and per area | |
Euse/area | Energy use (kg of oil equivalents) per capita and per area | World Bank * |
Elect/area | Electricity production from oil, gas, and coal sources (% of total) per capita and per area | World Bank * |
CO2 pc/area | Volume emissions of carbon per capita and per area | Eurostat/World Bank * |
CH4 pc/area | Volume emissions of methanol per capita and per area | |
N2O pc/area | Volume emissions of nitrous oxide per capita and per area |
Cross Dependence Test | |||
---|---|---|---|
Europe 27 | Europe 15 | Europe 12 | |
GHG pc/Area | 48.36 *** | 27.78 *** | 22.64 *** |
CO2 pc/Area | 47.23 *** | 26.75 *** | 19.73 *** |
CH4 pc/Area | 46.28 *** | 23.92 *** | 21.34 *** |
N2O pc/Area | 34.38 *** | 17.42 *** | 16.30 *** |
GDP pc/Area | 43.43 *** | 21.21 *** | 20.92 *** |
GDPpc^2/Area | 15.37 *** | 3.24 *** | 11.95 *** |
Edu pc/Area | 10.27 *** | 23.34 *** | −1.24 |
Euse pc/Area | 40.36 *** | 22.15 *** | 17.20 *** |
Elect pc/Area | 35.40 *** | 26.53 *** | 9.09 *** |
Independent Variables | Unit Root (First Generation) Panel EU 27 Countries | Unit Root (First Generation) Panel EU 15 Countries | Unit Root (First Generation) Panel EU 12 Countries | |||
Level | Without T | With Trend | Without T | With Trend | Without T | With Trend |
GHG pc/Area | 18.619 | 57.391 | 11.626 | 31.145 | 6.993 | 26.246 |
CO2 pc/Area | 27.061 | 62.435 | 18.225 | 41.148 ** | 8.806 | 21.237 |
CH4 pc/Area | 6.198 | 304.885 *** | 2.613 | 163.794 *** | 3.585 | 141.091 *** |
N2O pc/Area | 34.175 | 108.859 *** | 18.768 | 39.911 ** | 15.407 | 68.948 *** |
GDP pc/Area | 7.16 | 353.888 *** | 6.194 | 187.396 *** | 0.966 | 166.492 *** |
GDPpc^2/Area | 9.338 | 285.478 *** | 7.37 | 124.259 *** | 1.967 | 161.218 *** |
Edu pc/Area | 65.694 | 45.328 | 25.932 | 18.954 | 39.763 *** | 26.774 |
Euse pc/Area | 42.878 | 67.337 ** | 18.648 | 42.211 ** | 24.23 | 25.126 ** |
Elect pc/Area | 53.353 | 44.12 | 21.634 | 25.518 ** | 31.72 | 18.602 |
1st Difference | ||||||
GHG pc/Area | 48.508 | 103.455 *** | 39.335 | 37.261 | 9.174 | 66.194 *** |
CO2 pc/Area | 45.173 | 104.912 *** | 32.934 | 50.328 ** | 12.239 | 54.584 ** |
CH4 pc/Area | 168.220 *** | 164.549 *** | 154.304 *** | 70.429 *** | 13.916 | 94.120 *** |
N2O pc/Area | 130.955 *** | 172.838 *** | 122.939 *** | 147.36 *** | 8.016 | 25.474 ** |
GDP pc/Area | 108.255 *** | 215.946 *** | 104.53 *** | 128.54 *** | 3.667 | 87.405 *** |
GDPpc^2/Area | 126.258 *** | 301.138 *** | 116.719 *** | 158.052 *** | 9.539 | 143.086 *** |
Edu pc/Area | 50.097 | 73.506 ** | 34.202 | 23.155 | 16.077 | 50.351 *** |
Euse pc/Area | 66.048 | 80.186 ** | 24.21 | 36.954 | 41.838 ** | 43.231 *** |
Elect pc/Area | 149.773 *** | 134.525 *** | 21.07 | 23.135 | 128.702 *** | 111.386 *** |
CIPS (2nd Generation) Panel EU 27 Countries | CIPS (2nd Generation) Panel EU 15 Countries | CIPS (2nd Generation) Panel EU 12 Countries | ||||
Level | Without T | With Trend | Without T | With Trend | Without T | With Trend |
GHG pc/Area | −1.413 ** | 1.779 | −1.678 ** | 0.216 | −1.536 ** | 1.029 |
CO2 pc/Area | −1.710 ** | 1.255 | −1.087 | 0.136 | −0.789 | 1.234 |
CH4 pc/Area | 1.32 | 2.578 | 1.858 | 2.337 | 0.403 | 0.987 |
N2O pc/Area | −5.372 *** | −3.277 *** | −3.435 *** | −0.547 | −4.787 *** | −4.099 *** |
GDP pc/Area | 1.527 | 2.042 | 2.424 | 2.1 | −0.118 | 0.533 |
GDPpc^2/Area | 1.22 | 4.757 | 3.318 | 4.358 | 0.487 | 2.713 |
Edu pc/Area | 0.8 | 1.9229 | 0.367 | 1.693 | 0.556 | 0.671 |
Euse pc/Area | −4.983 *** | −1.857 *** | −4.135 *** | −1.761 ** | −3.042 *** | −0.995 |
Elect pc/Area | −6.187 *** | −3.502 *** | −6.431 *** | −4.170 *** | −2.401 *** | −0.37 |
1st Difference | ||||||
GHG pc/Area | −0.851 | 4.223 | −0.562 | 1.87 | −2.344 *** | 1.984 |
CO2 pc/Area | −1.923 ** | 2.82 | −2.098 ** | 0.721 | −2.213 ** | 1.172 |
CH4 pc/Area | 0.057 | 2.361 | −18.59 ** | 1.743 | −3.282 ** | −5.008 *** |
N2O pc/Area | −2.476 *** | −2.515 *** | 0.229 | 0.361 | −3.427 *** | −3.941 *** |
GDP pc/Area | −2.633 *** | 1.601 | −3.476 *** | 1.125 | −2.008 ** | 1.055 |
GDPpc^2/Area | −3.075 *** | 1.932 | −1.470 ** | 2.209 | −0.758 ** | 0.33 |
Edu pc/Area | 1.219 | 2.28 | 1.739 ** | 2.52 | 2.448 | −0.603 |
Euse pc/Area | −3.954 *** | −3.380 *** | −2.905 *** | −0.579 | −4.619 *** | −2.985 *** |
Elect pc/Area | −7.805 *** | −7.364 *** | −4.964 *** | −4.760 *** | −5.060 *** | −4.565 *** |
Pedroni’s Test | Panel EU 27 Countries | Panel EU 15 Countries | Panel EU 12 Countries | |||
Equation (1) | Equation (2) | Equation (1) | Equation (2) | Equation (1) | Equation (2) | |
Mod. Phillips Perron t | 6.6527 *** | 6.6938 *** | 5.2964 *** | 5.3117 *** | 4.4489 *** | 4.4807 *** |
Phillips Perron tt | −7.9001 *** | −7.1108 *** | −8.1219 *** | −8.1236 *** | −5.4209 *** | −4.3485 *** |
Aug Phillips Perron t | −6.3086 *** | −5.7236 *** | −4.5552 *** | −4.4756 *** | −4.3701 *** | −3.5815 *** |
Equation (3) | Equation (4) | Equation (3) | Equation (4) | Equation (3) | Equation (4) | |
Mod. Phillips Perron t | 7.1765 *** | −7.0877 *** | 5.5036 *** | 5.1923 *** | 4.9666 *** | 4.8758 *** |
Phillips Perron tt | −10.6922 *** | −15.709 *** | −7.0111 *** | −10.943 *** | −9.1800 *** | −13.4892 *** |
Aug Phillips Perron t | −6.1829 *** | −8.1480 *** | −3.8430 *** | −6.2365 *** | −4.9779 *** | −5.2494 *** |
Kao Test | Panel EU 27 Countries | Panel EU 15 Countries | Panel EU 12 Countries | |||
Equation (1) | Equation (2) | Equation (1) | Equation (2) | Equation (1) | Equation (2) | |
Mod.Dickey Fuller t | 1.0005 | 1.0379 | 0.1485 | −0.5267 | 0.1432 | 0.6231 |
Dickey Fuller t | 0.039 | 0.0043 | −1.5926 ** | −2.5184 *** | −0.3511 | 0.2918 |
Aug Dickey Fuller t | 2.1531 ** | 2.229 ** | 0.7408 | 0.7337 | 1.3666 * | 1.5287 * |
Equation (3) | Equation (4) | Equation (3) | Equation (4) | Equation (3) | Equation (4) | |
Mod.Dickey Fuller t | 2.1318 ** | −1.9748 ** | 0.9705 | 0.2954 | 1.2293 * | −2.9982 *** |
Dickey Fuller t | 1.5853 ** | −4.3673 *** | −0.1616 | −1.8037 ** | 0.9906 | −3.8259 *** |
Aug Dickey Fullert | 1.7641 ** | −4.8482 *** | 0.6989 | −2.0112 ** | 0.6286 | −4.0194 *** |
Dependent: GHG | Total Sample (EU 27) | Subsample 1 (EU 15) | Subsample 2 (EU 12) | ||||||
---|---|---|---|---|---|---|---|---|---|
Independent | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS |
D.L. GDPpc | −0.3759 *** | −0.8405 *** | −0.3916 *** | −0.6195 *** | −1.0230 *** | −0.6624 *** | −0.1382 ** | −0.7980 *** | −0.0999 |
D.L. GDPpc2 | 0.0368 ** | −0.0189 | 0.0149 | 0.0324 ** | −0.0493 | −0.0197 | 0.0761 *** | 0.1119 ** | 0.0609 *** |
D.L. LEdu | 0.4068 | 2.0318 *** | 0.4590 *** | 0.9178 *** | 2.1424 *** | 0.8466 *** | 0.2332 | 2.7779 *** | 0.1624 ** |
D.L. Euse | 0.4948 *** | 0.3379 ** | 0.4845 *** | 0.2749 *** | 0.3379 ** | 0.2546 *** | 0.6552 *** | 0.2453 ** | 0.6207 *** |
D.L. Elect | 0.0842 *** | 0.0264 ** | 0.0849 *** | 0.0854 *** | 0.1075 *** | 0.1214 *** | 0.1016 *** | 0.2301 ** | 0.0945 *** |
Constant | 4.0172 * | 0.0269 | 0.0077 | 12.0509 ** | 0.1309 | 0.0490 | 7.4067 * | 0.0825 | 0.0936 |
ECT | −0.4432 *** | −0.4221 *** | −0.5145 *** | ||||||
L. GDPpc (−1) | −1.1079 *** | −0.0049 | −0.0079 *** | −0.7840 *** | 0.0012 | 0.0013 | −1.0529 *** | −0.0238 | −0.0132 ** |
L. GDPpc2 (−1) | −0.0351 ** | −0.0003 | 0.0006 | 0.0864 ** | 0.0015 * | 0.0003 | −0.0366 ** | −0.0043 * | −0.0037 *** |
L. Ledu (−1) | 1.2019 *** | 0.0024 | 0.0121 | 2.3253 *** | −0.0053 | 0.0130 | 1.1755 ** | 0.0289 | 0.0016 |
L. Euse (−1) | 0.3031 ** | 0.0063 | −0.0089 | 0.1113 ** | −0.0103 | −0.0265 *** | 0.5058 *** | −0.0546 | −0.0438 * |
L. Elect (−1) | 0.1347 *** | 0.0052 | 0.0022 | 0.0501 | −0.0073 | −0.0087 ** | 0.1875 ** | 0.0071 | 0.0135 |
Observations | 270 | 269 | 150 | 149 | 120 | 119 | |||
R2 | 0.7353 | 0.4745 | 0.8379 | 0.5359 | 0.9095 | 0.3881 |
Dependent: CO2 | Total Sample (EU 27) | Subsample 1 (EU 15) | Subsample 2 (EU 12) | ||||||
---|---|---|---|---|---|---|---|---|---|
Independent | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS |
D.L. GDPpc | −0.2722 *** | −0.8432 *** | −0.3015 *** | −0.5160 *** | −1.1708 *** | −0.6125 *** | −0.0200 ** | −0.7878 ** | 0.0327 |
D.L. GDPpc2 | 0.0436 ** | −0.0372 | 0.0161 | 0.0920 ** | −0.1100 | −0.0290 | 0.0868 *** | 0.1597 ** | 0.0738 *** |
D.L. LEdu | 0.3882 | 2.0778 *** | 0.5068 *** | 0.9066 ** | 1.9985 *** | 0.8712 *** | 0.3375 | 2.8010 *** | 0.3174 |
D.L. Euse | 0.5923 *** | 0.3989 * | 0.5699 *** | 0.3293 *** | −0.1574 | 0.3035 *** | 0.7705 *** | 0.1608 | 0.7327 *** |
D.L. Elect | 0.1051 *** | 0.0218 | 0.1164 *** | 0.1156 *** | 0.1291 | 0.1583 *** | 0.1263 *** | −0.1654 | 0.1300 *** |
Constant | 4.9117 | 0.0014 | −0.0128 | 15.6942 ** | 0.0932 | 0.0932 | 9.9218 * | 0.0744 | 0.0260 |
ECT | −0.4253 *** | −0.4670 *** | −0.4481 *** | ||||||
L. GDPpc (−1) | −1.1001 *** | −0.0007 | −0.0059 | −0.6800 *** | 0.0008 | 0.0008 | −1.1173 *** | −0.0338 * | −0.0126 |
L. GDPpc2 (−1) | −0.0362 * | −0.0001 | −0.0006 | 0.0909 ** | 0.0013 | 0.0013 | −0.0388 * | −0.0057 ** | −0.0047 *** |
L. Ledu (−1) | 1.2289 *** | 0.0092 | 0.0111 | 2.4549 *** | 0.0187 | 0.0187 | 1.4484 ** | 0.0498 * | 0.0150 |
L. Euse (−1) | 0.3734 ** | 0.0864 | −0.0073 | 0.1546 | −0.0194 | −0.0194 | 0.5591 ** | −0.0818 * | −0.0066 ** |
L. Elect (−1) | 0.1521 *** | 0.0036 | 0.0016 | 0.0845 | −0.0068 | −0.0068 | 0.2280 ** | 0.0071 | 0.0140 ** |
Observations | 270 | 269 | 150 | 149 | 120 | 119 | |||
R2 | 0.6991 | 0.3946 | 0.7998 | 0.4197 | 0.8968 | 0.3344 |
Dependent: CH4 | Total Sample (EU 27) | Subsample 1 (EU 15) | Subsample 2 (EU 12) | ||||||
---|---|---|---|---|---|---|---|---|---|
Independent | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS |
D.L. GDPpc | −0.8881 *** | −0.9936 *** | −0.8172 *** | −0.9583 *** | −0.8943 *** | −0.8508 *** | −0.8881 *** | 1.2386 *** | −0.7725 *** |
D.L. GDPpc2 | 0.0170 ** | 0.0122 | 0.0166 * | −0.0004 | −0.0029 | 0.0211 | 0.0170 ** | −0.0312 ** | 0.0201 |
D.L. LEdu | −0.4560 | 0.8758 ** | 0.1231 | 0.5373 *** | 0.3043 | 0.6988 *** | −0.4560 | 2.3745 *** | −0.4090 ** |
D.L. Euse | 0.1572 ** | 0.2553 ** | 0.1204 *** | −0.0144 | 0.3353 | 0.0629 | 0.1572 ** | −0.3453 | 0.1820 *** |
D.L. Elect | 0.0567 ** | 0.0457 | 0.0267 ** | 0.0080 | −0.0395 | 0.0036 | 0.0567 ** | −0.0436 | 0.0568 *** |
Constant | −9.1797 ** | 0.0584 | 0.0801 ** | −1.0121 | 0.3786 *** | 0.2480 *** | −9.1797 | −0.5936 * | 0.2453 |
ECT | −0.2945 *** | −0.1101 *** | −0.2945 *** | ||||||
L. GDPpc (−1) | −1.5085 *** | −0.0022 | −0.0139 *** | −1.5118 *** | 0.0152 * | 0.0032 | −1.5085 *** | −0.0125 | 0.0246 *** |
L. GDPpc2 (−1) | −0.0674 ** | −0.0006 | −0.0007 ** | −0.0108 | 0.0018 ** | 0.0008 | −0.0674 ** | −0.0024 ** | −0.0094 ** |
L. Ledu (−1) | 0.2964 | 0.0183 * | 0.0208 ** | 1.9607 ** | −0.0610 ** | −0.0257 * | 0.2964 | 0.1118 *** | 0.0271 |
L. Euse (−1) | −0.2487 | −0.0253 *** | −0.0198 *** | −0.8382 | 0.0136 | −0.0019 | −0.2487 | −0.0724 *** | −0.0252 * |
L. Elect (−1) | 0.0772 | 0.0002 | 0.0047 ** | 0.1435 | −0.0004 | −0.0023 | 0.0772 | −0.0080 | 0.0073 |
Observations | 270 | 269 | 150 | 149 | 120 | 119 | |||
R2 | 0.8480 | 0.7763 | 0.9386 | 0.8634 | 0.9034 | 0.7567 |
Dependent: N2O | Total Sample (EU 27) | Subsample 1 (EU 15) | Subsample 2 (EU 12) | ||||||
---|---|---|---|---|---|---|---|---|---|
Independent | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS | DFE | DOLS | FMOLS |
D.L. GDPpc | −0.4484 *** | −0.7971 *** | −0.5732 *** | −0.5189 ** | −1.1725 ** | −0.4877 *** | −0.2825 | −0.9424 * | 0.1910 ** |
D.L. GDPpc2 | 0.0791 ** | 0.0070 | 0.0560 | 0.1011 ** | −0.0345 | 0.0994 ** | 0.0887 ** | 0.1085 | −0.0101 ** |
D.L. LEdu | 0.2400 | 1.9833 ** | 0.4336 | 1.7643 | 4.5508 *** | 1.7466 *** | −0.5439 | 4.5412 *** | 0.5945 |
D.L. Euse | −0.2060 ** | 0.5140 * | −0.2797 *** | −0.0066 | −1.0901 * | −0.1214 | −0.3595 *** | 0.5059 | −0.3873 *** |
D.L. Elect | 0.0069 | −0.4192 *** | −0.0412 | −0.0356 | 0.0190 | −0.0269 | −0.0298 | −0.4630 ** | −0.0402 |
Constant | 1.6176 | 0.1849 * | 0.0895 | 18.6430 ** | 0.6457 *** | 0.0106 | −0.3428 | −0.1676 | 0.0940 |
ECT | −0.6707 *** | −0.7228 *** | −0.6468 *** | ||||||
L. GDPpc (−1) | −1.3264 *** | 0.0044 | −0.0127 | −0.9670 *** | −0.0131 | −0.0043 | −1.3908 *** | −0.0233 | 0.1175 *** |
L. GDPpc2 (−1) | −0.1041 *** | −0.0001 | −0.0016 | 0.0237 | 0.0029 * | 0.0014 | 0.1261 *** | −0.0028 | −0.0052 *** |
L. Ledu (−1) | 1.8511 *** | −0.0027 | −0.0070 | 2.9738 *** | −0.0023 | 0.0150 | 1.6360 ** | 0.0182 | 0.0786 |
L. Euse (−1) | −0.0470 | −0.0305 | −0.0015 | −0.0981 | −0.0051 | −0.0238 | 0.0263 | −0.0042 | 0.0107 |
L. Elect (−1) | −0.0332 | 0.0039 | 0.0032 | −0.1214* | 0.0027 | −0.0033 | −0.0206 | 0.0063 | 0.0301 ** |
Observations | 270 | 269 | 150 | 149 | 120 | 119 | |||
R2 | 0.6077 | 0.2015 | 0.7391 | 0.2354 | 0.8963 | 0.3121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madaleno, M.; Moutinho, V. Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries. Int. J. Environ. Res. Public Health 2021, 18, 2907. https://doi.org/10.3390/ijerph18062907
Madaleno M, Moutinho V. Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries. International Journal of Environmental Research and Public Health. 2021; 18(6):2907. https://doi.org/10.3390/ijerph18062907
Chicago/Turabian StyleMadaleno, Mara, and Victor Moutinho. 2021. "Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries" International Journal of Environmental Research and Public Health 18, no. 6: 2907. https://doi.org/10.3390/ijerph18062907
APA StyleMadaleno, M., & Moutinho, V. (2021). Analysis of the New Kuznets Relationship: Considering Emissions of Carbon, Methanol, and Nitrous Oxide Greenhouse Gases—Evidence from EU Countries. International Journal of Environmental Research and Public Health, 18(6), 2907. https://doi.org/10.3390/ijerph18062907