Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Interventions
2.3. Study Design
2.4. Blood Collection and Chemical Parameters
2.5. Measurement of Cell Surface Markers of CD4+ T Cells and Their Intracellular Cytokine Production
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Alteration of CD4+ T Cell Subsets after TTM
3.3. The Reduction in High Percentages of CD4+CD28nullNKG2D+ T Cells after Multiple Rounds of TTM
3.4. Effect of Multiple TTM on Intracellular Cytokines IFN-γ and IL-17 of the High Group for CD4+28null NKG2D+ T Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sripongngam, T.; Eungpinichpong, W.; Sirivongs, D.; Kanpittaya, J.; Tangvoraphonkchai, K.; Chanaboon, S. Immediate Effects of Traditional Thai Massage on Psychological Stress as Indicated by Salivary Alpha-Amylase Levels in Healthy Persons. Med. Sci. Monit. Basic Res. 2015, 21, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Sripongngam, T.; Eungpinichpong, W.; Sirivongs, D.; Kanpittaya, J.; Tangvoraphonkchai, K.; Chanaboon, S. Psychological stress can be decreased by traditional Thai massage. J. Med. Assoc. Thail. 2015, 98, 29–35. [Google Scholar]
- Buttagat, V.; Eungpinichpong, W.; Chatchawan, U.; Kharmwan, S. The immediate effects of traditional Thai massage on heart rate variability and stress-related parameters in patients with back pain associated with myofascial trigger points. J. Bodyw. Mov. Ther. 2011, 15, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttagat, V.; Eungpinichpong, W.; Chatchawan, U.; Arayawichanon, P. Therapeutic effects of traditional Thai massage on pain, muscle tension and anxiety in patients with scapulocostal syndrome: A randomized single-blinded pilot study. J. Bodyw. Mov. Ther. 2012, 16, 57–63. [Google Scholar] [CrossRef]
- Buttagat, V.; Narktro, T.; Onsrira, K.; Pobsamai, C. Short-term effects of traditional Thai massage on electromyogram, muscle tension and pain among patients with upper back pain associated with myofascial trigger points. Complement. Ther. Med. 2016, 28, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; Bennett, M.J.; Chatchawan, U.; Jenjaiwit, P.; Pantumethakul, R.; Kunhasura, S.; Eungpinichpong, W. Acute effects of traditional Thai massage on cortisol levels, arterial blood pressure and stress perception in academic stress condition: A single blind randomised controlled trial. J. Bodyw. Mov. Ther. 2016, 20, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Waters-Banker, C.; Dupont-Versteegden, E.E.; Kitzman, P.H.; Butterfield, T.A. Investigating the mechanisms of massage efficacy: The role of mechanical immunomodulation. J. Athl. Train. 2014, 49, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Tidball, J.G.; Villalta, S.A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, 1173–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossy, J.; Laufer, J.M.; Legler, D.F. Role of Mechanotransduction and Tension in T Cell Function. Front. Immunol. 2018, 9, 2638. [Google Scholar] [CrossRef] [Green Version]
- Kargl, C.K.; Sullivan, B.P.; Gavin, T.P. Massage during muscle unloading increases protein turnover in the massaged and non-massaged, contralateral limb, but does not attenuate muscle atrophy. Acta Physiol. 2020, 229, 3. [Google Scholar] [CrossRef]
- Kim, J.K.; Shin, Y.J.; Ha, L.J.; Kim, D.H.; Kim, D.H. Unraveling the Mechanobiology of the Immune System. Adv. Healthc. Mater. 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Pumthong, G.; Nathason, A.; Tuseewan, M.; Pinthong, P.; Klangprapun, S.; Thepsuriyanon, D.; Kotta, P. Complementary and alternative medicines for diabetes mellitus management in ASEAN countries. Complement. Ther. Med. 2015, 23, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Hongsuwan, C.; Eungpinichpong, W.; Chatchawan, U.; Yamauchi, J. Effects of Thai massage on physical fitness in soccer players. J. Phys. Ther. Sci. 2015, 27, 505–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2017, 8, 1960. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.K.; Lichtman, A.H.H.; Pillai, S. Differentiation and Functions of CD4+ Effector T Cells. In Cellular and Molecular Immunology E-Book, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2018; p. 213. [Google Scholar]
- Broux, B.; Markovic-Plese, S.; Stinissen, P.; Hellings, N. Pathogenic features of CD4+CD28- T cells in immune disorders. Trends Mol. Med. 2012, 18, 446–453. [Google Scholar] [CrossRef]
- Thewissen, M.; Somers, V.; Venken, K.; Linsen, L.; Van Paassen, P.; Geusens, P.; Damoiseaux, J.; Stinissen, P. Analyses of immunosenescent markers in patients with autoimmune disease. Clin. Immunol. 2007, 123, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Lee, W.W. Unusual CD4(+)CD28(-) T Cells and Their Pathogenic Role in Chronic Inflammatory Disorders. Immune Netw. 2016, 16, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babic, M.; Romagnani, C. The Role of Natural Killer Group 2, Member D in Chronic Inflammation and Autoimmunity. Front. Immunol. 2018, 9, 1219. [Google Scholar] [CrossRef] [PubMed]
- Phoksawat, W.; Jumnainsong, A.; Sornkayasit, K.; Srisak, K.; Komanasin, N.; Leelayuwat, C. IL-17 and IFN-γ Productions by CD4+ T cells and T cell Subsets Expressing NKG2D Associated with the Number of Risk Factors for Cardiovascular Diseases. Mol. Immunol. 2020, 122, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, A.N.; Brandes, J.C.; Weyand, C.M.; Goronzy, J.J. Modulation of CD28 expression: Distinct regulatory pathways during activation and replicative senescence. J. Immunol. 1999, 162, 6572–6579. [Google Scholar]
- Thewissen, M.; Somers, V.; Hellings, N.; Fraussen, J.; Damoiseaux, J.; Stinissen, P. CD4+CD28null T cells in autoimmune disease: Pathogenic features and decreased susceptibility to immunoregulation. J. Immunol. 2007, 179, 6514–6523. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Álvarez, B.; Rodríguez, R.M.; Schlangen, K.; Raneros, A.B.; Márquez-Kisinousky, L.; Fernández, A.F.; Díaz-Corte, C.; Aransay, A.M.; López-Larrea, C. Phenotypic characteristics of aged CD4(+) CD28(null) T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. Aging Cell 2017, 16, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Maly, K.; Schirmer, M. The story of CD4+ CD28- T cells revisited: Solved or still ongoing? J. Immunol. Res. 2015, 2015, 348746. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Arias, R.; Moro-García, M.A.; López-Vázquez, A.; Rodrigo, L.; Baltar, J.; García, F.M.S.; Jaurrieta, J.J.S.; López-Larrea, C. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system. Age 2011, 33, 591–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phoksawat, W.; Jumnainsong, A.; Leelayuwat, N.; Leelayuwat, C. Aberrant NKG2D expression with IL-17 production of CD4+ T subsets in patients with type 2 diabetes. Immunobiology 2017, 222, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Spieth, P.M.; Kubasch, A.S.; Penzlin, A.I.; Illigens, B.M.; Barlinn, K.; Siepmann, T. Randomized controlled trials—A matter of design. Neuropsychiatr. Dis. Treat. 2016, 12, 1341–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavão, T.S.; Vianna, P.; Pillat, M.M.; Machado, A.B.; Bauer, M.E. Acupuncture is effective to attenuate stress and stimulate lymphocyte proliferation in the elderly. Neurosci. Lett. 2010, 484, 47–50. [Google Scholar] [CrossRef]
- Andersson, A.K.; Sumariwalla, P.F.; McCann, F.E.; Amjadi, P.; Chang, C.; McNamee, K.; Tornehave, D.; Haase, C.; Agersø, H.; Stennicke, V.W.; et al. Blockade of NKG2D ameliorates disease in mice with collagen-induced arthritis: A potential pathogenic role in chronic inflammatory arthritis. Arthritis Rheum. 2011, 63, 2617–2629. [Google Scholar] [CrossRef]
- Major, B.; Rattazzi, L.; Brod, S.; Pilipović, I.; Leposavić, G.; D’Acquisto, F. Massage-like stroking boosts the immune system in mice. Sci. Rep. 2015, 5, 10913. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xu, A.; Yin, N.; Zhao, M.; Wang, Z.; Chen, T.; Gao, Y.; Chen, Z. Enhancement of immune cytokines and splenic CD4+ T cells by electroacupuncture at ST36 acupoint of SD rats. PLoS ONE 2017, 12, e0175568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapaport, M.H.; Schettler, P.; Bresee, C. A preliminary study of the effects of repeated massage on hypothalamic-pituitary-adrenal and immune function in healthy individuals: A study of mechanisms of action and dosage. J. Altern. Complement. Med. 2012, 18, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khiewkhern, S.; Promthet, S.; Sukprasert, A.; Eunhpinitpong, W.; Bradshaw, P. Effectiveness of aromatherapy with light thai massage for cellular immunity improvement in colorectal cancer patients receiving chemotherapy. Asian Pac. J. Cancer Prev. 2013, 14, 3903–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, T. Massage therapy research review. Complement. Ther. Clin. Pract. 2016, 24, 19–31. [Google Scholar] [CrossRef] [Green Version]
Parameters | Baseline (Mean ± SD, Range) | Reference Value |
---|---|---|
Number of samples (n) | 12 | |
Gender (female/male) | 9/3 | |
Age | 67.7 ± 5.12 (61–75) | |
Blood pressure with range | ||
Systolic (mmHg) | 131.1 ± 10.8 (108–143) * | 80–120 |
Diastolic (mmHg) | 73.9 ± 10.2 (57–94) | 60–80 |
Pulse rate | 72.3 ± 7.7 (61–87) | 80–100 |
HbA1c (NGSP), % | 7.2 ± 2.4 * | 4.6–6.2 |
Creatinine (mg/dL) | 0.9 ± 0.2 | 0.5–1.5 |
ALT (U/L) | 25.3 ± 13.0 | 4–36 |
Lipid profiles | ||
- TC (mg/dL) | 217.3 ± 25.9 * | <200 |
- TG (mg/dL) | 198.8 ± 175.0 * | <150 |
- HDL-C (mg/dL) | 39.0 ± 15.2 * | >40 |
- LDL-C (mg/dL) | 138.9 ± 33.5 * | <100 |
Senescent CD4+ T cell subsets (%) at baseline | ||
- CD4+28null | 7.4 ± 4.6 (1.8–17.7) | |
- CD4+NKG2D+ | 1.4 ± 1.2 (0.3–4.4) | |
- CD4+28+NKG2D+ | 1.3 ± 1.4 (0.4–5.0) | |
- CD4+28nullNKG2D+ | 4.4 ± 4.3 (0.5–12.6) |
Parameters | Resting Group (n = 12) | TTM Group (n = 12) | Group × Time # | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | p | |
CD4+ T cell subsets (%) | |||||
CD4+ | 22.8 ± 12.7 | 23.0 ± 11.2 | 28.4 ± 7.9 | 27.9 ± 9.5 | 0.960 |
CD4+28+ | 94.3 ± 3.1 | 93.0 ± 3.2 | 92.5 ± 3.7 | 94.9 ± 2.3 † | 0.035 |
CD4+28null | 6.0 ± 3.1 | 7.6 ± 3.7 | 8.0 ± 4.2 | 5.4 ± 2.2 † | 0.039 |
CD4+NKG2D+ | 1.0 ± 0.7 | 0.9 ± 0.5 | 1.6 ± 1.1 | 0.7 ± 0.3 † | 0.044 |
CD4+28+NKG2D+ | 0.8 ± 0.6 | 0.7 ± 0.4 | 1.3 ± 1.3 | 0.6 ± 0.4 † | 0.084 |
CD4+28nullNKG2D+ | 3.9 ± 3.0 | 3.3 ± 3.0 | 4.9 ± 4.2 | 2.4 ± 2.6 † | 0.006 |
High group of CD4+28nullNKG2D+ (n = 6) | 5.1 ± 3.3 | 5.1 ± 3.5 | 8.3 ± 3.1 * | 4.0 ± 2.9 † | <0.001 |
Variable | Δ Change between Pre- and Post-TTM | p | Effect Size | Power (1-β Err Prob) |
---|---|---|---|---|
Effect of multiple round TTM | ||||
CD4+ | 0.5 ± 1.6 | 0.866 | 0.33 | 0.17 |
CD4+28+ | 2.4 ± 1.4 | 0.016 † | 1.69 | 0.99 |
CD4+28null | 2.6 ± 2.0 | 0.023 † | 1.35 | 0.98 |
CD4+NKG2D+ | 0.9 ± 0.8 | 0.001 † | 1.18 | 0.96 |
CD4+28+NKG2D+ | 0.8 ± 0.9 | 0.012 † | 0.86 | 0.77 |
CD4+28nullNKG2D+ | 2.5 ± 1.7 | <0.001 † | 1.49 | 0.99 |
High group of CD4+28nullNKG2D+ (n = 6) | 4.4 ± 0.3 | <0.001 † | 17.6 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornkayasit, K.; Jumnainsong, A.; Phoksawat, W.; Eungpinichpong, W.; Leelayuwat, C. Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. Int. J. Environ. Res. Public Health 2021, 18, 3210. https://doi.org/10.3390/ijerph18063210
Sornkayasit K, Jumnainsong A, Phoksawat W, Eungpinichpong W, Leelayuwat C. Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. International Journal of Environmental Research and Public Health. 2021; 18(6):3210. https://doi.org/10.3390/ijerph18063210
Chicago/Turabian StyleSornkayasit, Kanda, Amonrat Jumnainsong, Wisitsak Phoksawat, Wichai Eungpinichpong, and Chanvit Leelayuwat. 2021. "Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study" International Journal of Environmental Research and Public Health 18, no. 6: 3210. https://doi.org/10.3390/ijerph18063210
APA StyleSornkayasit, K., Jumnainsong, A., Phoksawat, W., Eungpinichpong, W., & Leelayuwat, C. (2021). Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. International Journal of Environmental Research and Public Health, 18(6), 3210. https://doi.org/10.3390/ijerph18063210