Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Assessment of Quality of Life, Physical Activity, and Nutritional Status
2.3. Physical Performance Measures
2.4. Genotyping
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Key Points
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porcel, M.A.; Valpuesta, E.R. Ageing in Spain: It’s a challenge or social problem? Gerokomos 2012, 23, 151–155. [Google Scholar] [CrossRef]
- Rechel, B.; Mladovsky, P.; Ingleby, D.; MacKenbach, J.P.; McKee, M. Migration and health in an increasingly diverse Europe. Lancet 2013, 381, 1235–1245. [Google Scholar] [CrossRef]
- Giglio, R.E.; Rodriguez-Blazquez, C.; De Pedro-Cuesta, J.; Forjaz, M.J. Sense of coherence and health of community-dwelling older adults in Spain. Int. Psychogeriatr. 2015, 27, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Moreno, G.; Mangione, C.M.; Wang, P.-C.; Trejo, L.; Butch, A.; Tseng, C.-H.; Sarkisian, C.A. Physical Activity, Physical Performance, and Biological Markers of Health among Sedentary Older Latinos. Curr. Gerontol. Geriatr. Res. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garatachea, N.; Molinero, O.; Martínez-García, R.; Jiménez-Jiménez, R.; González-Gallego, J.; Márquez, S. Feelings of well being in elderly people: Relationship to physical activity and physical function. Arch. Gerontol. Geriatr. 2009, 48, 306–312. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and Clinical Relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.O.; Rhee, S.Y.; Chon, S.; Hwang, Y.-C.; Jeong, I.-K.; Oh, S.; Ahn, K.J.; Chung, H.Y.; Woo, J.-T.; Kim, S.-W.; et al. Sarcopenia Is Independently Associated with Cardiovascular Disease in Older Korean Adults: The Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS ONE 2013, 8, e60119. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.D.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Wang, C.; Tao, W.; Dou, Q.; Yang, Y. Sarcopenia as a predictor of hospitalization among older people: A systematic review and meta-analysis. BMC Geriatr. 2018, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Choi, K.M. The Implications of Sarcopenia and Sarcopenic Obesity on Cardiometabolic Disease. J. Cell. Biochem. 2015, 116, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Harhay, M.O.; Harhay, M.N. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J. Cachex-Sarcopenia Muscle 2016, 7, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Melton, L.J.; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Epidemiology of Sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630. [Google Scholar] [CrossRef]
- Ethgen, O.; Beaudart, C.; Buckinx, F.; Bruyère, O.; Reginster, J.-Y. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif. Tissue Int. 2017, 100, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.C.; Day, S.H.; Ahmetov, I.I.; Williams, A.G. Genetics of muscle strength and power: Polygenic profile similarity limits skeletal muscle performance. J. Sports Sci. 2011, 29, 1425–1434. [Google Scholar] [CrossRef]
- Timmons, J.A. Variability in training-induced skeletal muscle adaptation. J. Appl. Physiol. 2011, 110, 846–853. [Google Scholar] [CrossRef]
- De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J.C. Genome-Wide Linkage Scan for Athlete Status in 700 British Female DZ Twin Pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, P.K.E.; Tynelius, P.; Kaprio, J.; Rasmussen, F. Heritability of body size and muscle strength in young adulthood: A study of one million Swedish men. Genet. Epidemiol. 2008, 32, 341–349. [Google Scholar] [CrossRef]
- North, K.N.; Beggs, A.H. Deficiency of a skeletal muscle isoform of α-actinin (α-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscul. Disord. 1996, 6, 229–235. [Google Scholar] [CrossRef]
- Yang, N.; Garton, F.; North, K. α-Actinin-3 and performance. In Genetics and Sports; KARGER: Basel, Switzerland, 2009; Volume 54, pp. 88–101. [Google Scholar]
- Houweling, P.J.; North, K.N. Sarcomeric α-actinins and their role in human muscle disease. Futur. Neurol. 2009, 4, 731–743. [Google Scholar] [CrossRef]
- Vincent, B.; De Bock, K.; Ramaekers, M.; Eede, E.V.D.; Van Leemputte, M.; Hespel, P.; Thomis, M.A. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol. Genom. 2007, 32, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, M.A.; Yang, N.; Weinberger, R.; Vander Woude, D.L.; Beggs, A.H.; Easteal, S.; North, K. Differential Expression of the Actin-Binding Proteins, α-actinin-2 and-3, in Different Species: Implications for the Evolution of Functional Redundancy. 2001. Available online: http://www.ncbi.nlm.nih.gov/ (accessed on 22 July 2020).
- North, K.N.; Yang, N.; Wattanasirichaigoon, D.; Mills, M.; Easteal, S.; Beggs, A.H. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat. Genet. 1999, 21, 353–354. [Google Scholar] [CrossRef]
- Owens, H.; Gamble, G.D.; Bjornholdt, M.C.; Boyce, N.K.; Keung, L. Topographic indications of emerging keratoconus in teenage New Zealanders. Cornea 2007, 26, 312–318. [Google Scholar] [CrossRef]
- Li, R.; Xia, J.; Zhang, X.I.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; McKenzie, S.; Song, Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018, 50, 458–467. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3, Morbidity, and Healthy Aging. Front. Genet. 2018, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.S.; Averill, R.F.; Eisenhandler, J.; Goldfield, N.; Muldoon, J.; Neff, J.M.; Gay, J.C. Clinical Risk Groups (CRGs). Med. Care 2004, 42, 81–90. [Google Scholar] [CrossRef]
- Badia, X.; Roset, M.; Montserrat, S.; Herdman, M.; Segura, A. La versión española del EuroQol: Descripción y aplicaciones. Med. Clin. 1999, 112 (Suppl. 1), 79–86. Available online: https://europepmc.org/article/med/10618804 (accessed on 21 December 2020).
- García, D.R.; Solé, M.C.; Arnaiz, M.P.; Fernández, V.S.; Gatius, J.R.; Font, R.L.; Sol, G.P. Relación entre la calidad de vida de los pacientes, mediante el cuestionario EuroQol-5D, y la clasificación de morbilidad Clinical Risk Groups. Med. Gen. Fam. 2015, 4, 47–52. [Google Scholar] [CrossRef]
- Herdman, M.; Badia, X.; Berra, S. EuroQol-5D: A simple alternative for measuring health-related quality of life in primary care. Aten. Primaria/Soc. Española Med. Fam. Comunitaria 2001, 28, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.E.; Bonsel, G.J.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [Green Version]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The physical activity scale for the elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Soto, M.E.; Villars, H.; Van Kan, G.A.; Vellas, B. The Mini Nutritional Assessment (MNA) after 20 years of research and clinical practice. Rev. Clin. Gerontol. 2007, 17, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Marie, D.; Fredrick, A.; Bertram, J.; Utley, K.; Fess, E.E. Predicting hand function in older adults: Evaluations of grip strength, arm curl strength, and manual dexterity. Aging Clin. Exp. Res. 2017, 29, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Massy-Westropp, N.M.; Gill, T.K.; Taylor, A.W.; Bohannon, R.W.; Hill, C. Hand Grip Strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef] [Green Version]
- Alley, D.E.; Shardell, M.D.; Peters, K.W.; McLean, R.R.; Dam, T.-T.L.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Grip Strength Cutpoints for the Identification of Clinically Relevant Weakness. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2014, 69, 559–566. [Google Scholar] [CrossRef]
- Chanock, S.J.; Manolio, T.; Boehnke, M.; Boerwinkle, E.; Hunter, D.J.; Thomas, G.; Hirschhorn, J.N.; Abecasis, G.; Altshuler, D.; Bailey-Wilson, J.E.; et al. Replicating genotype-phenotype associations. Nature 2007, 447, 655–660. [Google Scholar] [CrossRef]
- Oldridge, N.B. Economic burden of physical inactivity: Healthcare costs associated with cardiovascular disease. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 130–139. [Google Scholar] [CrossRef]
- Wang, W.; McGreevey, W.P.; Fu, C.; Zhan, S.; Luan, R.; Chen, W.; Xu, B. Type 2 diabetes mellitus in China: A preventable economic burden. Am. J. Manag. Care 2009, 15, 593–601. Available online: http://europepmc.org/article/med/19747024 (accessed on 18 December 2020).
- Bertoldi, A.D.; Hallal, P.C.; Barros, A.J. Physical activity and medicine use: Evidence from a population-based study. BMC Public Heal. 2006, 6, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Lavoie, K.L.; Bacon, S.L. Taking up physical activity in later life and healthy ageing: The English longitudinal study of ageing. Br. J. Sports Med. 2014, 48, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Quehenberger, V.; Cichocki, M.; Krajic, K. Sustainable effects of a low-threshold physical activity intervention on health-related quality of life in residential aged care. Clin. Interv. Aging 2014, 9, 1853–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salguero, A.; Martínez-García, R.; Molinero, O.; Márquez, S. Physical activity, quality of life and symptoms of depression in community-dwelling and institutionalized older adults. Arch. Gerontol. Geriatr. 2011, 53, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Lu, D.; Zhu, Y.-S.; Chu, X.-F.; Wang, Y.; Shi, G.-P.; Wang, Z.; Yu, L.; Jiang, X.; Wang, X.-F. ACTN3 genotype and physical function and frailty in an elderly Chinese population: The Rugao Longevity and Ageing Study. Age Ageing 2018, 47, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Dato, S.; Montesanto, A.; Lagani, V.; Jeune, B.; Christensen, K.; Passarino, G. Frailty phenotypes in the elderly based on cluster analysis: A longitudinal study of two Danish cohorts. Evidence for a genetic influence on frailty. AGE 2012, 34, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.; Kuh, D.; Hardy, R. Mortality Review Group; on behalf of the FALCon and HALCyon study teams Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, K. Effective utilization of genetic information for athletes and coaches: Focus on ACTN3 R577X polymorphism. J. Exerc. Nutr. Biochem. 2015, 19, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K.N. ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmonico, M.J.; Kostek, M.C.; Doldo, N.A.; Hand, B.D.; Walsh, S.; Conway, J.M.; Carignan, C.R.; Roth, S.M.; Hurley, B.F. Alpha-Actinin-3 (ACTN3) R577X Polymorphism Influences Knee Extensor Peak Power Response to Strength Training in Older Men and Women. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2007, 62, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Blanco, C.; Artiga-González, M.J.; Gómez-Cabello, A.; Vila-Maldonado, S.; Casajus, J.A.; Ara, I.; Aznar, S. Strength and Endurance Training in Older Women in Relation to ACTN3 R577X and ACE I/D Polymorphisms. Int. J. Environ. Res. Public Health 2020, 17, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, J.T.; Quinlan, K.G.; Lek, M.; Zheng, X.F.; Garton, F.; MacArthur, D.G.; Hogarth, M.W.; Houweling, P.J.; Gregorevic, P.; Turner, N.; et al. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J. Clin. Investig. 2013, 123, 4255–4263. [Google Scholar] [CrossRef] [Green Version]
- Garton, F.; Seto, J.; Quinlan, K.; Yang, N.; Houweling, P.; North, K.N. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum. Mol. Genet. 2014, 23, 1879–1893. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Ruiz, J.R.; Rodriguez-Romo, G.; Santiago, C.; Gomez-Gallego, F.; Yvert, T.; Cano-Nieto, A.; Garatachea, N.; Moran, M.; Lucia, A. Are ‘Endurance’ Alleles ‘Survival’ Alleles? Insights from the ACTN3 R577X Polymorphism. PLoS ONE 2011, 6, e17558. [Google Scholar] [CrossRef]
- Deschamps, C.L.; Connors, K.E.; Klein, M.S.; Johnsen, V.L.; Shearer, J.; Vogel, H.J.; Devaney, J.M.; Gordish-Dressman, H.; Many, G.M.; Barfield, W.; et al. The ACTN3 R577X Polymorphism Is Associated with Cardiometabolic Fitness in Healthy Young Adults. PLoS ONE 2015, 10, e0130644. [Google Scholar] [CrossRef]
- Seto, J.T.; Chan, S.; Turner, N.; MacArthur, D.G.; Raftery, J.M.; Berman, Y.D.; Quinlan, K.G.R.; Cooney, G.J.; Head, S.; Yang, N.; et al. The effect of α-actinin-3 deficiency on muscle aging. Exp. Gerontol. 2011, 46, 292–302. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Devaney, J.M.; Gordish-Dressman, H.; Thompson, P.D.; Hubal, M.J.; Urso, M.; Price, T.B.; Angelopoulos, T.J.; Gordon, P.M.; Moyna, N.M.; et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol. 2005, 99, 154–163. [Google Scholar] [CrossRef]
Characteristics | Men n = 131 | Women n = 150 | p-Value |
---|---|---|---|
Age, mean (SD) | 76.69 (7.32) | 75.68 (6.92) | 0.240 |
BMI, mean (SD) | 27.59 (3.82) | 27.68 (4.20) | 0.842 |
Total drugs, mean (SD) | 5.00 (3.53) | 4.51 (3.38) | 0.245 |
Falls, mean (SD) | 0.07 (0.26) | 0.26 (0.51) | <0.001 |
Hospital admissions, mean (SD) | 0.10 (0.30) | 0.09 (0.29) | 0.747 |
CRG (% pluripathologic or chronic diseases) | 34.10 | 26.70 | 0.111 |
EQ-5D, mean (SD) | 0.83 (0.16) | 0.88 (1.07) | 0.617 |
EQ-VAS, mean (SD) | 73.58 (13.82) | 69.66 (17.36) | 0.039 |
PASE score, mean (SD) | 269.07 (169.84) | 254.38 (158.38) | 0.454 |
HGS, mean (SD) | 45.63 (25.80) | 30.76 (16.10) | <0.001 |
MNA, mean (SD) | 27.04 (2.65) | 26.78 (2.92) | 0.440 |
Age | BMI | Drugs | Falls | Hospital Admissions | PASE Score | HGS | EQ-VAS | EQ-5D | |
---|---|---|---|---|---|---|---|---|---|
Age | 1 | −0.118 | 0.371 | 0.045 | −0.014 | −0.036 | −0.312 | −0.159 | −0.203 |
0.180 | <0.001 | 0.611 | 0.874 | 0.686 | <0.001 | 0.070 | 0.020 | ||
BMI | 1 | 0.150 | 0.030 | −0.041 | −0.092 | 0.073 | −0.107 | −0.164 | |
0.096 | 0.763 | 0.653 | 0.297 | 0.406 | 0.225 | 0.061 | |||
Drugs | 1 | 0.089 | 0.152 | −0.216 | −0.118 | −0.283 | −0.184 | ||
0.334 | 0.100 | 0.016 | 0.191 | <0.001 | 0.041 | ||||
Falls | 1 | 0.125 | −0.013 | 0.090 | −0.036 | 0.053 | |||
0.165 | 0.881 | 0.314 | 0.690 | 0.549 | |||||
Hospital admissions | 1 | 0.080 | 0.089 | −0.163 | −0.094 | ||||
0.377 | 0.325 | 0.070 | 0.300 | ||||||
PASE score | 1 | −0.077 | 0.206 | 0.353 | |||||
0.382 | 0.018 | <0.001 | |||||||
HGS | 1 | 0.099 | 0.052 | ||||||
0.258 | 0.556 | ||||||||
EQ-VAS | 1 | 0.291 | |||||||
0.001 | |||||||||
EQ-5D | 1 | ||||||||
- |
Age | BMI | Drugs | Falls | Hospital Admissions | PASE Score | HGS | EQ-VAS | EQ-5D | |
---|---|---|---|---|---|---|---|---|---|
Age | 1 | 0.025 | 0.240 | 0.028 | 0.012 | 0.000 | −0.293 | −0.071 | −0.136 |
0.759 | 0.004 | 0.741 | 0.892 | 0.999 | <0.001 | 0.387 | 0.098 | ||
BMI | 1 | 0.137 | −0.022 | −0.063 | −0.033 | 0.092 | −0.010 | −0.085 | |
0.101 | 0.759 | 0.455 | 0.685 | 0.262 | 0.902 | 0.304 | |||
Drugs | 1 | −0.065 | 0.042 | −0.128 | −0.086 | −0.328 | −0.382 | ||
0.455 | 0.626 | 0.126 | 0.303 | <0.001 | <0.001 | ||||
Falls | 1 | 0.177 | −0.135 | −0.034 | −0.094 | −0.006 | |||
0.036 | 0.110 | 0.685 | 0.268 | 0.944 | |||||
Hospital admissions | 1 | −0.013 | 0.061 | 0.045 | −0.022 | ||||
0.883 | 0.469 | 0.593 | 0.799 | ||||||
PASE score | 1 | −0.121 | 0.481 | 0.391 | |||||
0.142 | <0.001 | <0.001 | |||||||
HGS | 1 | 0.188 | 0.081 | ||||||
0.021 | 0.326 | ||||||||
EQ-VAS | 1 | 0.507 | |||||||
<0.001 | |||||||||
EQ-5D | 1 | ||||||||
- |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Crude Model Β (SE) | p Value | Adjusted Model Β (SE) | p Value | Crude Model Β (SE) | p Value | Adjusted Model Β (SE) | p Value | |
EQ-5D * | ||||||||
Mobility | 0.59 (0.50) | 0.238 | −1.44 (0.52) | 0.006 | 0.63 (0.66) | 0.339 | −0.25 (0.40) | 0.529 |
Self-care | −0.57 (1.25) | 0.645 | −0.505 (1.43) | 0.604 | 1.00 (1.12) | 0.368 | −0.63 (0.59) | 0.284 |
Usual-activities | −0.42 (0.77) | 0.591 | −1.66 (1.17) | 0.157 | −0.04 (0.76) | 0.958 | −0.31 (0.53) | 0.553 |
Pain and discomfort | 0.59 (0.50) | 0.238 | 0.082 (0.446) | 0.854 | −0.01 (0.58) | 0.984 | −0.44 (0.38) | 0.253 |
Depression and anxiety | 0.34 (0.54) | 0.531 | −0.32 (0.49) | 0.523 | 0.92 (0.62) | 0.134 | −0.63 (0.38) | 0.100 |
EQ-VAS | −0.42 (0.72) | 0.561 | 0.26 (0.618) | 0.996 | −0.59 (0.85) | 0.482 | −0.046 (0.48) | 0.924 |
HGS | −1.08 (0.50) | 0.031 | 1.23 (0.47) | 0.008 | 0.01 (0.63) | 0.991 | 0.42 (0.43) | 0.337 |
GCR | 0.13 (0.48) | 0.777 | −1.38 (0.51) | 0.006 | 0.05 (0.60) | 0.962 | −0.97 (0.43) | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Araque, A.; Giaquinta-Aranda, A.; Rodríguez-Díez, J.A.; Carretero-Molinero, S.; López-López, J.; Verde, Z. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. Int. J. Environ. Res. Public Health 2021, 18, 1055. https://doi.org/10.3390/ijerph18031055
Fernández-Araque A, Giaquinta-Aranda A, Rodríguez-Díez JA, Carretero-Molinero S, López-López J, Verde Z. Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. International Journal of Environmental Research and Public Health. 2021; 18(3):1055. https://doi.org/10.3390/ijerph18031055
Chicago/Turabian StyleFernández-Araque, Ana, Andrea Giaquinta-Aranda, Jose Andrés Rodríguez-Díez, Silvia Carretero-Molinero, Jorge López-López, and Zoraida Verde. 2021. "Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism" International Journal of Environmental Research and Public Health 18, no. 3: 1055. https://doi.org/10.3390/ijerph18031055
APA StyleFernández-Araque, A., Giaquinta-Aranda, A., Rodríguez-Díez, J. A., Carretero-Molinero, S., López-López, J., & Verde, Z. (2021). Muscular Strength and Quality of Life in Older Adults: The Role of ACTN3 R577X Polymorphism. International Journal of Environmental Research and Public Health, 18(3), 1055. https://doi.org/10.3390/ijerph18031055