The Use of Hyperbaric Oxygen Therapy and Corticosteroid Therapy in Acute Acoustic Trauma: 15 Years’ Experience at the Czech Military Health Service
Abstract
:1. Introduction
Issues of HBO2 Therapy in AAT from the Perspective of a Hyperbaric Medicine Expert
2. Materials and Methods
2.1. Division into Groups According
- Group A—were soldiers (sound intensity at AAT was up to 170 dB)
- Group B—were civilian persons (sound intensity at AAT was up to 120 dB)
- Parameter latency of the beginning of the treatment of AAT within 24 h
- Parameter latency of the beginning of the treatment of AAT within 7 days
- Parameter latency of the beginning of the treatment of AAT after 7 days
- Group I—patients were treated with corticosteroids + vasodilatory infusion, without hyperbaric oxygen therapy. In this group, the age range was between 20 and 82 years, the average age was 33 years.
- Group II—patients were treated with corticosteroids + vasodilatory infusion + hyperbaric oxygen therapy. In this group, The age range was between 18 and 69 years, the average age was 38 years.
2.2. Medical Protocol
2.3. Statistical Analysis of Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Veen, E.L.; van Hulst, R.A.; de Ru, J.A. Hyperbaric Oxygen Therapy in Acute Acoustic Trauma: A Rapid Systematic Review. Otolaryngol. Head Neck Surg. 2014, 151, 42–45. [Google Scholar] [CrossRef]
- Baldwin, T.M. Tinnitus, a military epidemic: Is hyperbaric oxygen therapy the answer? J. Spec. Oper. Med. 2009, 9, 33–43. [Google Scholar] [PubMed]
- Bayoumy, A.B.; van der Veen, E.L.; van Ooij, P.A.M.; Besseling-Hansen, F.S.; Koch, D.A.A.; Stegeman, I.; de Ru, J.A. Effect of hyperbaric oxygen therapy and corticosteroid therapy in military personnel with acute acoustic trauma. J. R. Army Med Corps 2019. [Google Scholar] [CrossRef]
- Lamm, K.; Arnold, W. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear. Hear Res. 1998, 115, 149–161. [Google Scholar] [CrossRef]
- Quaranta, A.; Portalatini, P.; Henderson, D. Temporary and permanent threshold shift: An overview. Scand. Audiol. Suppl. 1998, 48, 75–86. [Google Scholar]
- Cakir, B.O.; Ercan, I.; Civelek, S.; Körpinar, S.; Toklu, A.S.; Gedik, O.; Işik, G.; Sayin, I.; Turgut, S. Negative effect of immediate hyperbaric oxygen therapy in acute acoustic trauma. Otol. Neurotol. 2006, 27, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Colombari, G.C.; Rossato, M.; Feres, O.; Hyppolito, M.A. Effects of hyperbaric oxygen treatment on auditory hair cells after acute noise damage. Eur. Arch. Otorhinolaryngol. 2011, 268, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kuznecov, M.S.; Morozova, M.V.; Dvorjanchikov, V.V.; Glaznikov, L.A.; Pastushenkov, V.L.; Gofman, V.R. Sovremennye podkhody i perspektivnye napravleniya v lechenii ostroi sensonevral’noi tugoukhosti akutravmaticheskogo geneza [Modern approaches and prospective directions in treatment of acute sensorineural hearing loss following acoustic trauma]. Vestn. Otorinolaringol. 2020, 85, 88–92. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Kuokkanen, J.; Aarnisalo, A.A.; Ylikoski, J. Efficiency of hyperbaric oxygen therapy in experimental acute acoustic trauma from firearms. Acta Otolaryngol. Suppl. 2000, 543, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Holý, R.; Došel, P.; Synková, B.; Astl, J. Treatment of Idiopathic Sudden Sensorineural Hearing Loss—Hyperbaric Oxygen Therapy. Otorinolaryngol. Foniatr. 2017, 66, 135–140. [Google Scholar]
- Ylikoski, J.; Mrena, R.; Makitie, A.; Kuokkanen, J.; Pirvola, U.; Savolainen, S. Hyperbaric oxygen therapy seems to enhance recovery from acute acoustic trauma. Acta Otolaryngol. 2008, 128, 1110–1115. [Google Scholar] [CrossRef]
- Jokitulppo, J.; Toivonen, M.; Paakkonen, R.; Savolainen, S.; Bjork, E.; Lehtomaki, K. Military and leisure-time noise exposure and hearing thresholds of Finnish conscripts. Mil. Med. 2008, 173, 906–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrena, R.; Savolainen, S.; Pirvola, U.; Ylikoski, J. Characteristics of acute acoustical trauma in the Finnish Defence Forces. Int. J. Audiol. 2004, 43, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Paakkonen, R.; Lehtomaki, K.; Savolainen, S. Noise attenuation of communication hearing protectors against impulses from assault rifle. Mil. Med. 1998, 163, 40–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ylikoski, M.E. Prolonged exposure to gunfire noise among professional soldiers. Scand. J. Work Environ. Health 1994, 20, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Kratochvilova, B.; Profant, O.; Astl, J.; Holy, R. Our experience in the treatment of idiopathic sensorineural hearing loss (ISNHL): Effect of combination therapy with HBO(2) and vasodilator infusion therapy. Undersea Hyperb. Med. 2016, 43, 771–780. [Google Scholar]
- Ciodaro, F.; Gazia, F.; Galletti, B.; Galletti, F. Hyperbaric oxygen therapy in a case of cervical abscess extending to anterior, mediastinum, with isolation of Prevotella corporis. BMJ Case Rep. 2019, 12, e229873. [Google Scholar] [CrossRef]
- Ferlito, S.; Maniaci, A.; Di Luca, M.; Grillo, C.; Mannelli, L.; Salvatore, M.; La Mantia, I.; Spinato, G.; Cocuzza, S. From Uncommon Infection to Multi-Cranial Palsy: Malignant External Otitis Insights. Dose Response 2020, 18, 1559325820963910. [Google Scholar] [CrossRef]
- Rezaee, M.; Mojtahed, M.; Ghasemi, M.; Saedi, B. Assessment of impulse noise level and acoustic trauma in military personnel. Trauma Mon. 2012, 16, 182–187. [Google Scholar] [CrossRef]
- Olszewski, J.; Milonski, J.; Olszewski, S.; Majak, J. Hearing threshold shift measured by otoacoustic emissions after shooting noise exposure in soldiers using hearing protectors. Otolaryngol. Head Neck Surg. 2007, 136, 78–81. [Google Scholar] [CrossRef]
- Tambs, K.; Hoffman, H.J.; Borchgrevink, H.M.; Holmen, J.; Engdahl, B. Hearing loss induced by occupational and impulse noise: Results on threshold shifts by frequencies, age and gender from the Nord-Trondelag Hearing Loss Study. Int. J. Audiol. 2006, 45, 309–317. [Google Scholar] [CrossRef]
- Mardassi, A.; Turki, S.; Mbarek, H.; Hachicha, A.; Benzarti, S.; Abouda, M. Acute acoustic trauma: How to manage and how to prevent? Tunis. Med. 2016, 94, 664. [Google Scholar] [PubMed]
- Tlapak, J.; Chmatal, P.; Oniscenko, B.; Pavlik, V.; Dosel, P.; Paral, J.; Lochman, P. The effect of hyperbaric oxygen therapy on gene expression: Microarray analysis on wound healing. Undersea Hyperb. Med. 2020, 47, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Ferlito, S.; Cocuzza, S.; Grillo, C.; La Mantia, I.; Gulino, A.; Galletti, B.; Coco, S.; Renna, C.; Cipolla, F.; Di Luca, M.; et al. Complications and sequelae following tympanostomy tube placement in children with effusion otitis media: Single center experience and review of literature. Acta Med. Mediterr. 2020, 36, 1905–1912. [Google Scholar]
- Galletti, F.; Freni, F.; Gazia, F.; Galletti, B. Endomeatal approach in cochlear implant surgery in a patient with small mastoid cavity and procident lateral sinus. BMJ Case Rep. 2019, 12, e229518. [Google Scholar] [CrossRef] [Green Version]
- Lafère, P.; Vanhoutte, D.; Germonprè, P. Hyperbaric oxygen therapy for acute noise-induced hearing loss: Evaluation of different treatment regimens. Diving Hyperb. Med. 2010, 40, 63–67. [Google Scholar] [PubMed]
- Oya, M.; Tadano, Y.; Takihata, Y.; Ikomi, F.; Tokunaga, T. Utility of Hyperbaric Oxygen Therapy for Acute Acoustic Trauma: 20 years’ Experience at the Japan Maritime Self-Defense Force Undersea Medical Center. Int. Arch. Otorhinolaryngol. 2019, 23, e408–e414. [Google Scholar] [CrossRef] [Green Version]
All AAT | Group A | Group B | p-Value * | ||||
---|---|---|---|---|---|---|---|
Total Number of Damaged Ears | n = 141 | n = 83 | n = 58 | ||||
Improved in total | 111 | 79% | 58 | 70% | 47 | 81% | 0.096 |
Restored to standard = after treatment normacusis | 58 | 41% | 32 | 39% | 17 | 29% | 0.170 |
Partially improved | 53 | 38% | 26 | 31% | 30 | 52% | 0.012 |
Not improved | 30 | 21% | 25 | 30% | 11 | 19% |
(a) | |||
Latency of the Beginning of the Treatment | Total AAT | Improved after Treatment | p-Value |
n = 141 Ears | |||
Within 24 h | n = 56; 40% | n = 54; 96% | <0.001 |
Within 7 days | n = 55; 39% | n = 41; 74% | |
After 7 days | n = 30; 21% | n = 16; 53% | |
(b) | |||
Latency of the Beginning of the Treatment | Group A | Improved after Treatment | p-Value |
n = 83 Ears | |||
Within 24 h | n = 36; 43% | n = 35; 97% | <0.001 |
Within 7 days | n = 28; 34% | n = 22; 79% | |
After 7 days | n = 19; 23% | n = 10; 53% | |
(c) | |||
Latency of the Beginning of the Treatment | Group B | Improved after Treatment | p-Value |
n = 58 Ears | |||
Within 24 h | n = 20; 34% | n = 19; 95% | 0.017 |
Within 7 days | n = 27; 47% | n = 19; 70% | |
After 7 days | n = 11; 19% | n = 6; 55% |
Group I (corticosteroids without HBO2) | n = 61 ears |
Improved | 50–82% |
Improved to normacusis (threshold of losses above 20 dB) | 39–64% |
Group II (corticosteroids with HBO2) | n = 73 ears |
Improved | 56–77% |
Improved to normacusis (threshold of losses above 20 dB) | 27–37% |
Singled out group p. o. vasodilatants | n = 7 ears |
Improved | 6–86% |
Improved to standard (threshold of losses above 20 dB) | 2–29% |
Frequency | Group | N | Average (dB) | St. Deviation | p-Value * |
---|---|---|---|---|---|
125 | I | 61 | 1.48 | 4.117 | 0.984 |
II | 73 | 1.16 | 6.265 | ||
250 | I | 61 | 1.39 | 3.180 | 0.121 |
II | 73 | 3.15 | 7.193 | ||
500 | I | 61 | 1.23 | 3.248 | 0.007 |
II | 73 | 4.04 | 7.530 | ||
1000 | I | 61 | 2.21 | 5.666 | 0.284 |
II | 73 | 3.63 | 8.261 | ||
2000 | I | 61 | 3.11 | 5.490 | 0.043 |
II | 73 | 7.05 | 10.924 | ||
4000 | I | 61 | 6.80 | 10.248 | 0.146 |
II | 73 | 10.41 | 12.984 | ||
6000 | I | 61 | 9.18 | 16.985 | 0.767 |
II | 73 | 10.27 | 17.298 | ||
8000 | I | 61 | 9.26 | 11.862 | 0.468 |
II | 73 | 8.56 | 16.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holy, R.; Zavazalova, S.; Prochazkova, K.; Kalfert, D.; Younus, T.; Dosel, P.; Kovar, D.; Janouskova, K.; Oniscenko, B.; Fik, Z.; et al. The Use of Hyperbaric Oxygen Therapy and Corticosteroid Therapy in Acute Acoustic Trauma: 15 Years’ Experience at the Czech Military Health Service. Int. J. Environ. Res. Public Health 2021, 18, 4460. https://doi.org/10.3390/ijerph18094460
Holy R, Zavazalova S, Prochazkova K, Kalfert D, Younus T, Dosel P, Kovar D, Janouskova K, Oniscenko B, Fik Z, et al. The Use of Hyperbaric Oxygen Therapy and Corticosteroid Therapy in Acute Acoustic Trauma: 15 Years’ Experience at the Czech Military Health Service. International Journal of Environmental Research and Public Health. 2021; 18(9):4460. https://doi.org/10.3390/ijerph18094460
Chicago/Turabian StyleHoly, Richard, Sarka Zavazalova, Klara Prochazkova, David Kalfert, Temoore Younus, Petr Dosel, Daniel Kovar, Karla Janouskova, Boris Oniscenko, Zdenek Fik, and et al. 2021. "The Use of Hyperbaric Oxygen Therapy and Corticosteroid Therapy in Acute Acoustic Trauma: 15 Years’ Experience at the Czech Military Health Service" International Journal of Environmental Research and Public Health 18, no. 9: 4460. https://doi.org/10.3390/ijerph18094460
APA StyleHoly, R., Zavazalova, S., Prochazkova, K., Kalfert, D., Younus, T., Dosel, P., Kovar, D., Janouskova, K., Oniscenko, B., Fik, Z., & Astl, J. (2021). The Use of Hyperbaric Oxygen Therapy and Corticosteroid Therapy in Acute Acoustic Trauma: 15 Years’ Experience at the Czech Military Health Service. International Journal of Environmental Research and Public Health, 18(9), 4460. https://doi.org/10.3390/ijerph18094460