Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Biochar and Its Characterization
2.2. Collection and Analysis of Tannery Polluted Soil Samples
2.3. Experimental Design and Setup
2.4. Measuring Growth Parameters
2.5. Measuring Maize Physiological Characteristics
2.5.1. Physiological Parameters
2.5.2. Water Relations of Plants
2.6. Measuring Maize Biochemical Attributes
2.6.1. Determination of Stress-Related Metabolites
2.6.2. Antioxidant Enzymes Assay
2.7. Chromium Speciation in Plant Tissues
2.8. Statistical Data Analysis
3. Results
3.1. Impact of Biochar on Maize Growth
3.2. Physiological Traits of Maize Plant
3.3. Biochemical Attributes of the Plants
3.3.1. Stress-Related Metabolites
3.3.2. Measurement of Antioxidant Enzyme Activities
3.4. Chromium Concentration in Soil and Plant Tissues
3.5. Correlation and Principal Component Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Athar, R.; Ahmad, M. Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut. 2002, 138, 165–180. [Google Scholar] [CrossRef]
- Baran, A.; Wieczorek, J. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Arch. Environ. Protect. 2015, 41, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Turan, V.; Khan, S.A.; Mahmood-ur-Rahman; Iqbal, M.; Ramzani, P.M.A.; Fatima, M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018, 161, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.; Saleem, T.; Shuja-ur-Rehman; Iqbal, M.A.; Javed, F.; Khan, M.B.; Sadiq, K. Effects of leather industry on health and recommendations for improving the situation in Pakistan. Arch. Environ. Occup. Health 2010, 65, 163–172. [Google Scholar] [CrossRef]
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in agricultural soils and crops: A review. Water Air Soil Pollut. 2017, 228, 190. [Google Scholar] [CrossRef]
- Bashir, M.A.; Khalid, M.; Naveed, M.; Ahmad, R.; Gao, B. Influence of feedstock and pyrolytic temperature of biochar on physico-chemical characteristics and sorption of chromium in tannery polluted soil. Int. J. Agric. Biol. 2018, 20, 2823–2834. [Google Scholar]
- Azom, M.R.; Mahmud, K.; Yahya, S.M.; Sontu, A.; Himon, S.B. Environmental impact assessment of tanneries: A case study of Hazaribag in Bangladesh. Int. J. Environ. Sci. Dev. 2012, 3, 152–156. [Google Scholar] [CrossRef]
- Rashid, H.; Takemura, J.; Farooqi, A.M. Investigation of subsurface contamination due to chromium from tannery effluent in Kasur District of Pakistan. J. Environ. Sci. Eng. 2012, 1, 1007–1024. [Google Scholar]
- Yasin, M.; Faisal, M. Assessing the phytotoxicity of tannery waste-contaminated soil on Zea mays (Lin) Growth. Pol. J. Environ. Stud. 2013, 22, 1871–1876. [Google Scholar]
- Wionczyk, B.; Apostoluk, W.; Charewicz, W.A. Solvent extraction of chromium (III) from spent tanning liquors with Aliquat 336. J. Hydrometall. 2006, 82, 83–92. [Google Scholar] [CrossRef]
- Ghani, A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. H. Bot. 2011, 2, 9–15. [Google Scholar]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Singh, H.P.; Mahajan, P.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 2013, 11, 229–254. [Google Scholar] [CrossRef]
- Oancea, S.; Foca, N.; Airinel, A. Effect of heavy metal on plant growth and photosynthetic activity. Analele Ştiintifice Ale Universitatii IAŞI 2005, 5, 107–110. [Google Scholar]
- Bashir, M.A.; Naveed, M.; Ahmad, Z.; Gao, B.; Mustafa, A.; Nú~nez-Delgado, A. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 2020, 259, 110051. [Google Scholar] [CrossRef]
- Pandey, V.; Dixit, V.; Shyam, R. Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 2009, 235, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Shanker, A.K.; Cervantesb, C.; Loza-Taverac, H.; Avudainayagam, S. Chromium toxicity in plants, Review Article. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- Ghani, A. Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iranian J. Toxicol. 2010, 3, 325–334. [Google Scholar]
- Pan, J.; Jiang, J.; Xu, R. Adsorption of Cr (III) from acidic solutions by crop straw derived biochars. J. Environ. Sci. 2013, 25, 1957–1965. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Guo, H.; Stuben, D.; Berner, Z. Arsenic removal from water using natural iron mineral-quartz sand columns. Sci Total Environ. 2007, 377, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Kotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Mohan, D.; Rajput, S.; Singh, V.K.; Steele, P.H.; Pittman, C.U. Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent. J. Hazard. Mater. 2011, 188, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C. Trace elements in terrestrial environments. In Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014, 133, 309–314. [Google Scholar] [CrossRef]
- Cervantes, C.; Campos-Garcia, J.; Devars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Torres-Guzman, J.C.; Moreno-Sanchez, R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001, 25, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Mathew, L. Chromium pollution and bioremediation: An Overview. Biomanag. Met.-Contam. Soils 2011, 20, 297–321. [Google Scholar] [CrossRef]
- Dong, X.; Ma, L.Q.; Li, Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011, 190, 909–915. [Google Scholar] [CrossRef]
- Razic, S.; Dogo, S. Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave-assisted acid digestion to assess potential bioavailability. Chemosphere 2011, 78, 451–456. [Google Scholar] [CrossRef]
- Costa, M.; Klein, C.B. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 2006, 36, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J.C. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Hartley, W.; Dickinson, N.M.; Riby, P.; Lepp, N.W. Arsenic mobility in brownfield soils amended with greenwaste compost or biochar and planted with Miscanthus. Environ. Pollut. 2009, 157, 2654–2662. [Google Scholar] [CrossRef]
- Clemente, R.; Walker, D.J.; Pardo, T.; Martínez-Fernández; Bernal, M.P. The use of halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. J. Hazard. Mater. 2012, 223–224, 63–71. [Google Scholar] [CrossRef]
- Mustafa, A.; Minggang, X.; Shah, S.A.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Jimenez, E.M.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Karer, J.A.; Wawra, F.; Zehetner, G.; Dunst, M.; Wagner, P.; Pavel, M.; Puschenreiter, W.; Friesl-Hanl; Soja, G. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavymetals in contaminated soils. Water Air Soil Pollut. 2015, 226, 3–12. [Google Scholar] [CrossRef]
- Kamran, M.; Malik, Z.; Parveen, A.; Zong, Y.; Abbasi, G.H.; Rafiq, M.T.; Shaaban, M.; Mustafa, A.; Bashir, S.; Rafay, M.; et al. Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cul-tivated in Cd-polluted soil. J. Environ. Manag. 2019, 250, 109500. [Google Scholar] [CrossRef] [PubMed]
- Baigorri, R.; San Francisco, S.; Urrutia, Ó.; García-Mina, J.M. Biochar-Ca and Biochar-Al/-Fe-Mediated Phosphate Exchange Capacity are Main Drivers of the Different Biochar Effects on Plants in Acidic and Alkaline Soils. Agronomy 2020, 10, 968. [Google Scholar] [CrossRef]
- Ahmad, M.; Wang, X.; Hilger, T.H.; Luqman, M.; Nazli, F.; Hussain, A.; Zahir, Z.A.; Latif, M.; Saeed, Q.; Malik, H.A.; et al. Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy 2020, 10, 1055. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, MA, USA, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Chen, B.L.; Yuan, M.X. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. Soils Sediments 2011, 11, 62–71. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.; El-Naggar, A.H.; Aly, A.A.; Ibrahim, H.M.; Elmaghraby, S.; Al-Omran, A. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J. Biol. Sci. 2015, 22, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Uchimiya, M.; Chang, S.C.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 190, 432–444. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Kunhikrishnan, A.; Bush, R. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 2016, 144, 374–381. [Google Scholar] [CrossRef]
- Liu, H.; Liang, S.; Gao, J.; Ngo, H.H.; Guo, W.; Guo, Z.; Wang, J.; Li, Y. Enhancement of Cr (VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation. Chem. Eng. J. 2014, 246, 168–174. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, B.; Bolan, N.; Ok, Y.S.; Naidu, R. Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manag. 2017, 186, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Mustafa, A.; Azhar, S.Q.T.A.; Kamran, M.; Zahir, Z.A.; Núñez-Delgado, A. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.). J. Environ. Manag. 2020, 257, 109974. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Mustafa, A.; Majeed, S.; Naseem, Z.; Saeed, Q.; Khan, A.; Nawaz, A.; Baig, K.S.; Chen, J.T. Enhancing cadmium tolerance and pea plant health through Enterobacter sp. MN17 inoculation together with biochar and gravel sand. Plants 2020, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, M.; Li, H. Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from aqueous solution and soil. Int. J. Environ. Res. Public Health 2019, 16, 4430. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.E.; Lindao, E.; Margaleff, D.; Martınez, O.; Moran, A. Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar soil management. J. Anal. Appl. Pyrol. 2009, 85, 142–144. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fert. Soils. 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Slattery, W.J.; Ridely, A.M.; Windsor, S.M. Ash alkalinity of animal and plant products. Aust. J. Exp. Agric. 1991, 31, 321–324. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multi molecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Enders, A.; Lehmann, J. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil Sci. Plant Anal. 2012, 43, 1042–1052. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods, 2nd ed.; Agronomy Monographs 9; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis, Part 3. Chemical Methods; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1201–1230. [Google Scholar]
- Leoppert, R.H.; Hallmark, C.T.; Koshy, M.M. Routine procedure for rapid determination of soil carbonates. J. Soil Sci. Soc. Am. 1984, 48, 1030–1033. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Printee Hall Inc.: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphours. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed.; Agronomy Monographs 9; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Richards, L.A. Diagnosis and Impovement of Saline and Alkali Soil; USDA Agric. Handbook 60; USDA: Washington, DC, USA, 1954.
- Soon, Y.K.; Abboud, S. Cadmium, chromium, lead and nickel. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis: Boca Raton, FL, USA, 2007; pp. 101–108. [Google Scholar]
- Bartlett, R.; James, B. Behaviour of chromium in soils: III. Oxidation. J. Environ. Qual. 1993, 8, 31–35. [Google Scholar] [CrossRef]
- Menden, E.E.; Rutland, F.H.; Kallenberger, W.E. Determination of Cr (VI) in tannery waste by the chelation-extraction method. J. Am. Leather Chem. Assoc. 1990, 85, 363–375. [Google Scholar]
- Chanda, S.V.; Singh, Y.D. Estimation of leaf area in wheat using linear measurements. Plant Breed. Seed Sci. 2002, 46, 75–79. [Google Scholar]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant growth-promoting bacteria that con-fer resistance in tomato to salt stress. Plant Physiol. Biochem. 2004, 42, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Sadasivam, S.; Manickam, A. Biochemical Methods for Agricultural Sciences; Willey Eastern Limited: New Delhi, India, 1992. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline in water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [Green Version]
- Aebi, H.E. Catalase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany, 1983; pp. 273–286. [Google Scholar]
- Roth, E.F.; Gilbert, H.S. The pyrogallol assay for superoxide dismutase: Absence of a glutathione artifact. Anal. Biochem. 1984, 137, 50–53. [Google Scholar] [CrossRef]
- Blincoe, C.; Thiesen, M.O.; Stoddard-Gilbert, K. Sample oxidation procedures for the determination of chromium and nickel in biological material. Commun. Soil Sci. Plant Anal. 1987, 18, 687–697. [Google Scholar] [CrossRef]
- Little, T.M.; Hills, F.J. Agricultural Experimentation: Design and Analysis; John Wiley and Sons, Ins.: New York, NY, USA, 1978. [Google Scholar]
- Junaid, M.; Hashmi, M.Z.; Malik, R.N.; Pei, D. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environ. Sci. Pollut. Res. 2016, 23, 20151–20167. [Google Scholar] [CrossRef]
- Ruttens, A.; Mench, M.; Colpaert, J.V.; Boisson, J.; Carleer, R.; Vangronsveld, J. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ. Pollut. 2006, 144, 524–532. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2013, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.M.; Panda, S.S.; Dhal, N.K. Biochar as a low-cost adsorbent for heavy metal removal: A review. Int. J. Res. Biosci. 2017, 6, 1–7. [Google Scholar]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.O.; Morel, J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2013, 65, 149–161. [Google Scholar] [CrossRef]
- Lucchinia, P.; Quilliamc, R.S.; DeLucad, T.H.; Vameralia, T.; Jones, D.L. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosyst. Environ. 2014, 184, 149–157. [Google Scholar] [CrossRef]
- Nagarajan, M.; Ganesh, K.S. Effect of chromium on growth, biochemicals and nutrient accumulation of paddy (Oryza sativa L.). Int. Lett. Nat. Sci. 2014, 23, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Panda, S.K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut. 2005, 167, 73–90. [Google Scholar] [CrossRef]
- Medda, S.; Mondal, N.K. Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann. Agrar. Sci. 2017, 15, 396–401. [Google Scholar] [CrossRef]
- Danish, S.; Kiran, S.; Fahad, S.; Ahmad, N.; Ali, M.A.; Tahir, F.A.; Rasheed, M.K.; Shahzad, K.; Li, X.; Wang, D.; et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019, 185, 109706. [Google Scholar] [CrossRef]
- Shahandeh, H.; Hossner, L. Plant screening for chromium phytoremediation. Int. J. Phytoremediation 2000, 2, 31–51. [Google Scholar] [CrossRef]
- Mangabeira, P.A.; Ferreira, A.S.; de Almeida, A.A.; Fernandes, V.F.; Lucena, E.; Souza, V.L.; dos Santos, A.J., Jr.; Oliveira, A.H.; Grenier-Loustalot, M.F.; Barbier, F.; et al. Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals 2011, 24, 1017–1026. [Google Scholar] [CrossRef]
- Mei, B.; Puryear., J.D.; Newton, R.J. Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 2002, 247, 223–231. [Google Scholar] [CrossRef]
- Pulford, I.; Watson, C.; McGregor, S. Uptake of chromium by trees: Prospects for phytoremediation. Environ. Geochem. Health 2001, 23, 307–311. [Google Scholar] [CrossRef]
- Stanton, K.M.; Mickelbart, M.V. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic. Res. 2014, 33, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A.R.; Ma, L.Q.; Harris, W.G.; Migliaccio, K.W. Manganese oxide-modified biochars: Preparation, characterization and sorption of arsenate and lead. Bioresour. Technol. 2015, 181, 13–17. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, R.K.; Jiang, T.Y.; Li, Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012, 229–230, 145–150. [Google Scholar] [CrossRef]
- Mehmood, S.; Rizwan, M.; Bashir, S.; Ditta, A.; Aziz, O.; Yong, L.Z.; Dai, Z.; Akmal, M.; Ahmed, W.; Adeel, M.; et al. Comparative effects of biochar, slag and ferrous–Mn ore on lead and cadmium immobilization in soil. Bull. Environ. Contam. Toxicol. 2018, 100, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Sabir, A.; Naveed, M.; Bashir, M.A.; Hussain, A.; Mustafa, A.; Zahir, Z.A.; Kamran, M.; Ditta, A.; Núñez-Delgado, A.; Saeed, Q.; et al. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J. Environ. Manag. 2020, 265, 110522. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 4th ed.; Freeman: New York, NY, USA, 2004. [Google Scholar]
- Adejumo, S.A.; Owolabi, M.O.; Owolabi, M.O. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. Afric. J. Agric. Res. 2016, 11, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Asgher, M.; Per, T.S.; Verma, S.; Pandith, A.; Masood, A.; Khan, N.A. Ethylene supplementation increases PSII efficiency and alleviates chromium-inhibited photosynthesis through increased nitrogen and sulfur assimilation in mustard. J. Plant Growth Regul. 2018, 37, 1300–1317. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Petrovi, J.; Nikoli, G.; Markov, D. In vitro complexes of copper and zinc with chlorophyll. J. Serb. Chem. Soc. 2006, 71, 501–512. [Google Scholar] [CrossRef]
- Liu, D.; Zou, J.; Wang, M.; Jiang, W. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defense system and photosynthesis in Amaranthus viridis L. Bioresour. Technol. 2008, 99, 2628–2636. [Google Scholar] [CrossRef]
- Mathur, S.; Kalaji, H.M.; Jajoo, A. Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 2016, 54, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Reddy, V.R.; Fleisher, D.H.; Timlin, D.J. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. Photosynthetica 2017, 55, 421–433. [Google Scholar] [CrossRef]
- Gopal, R.; Rizvi, A.H.; Nautiyal, N. Chromium alters iron nutrition and water relations of spinach. J. Plant Nutr. 2009, 32, 1551–1559. [Google Scholar] [CrossRef]
- Wang, Y.; Blatt, M.R. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. Biochem. J. 2011, 439, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Chanda, S.V.; Parmar, N.G. Effects of chromium on hypocotyl elongation, wall components, and peroxidase activity of Phaseolus vulgaris seedlings. N. Z. J. Crop Hortic. Sci. 2003, 31, 115–124. [Google Scholar] [CrossRef]
- Panda, S.K.; Choudhury, S. Chromium stress in plants. Braz. J. Plant Physiol. 2005, 17, 95–102. [Google Scholar] [CrossRef]
- Rai, V.; Tandon, P.K.; Khatoon, S. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: Vincristine and vinblastine. BioMed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Paiva, L.B.; de Oliveira, J.G.; Azevedo, R.A.; Ribeiro, D.R.; da Silva, M.G.; Vitỏria, A.P. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ. Exp. Bot. 2009, 65, 403–409. [Google Scholar] [CrossRef]
- Su, Y.; Han, F.X.; Sridhar, B.M.; Monts, D.L. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ. Toxicol. Chem. 2005, 24, 2019–2026. [Google Scholar] [CrossRef]
- Shahid, M.; Pourrut, B.; Dumat, C.; Nadeem, M.; Aslam, M.; Pinelli, E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 2014, 232, 1–44. [Google Scholar]
- Shi, Y.; Huang, Z.; Liu, X.; Imran, S.; Peng, L.; Dai, R.; Deng, Y. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator. Environ. Sci. Pollut. Res. 2016, 23, 6168–6178. [Google Scholar] [CrossRef]
- Zengin, F.K.; Munzuroglu, O. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Crac. Ser. Bot. 2005, 47, 157–164. [Google Scholar]
- Cui, L.; Li, L.; Zhang, A.; Pan, G.; Bao, D.; Chang, A. Biochar amendment greatly reduces Cd uptake in a contaminated paddy soil: A two-year field experiment. Bioresources 2011, 6, 2605–2618. [Google Scholar]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Zia-ur-Rehman, M.; Qayyum, M.F.; Ok, Y.S.; Murtaza, G. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. 2017, 26, 25668–25680. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Pradol, F.E. Soluble sugars—Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Sinay, H.; Karuwal, R.L. Proline and total soluble sugar content at the vegetative phase of six corn cultivars from Kisar Island Maluku, grown under drought stress conditions. Int. J. Adv. Agric. Res. 2014, 2, 77–82. [Google Scholar]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Aly, A.A.; Mohamed, A.A. The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro. Aust. J. Crop Sci. 2012, 6, 541–549. [Google Scholar]
- Najafian, M.; Kafilzadeh, F.; Azad, H.N.; Tahery, Y. Toxicity of chromium (Cr6+) on growth, ions and some biochemical parameters of Brassica napus L. World Appl. Sci. J. 2012, 16, 1104–1109. [Google Scholar]
- Younis, U.; Malik, S.A.; Qayyum, M.F.; Shah, M.H.R.; Shahzad, A.N.; Mahmood, S. Biochar affects growth and biochemical activities of fenugreek (Trigonella corniculata) in cadmium polluted soil. J. Appl. Bot. Food Qual. 2015, 88, 29–33. [Google Scholar]
- Malook, I.; Rehman, S.U.; Khan, M.D.; El-Hendawy, S.E.; Al-Suhaibani, N.A.; Aslam, M.M.; Jamil, M. Heavy metals induced lipid peroxidation in spinach mediated with microbes. Pak. J. Bot. 2017, 49, 2301–2308. [Google Scholar]
- Saeed, Z.; Naveed, M.; Imran, M.; Bashir, M.A.; Sattar, A.; Mustafa, A.; Xu, M. Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE 2019, 14, e0213016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroozesh, P.; Bahmani, R.; Pazouki, A.; asgharzadeh, A.; rahimdabbagh, S.; Ahmadvand, S. Effect of cadmium stress on antioxidant enzymes activity in different bean genotypes. ARPN J. Agric. Biol. Sci. 2012, 7, 351–356. [Google Scholar]
- Labudda, M.; Różańska, E.; Czarnocka, W.; Sobczak, M.; Dzik, J.M. Systemic changes in photosynthesis and reactive oxygen species homeostasis in shoots of Arabidopsis thaliana infected with the beet cyst nematode Heterodera schachtii. Mol. Plant Pathol. 2018, 19, 1690–1704. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Piyatida, P.; da Silva, J.A.T.; Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012, 2012, 1–37. [Google Scholar] [CrossRef]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Martins, L.L. Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [Green Version]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.S.; Dietz, K.J.; Mimura, T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Zayed, A.M.; Terry, N. Chromium in the environment: Factors affecting biological remediation. Plant Soil 2003, 249, 139–156. [Google Scholar] [CrossRef]
- Oliveira, H. Chromium as an environmental pollutant: Insights on induced plant toxicity. J. Bot. 2012, 2012, 375843. [Google Scholar] [CrossRef]
- Aldrich, M.V.; Gardea-Torresdey, J.L.; Peralta-Videa, J.R.; Parsons, J.G. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): Chromate-plant interaction in hydroponics and solid media studied using XAS. Environ. Sci. Technol. 2003, 37, 1859–1864. [Google Scholar] [CrossRef]
- Das, A.P.; Mishra, S. Hexavalent chromium (VI): Environment pollutant and health hazard. J. Environ. Res. Dev. 2008, 2, 386–392. [Google Scholar]
- Howe, J.A.; Loeppert, R.H.; Derose, V.J.; Hunter, D.B.; Bertsch, P.M. Localization and speciation of chromium in subterranean clover using XRF, XANES, and EPR spectroscopy. Environ. Sci. Technol. 2003, 37, 4091–4097. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil: A review. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Xu, R.K.; Xiao, S.C.; Yuan, J.H.; Zhao, A.Z. Adsorption of methyl violet from aqueous solutions by the biochar derived from crop residues. Bioresour. Technol. 2011, 102, 10293–10298. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Pullammanappallil, P.; Ding, W.; Zimmerman, A.R. Biochar from anaerobically digested sugarcane bagasse. Bioresour. Technol. 2010, 101, 8868–8872. [Google Scholar] [CrossRef] [PubMed]
- Choppala, G.K.; Bolan, N.S.; Megharaj, M.; Chen, Z.; Naidu, R. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J. Environ. Qual. 2012, 41, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
Physicochemical Characteristics | Unit | Biochar (SB) |
---|---|---|
pH (1:20) | 6.49 ± 0.04 | |
Electrical conductivity (EC) (1:20) | dS m−1 | 1.59 ± 0.03 |
Cation exchange capacity (CEC) | Cmolc kg−1 | 86.90 ± 1.60 |
Moisture | % | 3.36 ± 0.19 |
Volatile matter | % | 17.32 ± 0.64 |
Ash content | % | 21.82 ± 0.44 |
Fixed carbon | % | 57.50 ± 1.50 |
Conversion efficiency (yield) | % | 51.61 ± 0.13 |
Surface area | m2 g−1 | 84.16 ± 2.11 |
Nutritional Composition | ||
Carbon (C) | % | 54.81 ± 0.40 |
Hydrogen (H) | % | 2.56 ± 0.13 |
Oxygen (O) | % | 19.92 ± 1.70 |
Nitrogen (N) | % | 1.89 ± 0.01 |
Phosphorus (P) | g kg−1 | 3.34 ± 0.62 |
Potassium (K) | g kg−1 | 2.13 ± 0.48 |
Calcium (Ca) | g kg−1 | 2.01 ± 0.26 |
Magnesium (Mg) | g kg−1 | 7.86 ± 1.24 |
Zinc (Zn) | mg kg−1 | 84.52 ± 4.27 |
Iron (Fe) | mg kg−1 | 88.36 ± 3.38 |
Manganese (Mn) | mg kg−1 | 81.54 ± 1.84 |
Total Chromium (Cr) | µg kg−1 | 0.06 ± 0.03 |
Parameters | Unit | K Soil | S Soil |
---|---|---|---|
Organic carbon (OC) | g kg−1 | 3.41 ± 0.52 | 4.16 ± 0.64 |
Calcium carbonate (CaCO3) | % | 2.96 ± 0.54 | 3.23 ± 0.49 |
Soil texture | - | Silty loam | Silty clay loam |
pH | - | 7.75 ± 0.81 | 7.91 ± 0.89 |
Electrical conductivity (EC) | dS m−1 | 1.469 ± 0.02 | 1.969 ± 0.01 |
Cation exchange capacity (CEC) | cmolc kg−1 | 11.56 ± 1.38 | 15.72 ± 1.42 |
Total nitrogen (N) | % | 0.054 ± 0.01 | 0.061 ± 0.01 |
Available phosphorus (P) | mg kg−1 | 5.46 ± 0.67 | 7.53 ± 0.82 |
Extractable potassium (K) | mg kg−1 | 94.0 ± 3.38 | 112.0 ± 4.31 |
Cr (VI) | mg kg−1 | 12.45 ± 1.02 | 18.62 ± 1.29 |
Cr (III) | mg kg−1 | 40.02 ± 2.03 | 54.94 ± 2.30 |
Total Cr | mg kg−1 | 52.47 ± 2.14 | 73.56 ± 2.43 |
Soil | Biochar | Maize Variety | Plant Height (cm) | Fresh Weight (g) | Dry Weight (g) | Leaf Area (cm2) | |||
---|---|---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | Shoot | Root | ||||
K soil | 0% | NK-8441 | 43.1 ± 1.09 de | 27.3 ± 0.79 de | 17.7 ± 0.51 d | 9.4 ± 0.27 de | 1.83 ± 0.05 de | 1.37 ± 0.03 de | 81 ± 1.94 e |
P-1543 | 48.1 ± 0.93 bc | 31.6 ± 0.59 bc | 20.1 ± 0.54 bc | 10.9 ± 0.30 bc | 2.13 ± 0.07 c | 1.62 ± 0.04 bc | 93 ± 2.73 cd | ||
NK-8711 | 38.1 ± 0.48 fg | 23.3 ± 0.69 fg | 15.2 ± 0.41 e | 8.0 ± 0.23 f–h | 1.52 ± 0.06 fg | 1.13 ± 0.04 fg | 69 ± 2.33 fg | ||
FH-985 | 33.1 ± 0.96 hi | 19.0 ± 0.59 hi | 12.5 ± 0.45 fg | 6.3 ± 0.21 ij | 1.20 ± 0.04 h–j | 0.90 ± 0.04 h–j | 57 ± 1.51 hi | ||
3% | NK-8441 | 51.9 ± 0.74 b | 34.0 ± 0.86 b | 21.0 ± 0.45 b | 12.0 ± 0.25 b | 2.42 ± 0.05 b | 1.72 ± 0.05 b | 106 ± 2.00 b | |
P-1543 | 57.9 ± 1.16 a | 38.5 ± 0.49 a | 24.1 ± 0.65 a | 13.6 ± 0.36 a | 2.75 ± 0.07 a | 1.94 ± 0.06 a | 118 ± 3.13 a | ||
NK-8711 | 46.5 ± 0.81 cd | 29.9 ± 0.39 cd | 18.0 ± 0.68 cd | 10.5 ± 0.38 cd | 2.08 ± 0.05 cd | 1.48 ± 0.04 cd | 94 ± 2.60 c | ||
FH-985 | 41.6 ± 1.15 ef | 26.3 ± 0.60 ef | 15.0 ± 0.43 e | 9.0 ± 0.27 e-g | 1.78 ± 0.04 ef | 1.24 ± 0.04 e–g | 82 ± 2.21 de | ||
S soil | 0% | NK-8441 | 24.7 ± 0.73 kl | 13.7 ± 0.71 jk | 7.7 ± 0.34 ij | 5.4 ± 0.22 jk | 1.09 ± 0.04 jk | 0.81 ± 0.05 jk | 44 ± 2.06 jk |
P-1543 | 29.9 ± 0.73 ij | 17.9 ± 0.79 hi | 10.1 ± 0.43 gh | 6.9 ± 0.26 hi | 1.40 ± 0.06 g–i | 1.05 ± 0.03 gi | 56 ± 2.08 hi | ||
NK-8711 | 19.6 ± 1.20 m | 9.9 ± 0.39 l | 5.3 ± 0.35 k | 3.9 ± 0.21 l | 0.81 ± 0.05 l | 0.58 ± 0.03 l | 32 ± 1.81 l | ||
FH-985 | 14.4 ± 0.97 n | 6.2 ± 0.52 m | 2.9 ± 0.21 l | 2.5 ± 0.20 m | 0.52 ± 0.03 m | 0.34 ± 0.04 m | 20 ± 1.79 m | ||
3% | NK-8441 | 30.8 ± 0.97 hi | 20.3 ± 0.82 gh | 11.6 ± 0.50 g | 7.8 ± 0.27 gh | 1.46 ± 0.05 gh | 1.10 ± 0.03 gh | 63 ± 2.63 gh | |
P-1543 | 35.5 ± 0.94 gh | 24.5 ± 0.52 ef | 14.5 ± 0.53 ef | 9.2 ± 0.31 d–f | 1.78 ± 0.07 ef | 1.35 ± 0.05 d–f | 75 ± 2.04 ef | ||
NK-8711 | 25.7 ± 0.70 jk | 16.2 ± 0.60 ij | 8.8 ± 0.23 hi | 6.3 ± 0.21 ij | 1.13 ± 0.05 ij | 0.87 ± 0.04 ij | 51 ± 1.68 ij | ||
FH-985 | 20.3 ± 0.27 lm | 12.4 ± 0.49 kl | 5.8 ± 0.22 jk | 4.9 ± 0.25 kl | 0.82 ± 0.04 kl | 0.60 ± 0.03 kl | 39 ± 1.42 kl |
Soil | Biochar | Maize Variety | SPAD Chlorophyll | Chlorophyll a | Chlorophyll b | Total Carotenoids | Photosynthetic Rate | Transpiration Rate | Stomatal Conductance |
---|---|---|---|---|---|---|---|---|---|
(mg cm−2) | (mg g−1) | (mg g−1) | (mg g−1) | (µmol m−2 s−1) | (mmol m−2 s−1) | (mmol m−2 s−1) | |||
K soil | 0% | NK-8441 | 30.1 ± 0.61 de | 0.54 ± 0.02 d–f | 0.44 ± 0.01 d–f | 0.65 ± 0.02 cd | 17.2 ± 0.41 de | 2.90 ± 0.06 d | 149 ± 3.15 de |
P-1543 | 34.0 ± 0.83 bc | 0.63 ± 0.02 bc | 0.52 ± 0.01 bc | 0.77 ± 0.02 b | 19.8 ± 0.55 bc | 3.37 ± 0.09 c | 178 ± 4.99 bc | ||
NK-8711 | 26.0 ± 0.67 fg | 0.44 ± 0.02 gh | 0.36 ± 0.01 g | 0.54 ± 0.02 e | 14.5 ± 0.47 f | 2.40 ± 0.06 e | 125 ± 4.67 fg | ||
FH-985 | 21.7 ± 0.56 hi | 0.35 ± 0.02 i-k | 0.29 ± 0.01 hi | 0.43 ± 0.02 fg | 11.9 ± 0.36 gh | 2.00 ± 0.06 f | 102 ± 3.07 h–j | ||
3% | NK-8441 | 37.0 ± 0.79 b | 0.66 ± 0.02 b | 0.54 ± 0.02 b | 0.78 ± 0.02 b | 21.1 ± 0.41 b | 3.73 ± 0.09 b | 183 ± 3.72 b | |
P-1543 | 41.4 ± 0.97 a | 0.77 ± 0.02 a | 0.63 ± 0.02 a | 0.92 ± 0.02 a | 23.9 ± 0.61 a | 4.20 ± 0.12 a | 212 ± 5.31 a | ||
NK-8711 | 33.0 ± 0.84 cd | 0.57 ± 0.02 cd | 0.46 ± 0.01 cd | 0.67 ± 0.02 c | 18.2 ± 0.55 cd | 3.23 ± 0.07 c | 163 ± 4.42 cd | ||
FH-985 | 28.5 ± 0.72 ef | 0.47 ± 0.02 e-g | 0.39 ± 0.01 e–g | 0.56 ± 0.02 de | 15.4 ± 0.38 ef | 2.63 ± 0.09 de | 141 ± 3.78 ef | ||
S soil | 0% | NK-8441 | 17.7 ± 0.61 jk | 0.33 ± 0.02 Jk | 0.27 ± 0.01 ij | 0.38 ± 0.02 gh | 10.4 ± 0.30 hi | 1.83 ± 0.07 f | 86 ± 3.69 jk |
P-1543 | 22.0 ± 0.83 hi | 0.43 ± 0.02 g–i | 0.35 ± 0.02 gh | 0.50 ± 0.02 ef | 13.2 ± 0.32 fg | 2.40 ± 0.06 e | 108 ± 3.85 g–i | ||
NK-8711 | 13.8 ± 0.59 l | 0.23 ± 0.01 l | 0.19 ± 0.01 k | 0.27 ± 0.02 i | 8.0 ± 0.43 j | 1.37 ± 0.07 g | 66 ± 3.09 k | ||
FH-985 | 8.5 ± 0.42 m | 0.14 ± 0.01 m | 0.12 ± 0.01 l | 0.18 ± 0.01 j | 5.5 ± 0.42 k | 0.93 ± 0.07 h | 44 ± 2.09 l | ||
3% | NK-8441 | 24.8 ± 0.66 gh | 0.46 ± 0.02 fg | 0.37 ± 0.01 fg | 0.54 ± 0.02 e | 14.4 ± 0.25 f | 2.43 ± 0.09 e | 120 ± 2.89 gh | |
P-1543 | 28.7 ± 0.82 ef | 0.56 ± 0.02 c–e | 0.45 ± 0.02 de | 0.65 ± 0.02 cd | 17.1 ± 0.69 de | 2.87 ± 0.07 d | 143 ± 5.01 d–f | ||
NK-8711 | 20.0 ± 0.62 ij | 0.36 ± 0.02 h–j | 0.29 ± 0.01 hi | 0.42 ± 0.02 fg | 11.5 ± 0.47 gh | 1.93 ± 0.09 f | 100 ± 3.58 ij | ||
FH-985 | 16.1 ± 0.31 kl | 0.27 ± 0.01 kl | 0.21 ± 0.01 jk | 0.32 ± 0.02 hi | 9.0 ± 0.33 ij | 1.47 ± 0.09 g | 77 ± 2.44 k |
Soil | Biochar | Maize Variety | Soluble Sugars | Proline Content | Lipid Peroxidation | Ascorbate Peroxidase | Glutathione Peroxidase | Catalase | Superoxide Dismutase |
---|---|---|---|---|---|---|---|---|---|
(mg g−1) | (μmol g−1) | (mmol g−1) | (nmol min−1 mg−1) | (nmol min−1 mg−1) | (nmol min−1 mg−1) | (nmol min−1 mg−1) | |||
K soil | 0% | NK-8441 | 37.6 ± 1.62 jk | 3.65 ± 0.16 ij | 69 ± 2.77 hi | 34.7 ± 1.30 jk | 46.1 ± 2.00 ij | 13.5 ± 0.45 hi | 132 ± 4.43 gh |
P-1543 | 28.8 ± 1.57 lm | 2.81 ± 0.14 kl | 54 ± 1.93 jk | 26.0 ± 1.15 l | 34.9 ± 1.83 kl | 10.3 ± 0.40 jk | 94 ± 4.57 ij | ||
NK-8711 | 46.2 ± 1.02 g–i | 4.71 ± 0.14 gh | 85 ± 2.77 fg | 43.1 ± 1.53 g–i | 57.4 ± 2.29 f–h | 16.8 ± 0.57 fg | 164 ± 5.18 ef | ||
FH-985 | 56.6 ± 1.67 d–f | 5.87 ± 0.15 de | 104 ± 3.07 c–e | 52.4 ± 1.69 d–f | 69.1 ± 2.48 c–e | 20.3 ± 0.62 de | 203 ± 5.48 cd | ||
3% | NK-8441 | 24.5 ± 1.66 m | 2.59 ± 0.14 l | 43 ± 2.30 k | 21.4 ± 1.45 l | 26.0 ± 1.72 l | 8.1 ± 0.48 k | 83 ± 4.12 j | |
P-1543 | 16.2 ± 1.23 n | 1.74 ± 0.11 m | 28 ± 1.54 l | 12.8 ± 1.17 m | 14.5 ± 1.52 m | 4.9 ± 0.34 l | 47 ± 3.85 k | ||
NK-8711 | 32.9 ± 1.62 kl | 3.37 ± 0.15 jk | 57 ± 2.77 ij | 28.7 ± 1.30 kl | 37.4 ± 1.92 jk | 11.1 ± 0.51 ij | 114 ± 5.03 hi | ||
FH-985 | 42.7 ± 1.27 h–j | 4.19 ± 0.17 hi | 74 ± 2.35 gh | 37.2 ± 1.45 h–j | 49.7 ± 2.10 g–i | 14.6 ± 0.54 gh | 147 ± 5.76 fg | ||
S soil | 0% | NK-8441 | 61.6 ± 1.27 cd | 6.47 ± 0.12 cd | 114 ± 1.73 c | 57.8 ± 1.59 cd | 74.7 ± 1.91 c | 21.6 ± 0.55 cd | 215 ± 5.63 c |
P-1543 | 51.6 ± 2.08 e–g | 5.56 ± 0.14 ef | 98 ± 3.00 d–f | 48.3 ± 1.45 e–g | 63.6 ± 1.92 d–f | 18.4 ± 0.55 ef | 179 ± 5.52 de | ||
NK-8711 | 71.3 ± 1.30 b | 7.46 ± 0.17 b | 130 ±2.88 b | 67.3 ± 1.74 b | 86.9 ± 2.10 b | 24.8 ± 0.58 b | 252 ± 6.04 b | ||
FH-985 | 83.7 ± 1.91 a | 8.36 ± 0.19 a | 146 ± 3.20 a | 76.8 ± 2.03 a | 98.3 ± 2.50 a | 27.8 ± 0.71 a | 289 ± 6.70 a | ||
3% | NK-8441 | 48.7 ± 1.69 f–h | 5.07 ± 0.13 fg | 91 ± 2.18 ef | 44.8 ± 1.38 f–h | 59.3 ± 2.19 e–g | 17.2 ± 0.49 fg | 168 ± 5.23 ef | |
P-1543 | 38.5 ± 1.21 i–k | 4.24 ± 0.13 hi | 76 ± 2.77 gh | 35.2 ± 1.17 i–k | 47.7 ± 1.92 h–j | 14.0 ± 0.47 h | 135 ± 4.39 gh | ||
NK-8711 | 57.5 ± 1.42 de | 6.02 ± 0.14 de | 107 ± 2.70 cd | 53.9 ± 1.66 de | 71.8 ± 2.21 cd | 20.3 ± 0.55 de | 207 ± 6.11 c | ||
FH-985 | 69.1 ± 1.64 bc | 6.97 ± 0.15 bc | 129 ± 2.61 b | 65.8 ± 1.81 bc | 86.6 ± 2.41 b | 24.4 ± 0.60 bc | 252 ± 5.52 b |
Soil | Biochar | Maize Variety | Soil (μg g−1) | Root (μg g−1) | Shoot (μg g−1) | |||
---|---|---|---|---|---|---|---|---|
Cr (III) | Cr (VI) | Cr (III) | Cr (VI) | Cr (III) | Cr (VI) | |||
K soil | 0% | NK-8441 | 28.4 ± 0.83 m | 12.2 ± 0.40 fg | 132 ± 5.00 i | 65 ± 2.78 hi | 105 ± 4.00 ij | 50 ± 2.15 jk |
P-1543 | 33.5 ± 0.93 kl | 14.3 ± 0.42 c–e | 102 ± 5.07 kl | 50 ± 1.56 jk | 79 ± 3.40 kl | 38 ± 2.08 lm | ||
NK-8711 | 23.2 ± 0.81 n | 10.0 ± 0.38 h–j | 168 ± 5.38 gh | 80 ± 3.46 fg | 130 ± 5.13 gh | 61 ± 1.34 g–i | ||
FH-985 | 18.2 ± 0.77 o | 7.9 ± 0.35 kl | 197 ± 6.83 ef | 99 ± 2.60 de | 161 ± 4.78 d–f | 74 ± 2.23 d–f | ||
3% | NK-8441 | 49.7 ± 1.05 ef | 8.7 ± 0.32 jk | 82 ± 5.35 l | 42 ± 2.80 k | 66 ± 4.72 l | 32 ± 2.17 m | |
P-1543 | 55.2 ± 1.1 cd | 10.8 ± 0.38 g–i | 53 ± 3.19 m | 27 ± 2.69 l | 41 ± 2.89 m | 21 ± 1.60 n | ||
NK-8711 | 44.1 ± 0.96 gh | 6.5 ± 0.30 l | 112 ± 7.02 jk | 56 ± 2.18 ij | 92 ± 5.73 jk | 43 ± 2.13 kl | ||
FH-985 | 39.0 ± 0.86 ij | 4.3 ± 0.29 m | 141 ± 5.61 hi | 73 ± 3.29 gh | 120 ± 4.16 g–i | 56 ± 1.66 h–j | ||
S soil | 0% | NK-8441 | 40.4 ± 0.93 hi | 17.1 ± 0.49 b | 233 ± 5.37 cd | 103 ± 3.30 cd | 185 ± 4.80 cd | 81 ± 1.68 cd |
P-1543 | 45.6 ± 1.04 fg | 19.4 ± 0.52 a | 204 ± 4.70 e | 88 ± 2.74 ef | 155 ± 4.95 ef | 68 ± 2.72 e–g | ||
NK-8711 | 34.9 ± 0.91 jk | 14.9 ± 0.46 cd | 263 ± 6.58 b | 121 ± 2.24 b | 214 ± 5.45 b | 94 ± 1.73 b | ||
FH-985 | 29.6 ± 0.85 lm | 12.8 ± 0.43 e–g | 307 ± 4.89 a | 142 ± 3.24 a | 251 ± 4.91 a | 110 ± 2.51 a | ||
3% | NK-8441 | 62.2 ± 1.09 b | 13.6 ± 0.41 d–f | 174 ± 4.44 fg | 82 ± 2.84 fg | 140 ± 4.83 fg | 64 ± 2.20 f–h | |
P-1543 | 67.4 ± 1.06 a | 15.7 ± 0.43 bc | 143 ± 6.24 hi | 65 ± 2.07 hi | 110 ± 3.48 h–j | 51 ± 1.60 i–k | ||
NK-8711 | 57.0 ± 0.96 c | 11.4 ± 0.37 gh | 207 ± 4.99 de | 99 ± 2.27 de | 166 ± 6.37 de | 76 ± 1.89 de | ||
FH-985 | 50.7 ± 0.93 de | 9.2 ± 0.32 i–k | 236 ± 5.65 bc | 115 ± 3.35 bc | 200 ± 4.65 bc | 91 ± 2.15 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, M.A.; Wang, X.; Naveed, M.; Mustafa, A.; Ashraf, S.; Samreen, T.; Nadeem, S.M.; Jamil, M. Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils. Int. J. Environ. Res. Public Health 2021, 18, 4461. https://doi.org/10.3390/ijerph18094461
Bashir MA, Wang X, Naveed M, Mustafa A, Ashraf S, Samreen T, Nadeem SM, Jamil M. Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils. International Journal of Environmental Research and Public Health. 2021; 18(9):4461. https://doi.org/10.3390/ijerph18094461
Chicago/Turabian StyleBashir, Muhammad Asaad, Xiukang Wang, Muhammad Naveed, Adnan Mustafa, Sobia Ashraf, Tayyaba Samreen, Sajid Mahmood Nadeem, and Moazzam Jamil. 2021. "Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils" International Journal of Environmental Research and Public Health 18, no. 9: 4461. https://doi.org/10.3390/ijerph18094461
APA StyleBashir, M. A., Wang, X., Naveed, M., Mustafa, A., Ashraf, S., Samreen, T., Nadeem, S. M., & Jamil, M. (2021). Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils. International Journal of Environmental Research and Public Health, 18(9), 4461. https://doi.org/10.3390/ijerph18094461