Signatures of Cholera Outbreak during the Yemeni Civil War, 2016–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Time Series Compilation
2.3. Rate Calculations
2.4. Defining Outbreak Signatures and Features
2.5. Clustering of Outbreak Signatures
3. Results
3.1. Four Waves of Cholera Outbreak Signatures
3.2. Governorate-Level Signature Variability
3.3. Six Clusters of Outbreak Signatures
3.4. Core Cluster
3.5. Immediate Neighboring Cluster I
3.6. Immediate Neighboring Cluster II
3.7. Remote Clusters: Northern, Southern, and Eastern
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potter, C. Largest Cholera Outbreak on Record Continues. John Hopkins Bloomberg School of Public Health, Center for Health Security, 16 January 2020. Available online: https://www.outbreakobservatory.org/outbreakthursday-1/1/16/2020/large-cholera-outbreak-on-record-continues-in-yemen (accessed on 12 March 2020).
- Sifferlin, A. What to Know about the Massive Cholera Outbreak in Yemen. TIME 2017. Available online: https://time.com/4874345/yemen-cholera-outbreak/ (accessed on 12 March 2020).
- Al-Mekhlafi, H.M. Yemen in a time of cholera: Current situation and challenges. Am. J. Trop. Med. Hyg. 2018, 98, 1558–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastern Mediterranean Regional Office: World Health Organization. Cholera Outbreaks. Available online: http://www.emro.who.int/health-topics/cholera-outbreak/cholera-outbreaks.html (accessed on 1 June 2018).
- Federspiel, F.; Ali, M. The cholera outbreak in Yemen: Lessons learned and way forward. BMC Public Health 2018, 18, 1338. [Google Scholar] [CrossRef] [PubMed]
- Biggs, M. Yemen Was Poor Before, But ‘the War Just Finished Us’. PBS News Hour 2018. Available online: https://www.pbs.org/newshour/show/yemen-was-poor-before-but-the-war-just-finished-us (accessed on 12 March 2020).
- Hove-Musekwa, S.D.; Nyabadza, F.; Chiyaka, C.; Das, P.; Tripathi, A.; Mukandavire, Z. Modelling and analysis of the effects of malnutrition in the spread of cholera. Math Comput. Model. 2011, 53, 1583–1595. [Google Scholar] [CrossRef]
- Global Task Force on Cholera Control: World Health Organization. Ending Cholera: A Global Roadmap to 2030. Available online: https://www.who.int/cholera/publications/global-roadmap.pdf?ua=1 (accessed on 8 December 2020).
- Legros, D. Global cholera epidemiology: Opportunities to reduce the burden of cholera by 2030. J. Infect. Dis. 2018, 218, S137–S140. [Google Scholar] [CrossRef]
- Global Task Force on Cholera Control: World Health Organization. Guidance and Tool for Countries to Identify Priority Areas for Intervention: September 2019. Available online: https://www.gtfcc.org/wp-content/uploads/2019/11/guidance-and-tool-for-countries-to-identify-priority-areas-for-intervention1.pdf (accessed on 8 December 2020).
- Global Task Force on Cholera Control: World Health Organization. Interim Guiding Document to Support Countries for the Development of their National Cholera Plan: Advanced Copy. Available online: https://www.gtfcc.org/wp-content/uploads/2020/11/gtfcc-Interim-guiding-document-to-support-countries-for-the-development-of-their-national-cholera-plan.pdf (accessed on 8 December 2020).
- Fefferman, N.H.; Naumova, E.N. Combinatorial decomposition of an outbreak signature. Math. Biosci. 2006, 202, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Naumova, E.N.; O’Neil, E.; MacNeill, I. INFERNO: A system for early outbreak detection and signature forecasting. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 77–83. [Google Scholar]
- Naumova, E.N.; MacNeill, I.B. Signature-forecasting and early outbreak detection system. Environmetrics 2005, 16, 749–766. [Google Scholar] [CrossRef] [Green Version]
- Fefferman, N.; Naumova, E.N. Innovation in observation: A vision for early outbreak detection. Emerg. Health Threats J. 2010, 3, 7103. [Google Scholar] [CrossRef] [Green Version]
- Chui, K.K.; Jagai, J.S.; Griffiths, J.K.; Naumova, E.N. Hospitalization of the elderly in the United States for nonspecific gastrointestinal diseases: A search for etiological clues. Am. J. Public Health 2011, 101, 2082–2086. [Google Scholar] [CrossRef]
- Chui, K.K.; Cohen, S.A.; Naumova, E.N. Snowbirds and infection--new phenomena in pneumonia and influenza hospitalizations from winter migration of older adults: A spatiotemporal analysis. BMC Public Health 2011, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, M.; Castronovo, D.; Abraham, A.; Bhattacharyya, S.; Gradus, S.; Gorski, J.; Naumov, Y.N.; Fefferman, N.H.; Naumova, E.N. Deviations in influenza seasonality: Odd coincidence or obscure consequence? Clin. Microbiol. Infect. 2012, 18, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumova, E.N.; Jagai, J.S.; Matyas, B.; DeMaria, A.; MacNeill, I.B.; Griffiths, J.K. Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiol. Infect. 2007, 135, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Naumova, E.N.; MacNeill, I.B. Time-distributed effect of exposure and infectious outbreaks. Environmetrics 2009, 20, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.B.; Falconi, T.M.A.; Venkat, A.; Chui, K.H.; Navidad, J.; Naumov, Y.N.; Gorski, J.; Bhattacharyya, S.; Naumova, E.N. Incorporating calendar effects to predict influenza seasonality in Milwaukee, Wisconsin. Epidemiol. Infect. 2019, 147, e268. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.B.; Zhou, B.; Naumova, E.N. Seasonal synchronization of foodborne outbreaks in the United States, 1996–2017. Sci. Rep. 2020, 10, 17500. [Google Scholar] [CrossRef]
- Simpson, R.B.; Zhou, B.; Falconi, T.M.A.; Naumova, E.N. An analecta of visualizations for foodborne illness trends and seasonality. Sci. Data 2020, 7, 346. [Google Scholar] [CrossRef]
- Wenger, J.B.; Naumova, E.N. Seasonal synchronization of influenza in the United States older adult population. PLoS ONE 2010, 5, e10187. [Google Scholar] [CrossRef] [PubMed]
- National Center for Emerging and Zoonotic Infectious Diseases: Division of Foodborne, Waterborne, and Environmental: Centers for Disease Control and Prevention. 7. Decide Outbreak Is over. Available online: https://www.cdc.gov/healthywater/emergency/waterborne-disease-outbreak-investigation-toolkit/outbreak-over.html (accessed on 12 March 2020).
- Camacho, A.; Bouhenia, M.; Alyusfi, R.; Alkohlani, A.; Naji, M.A.M.; de Radiguès, X.; Abubakar, A.M.; Almoalmi, A.; Seguin, C.; Sagrado, M.J.; et al. Cholera epidemic in Yemen, 2016–2018: An analysis of surveillance data. Lancet Glob. Health 2018, 6, e680–e690. [Google Scholar] [CrossRef]
- Dureab, F.; Ismail, O.; Mueller, O.; Jahn, A. Cholera outbreak in Yemen: Timeliness of reporting and response in the National Electronic Disease Early Warning System. Acta Inform. Med. 2019, 2, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastern Mediterranean Regional Office: World Health Organization. Epidemic and Pandemic-Prone Diseases. Available online: http://www.emro.who.int/pandemic-epidemic-diseases/cholera/index.html (accessed on 1 June 2018).
- Eastern Mediterranean Regional Office: World Health Organization. Yemen Situation Reports: Weekly Cholera Bulletins. Available online: http://www.emro.who.int/yem/yemeninfocus/situation-reports.html (accessed on 1 June 2018).
- Eastern Mediterranean Regional Office: World Health Organization. Archived Epidemiology Bulletins. Available online: http://www.emro.who.int/yem/information-resources/epidemiology-bulletins-archive.html (accessed on 1 June 2018).
- Simpson, R.B.; Babool, S.; Tarnas, M.C.; Kaminski, P.M.; Hartwick, M.A.; Naumova, E.N. Dynamic Mapping of Cholera Spread and Conflict Severity During the Yemeni Civil War, 2016–2019. Figshare, 2021. Available online: https://figshare.com/s/3b2882c020ae9ed2e576 (accessed on 12 March 2021).
- World Health Organization. Global Influenza Surveillance and Response Systems. FluNet. Available online: https://www.who.int/influenza/gisrs_laboratory/flunet/en/ (accessed on 1 June 2018).
- Armed Conflict Location and Event Data Project. Data Export Tool. Available online: https://www.acleddata.com/data/ (accessed on 1 July 2018).
- Armed Conflict Location and Event Data Project. ACLED Methodology and Coding Decisions around the Yemen Civil War. Available online: https://acleddata.com/acleddatanew/wp-content/uploads/dlm_uploads/2019/01/YemenMethodology_2020_ACLED.pdf (accessed on 1 July 2018).
- Central Statistical Organization: Yemeni Central Bureau of Statistics. Summary Table of the Main Results of Population Projection Data and Indicators (2005–2025) According to Different Hypotheses and Alternatives. Available online: http://www.cso-yemen.com/content.php?lng=arabic&id=553 (accessed on 1 July 2018).
- International Organization of Migration. Displacement Tracking Matrix: Yemen. Available online: https://dtm.iom.int/yemen (accessed on 1 July 2018).
- Tukey, J.W. Thinking about Non-Linear Smoothers; Report #ARO-23360.4-MA; Department of Statistics, Princeton University; United States Army Research Office: Princeton, NJ, USA, 1986. [Google Scholar]
- Yang, W.; Zurbenko, I. Kolmogorov–Zurbenko filters. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 340–351. [Google Scholar] [CrossRef]
- Zurbenko, I.G.; Sun, M. Applying Kolmogorov-Zurbenko Adaptive R-Software. Int. J. Probab. Stat. 2017, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Zurbenko, I.G.; Smith, D. Kolmogorov–Zurbenko filters in spatiotemporal analysis. Wiley Interdiscip. Rev. Comput. Stat. 2018, 10, e1419. [Google Scholar] [CrossRef]
- Humanitarian Data Exchange. Yemen—Subnational Administrative Boundaries. Available online: https://data.humdata.org/dataset/yemen-admin-boundaries (accessed on 1 November 2020).
- Eastern Mediterranean Regional Office: World Health Organization. Media Centre: The Ministry of Public Health and Population Announces Cholera Cases in Yemen. Available online: http://www.emro.who.int/media/news/the-ministry-of-health-announces-cholera-cases-in-yemen.html (accessed on 1 June 2018).
- Eastern Mediterranean Regional Office: World Health Organization. Situation Report: Acute Watery Diarrhea/Cholera Outbreak—Yemen (26 October 2016). Available online: http://www.emro.who.int/images/stories/yemen/situation_report_cholera_in_yemen_2.pdf (accessed on 1 June 2018).
- Eastern Mediterranean Regional Office: World Health Organization. Yemen: Cholera Outbreak: Situation Report No. 2 (as of 1 November 2016). Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/OCHA%20Cholera%20Situation%20Report%202-%20For%20Publication%20.pdf (accessed on 1 June 2018).
- United Nations Office for the Coordination of Humanitarian Affairs. Yemen: Cholera Outbreak—Oct 2016. Available online: https://www.humanitarianresponse.info/en/disaster/ep-2016-000107-yem (accessed on 8 December 2020).
- Spiegel, P.; Ratnayake, R.; Hellman, N.; Ververs, M.; Ngwa, M.; Wise, P.H.; Lantagne, D. Responding to epidemics in large-scale humanitarian crises: A case study of the cholera response in Yemen, 2016–2018. BMJ Glob. Health 2019, 4, e001709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastern Mediterranean Regional Office: World Health Organization. Cholera Situation in Yemen: January 2020. Available online: https://applications.emro.who.int/docs/EMCSR252E.pdf (accessed on 8 December 2020).
- Almasmari, H.; Smith-Spark, L. Cyclone Pounds Yemeni Island Ahead of Landfall on Yemen, Oman Coast. Cable News Network World. 25 May 2018. Available online: https://www.cnn.com/2018/05/25/middleeast/yemen-oman-cyclone-mekunu-wxc-intl/index.html (accessed on 12 March 2020).
- The Weather Channel. Tropical Cyclone Mekunu Slams Oman and Yemen, Killing at Least 13. 30 May 2018. Available online: https://weather.com/safety/news/2018-05-26-tropical-cyclone-mekunu-oman-yemen-socotra-impacts (accessed on 12 March 2020).
- World Meteorological Organization. Extremely Severe Cyclonic Storm Mekunu Impacts Oman and Yemen. 25 May 2018. Available online: https://public.wmo.int/en/media/news/extremely-severe-cyclonic-storm-mekunu-impacts-oman-and-yemen (accessed on 12 March 2020).
- British Broadcasting Corporation. Yemen War: Battle for Vital Port of Hudaydah Intensifies. BBC News 2018. Available online: https://www.bbc.com/news/world-middle-east-46125858 (accessed on 12 March 2020).
- Nishiura, H.; Tsuzuki, S.; Yuan, B.; Yamaguchi, T.; Asai, Y. Transmission dynamics of cholera in Yemen, 2017: A real time forecasting. Theor. Biol. Med. Model. 2017, 14, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Central Statistical Organization: Yemeni Central Bureau of Statistics. The General Census of Population, Housing, and Establishments 2014. Available online: http://www.cso-yemen.com/content.php?lng=arabic&id=593 (accessed on 1 June 2018).
- Armed Conflict Location and Event Data Project. About ACLED. Available online: https://www.acleddata.com/about-acled/ (accessed on 8 December 2020).
- Armed Conflict Location and Event Data Project. ACLED Definitions of Political Violence and Protest. Available online: https://acleddata.com/acleddatanew/wp-content/uploads/dlm_uploads/2019/04/ACLED-Event-Definitions_Final.pdf (accessed on 8 December 2020).
- Armed Conflict Location and Event Data Project. ACLED Methodology. Available online: https://acleddata.com/acleddatanew/wp-content/uploads/dlm_uploads/2019/04/Methodology-Overview_FINAL.pdf (accessed on 8 December 2020).
- Armed Conflict Location and Event Data Project. ACLED General Quick User Guide. Available online: https://acleddata.com/acleddatanew/wp-content/uploads/dlm_uploads/2019/04/General-User-Guide_FINAL-1.pdf (accessed on 8 December 2020).
- Eastern Mediterranean Regional Office: World Health Organization. Epidemic and Pandemic-Prone Diseases: Outbreak Update—Cholera in Yemen, 16 August 2020. Available online: http://www.emro.who.int/pandemic-epidemic-diseases/cholera/outbreak-update-cholera-in-yemen-16-august-2020.html (accessed on 8 December 2020).
- Eastern Mediterranean Regional Office: World Health Organization. WHO in Yemen: Situation Reports. Available online: http://www.emro.who.int/yemen/information-resources/situation-reports.html (accessed on 8 December 2020).
- Eastern Mediterranean Regional Office: World Health Organization. Situation Report: February 2020, Issue No.2, Yemen Update. Available online: http://www.emro.who.int/images/stories/somalia/yemen-situation_report-feb2020.pdf?ua=1&ua=1 (accessed on 8 December 2020).
- Eastern Mediterranean Regional Office: World Health Organization. Situation Report: June 2020, Issue No. 6, Yemen Update. Available online: http://www.emro.who.int/images/stories/yemen/who_situation_report_june2020.pdf?ua=1 (accessed on 8 December 2020).
- Eastern Mediterranean Regional Office: World Health Organization. Situation Report: October 2020, Issue No. 10, Yemen Update. Available online: http://www.emro.who.int/images/stories/yemen/who_situation_report_october2020.pdf?ua=1 (accessed on 8 December 2020).
- Al-Arshani, S. Aid Agencies in Yemen Are Worried that Cholera Is Being Overlooked as COVID-19 Overwhelms the Countries Already Fragile Healthcare System after 5 Years of Crisis. Insider. 31 July 2020. Available online: https://www.insider.com/aid-groups-yemen-worry-cholera-overlooked-covid-19-cases-rise-2020-7 (accessed on 12 March 2020).
- Beaumont, P.; Wintour, P. Agencies Fear Hidden Cholera Deaths in Yemen as COVID-19 Overwhelms Clinics. The Guardian News and Media. 28 July 2020. Available online: https://www.theguardian.com/global-development/2020/jul/28/agencies-fear-hidden-cholera-deaths-in-yemen-as-covid-19-overwhelms-clinics (accessed on 12 March 2020).
- Hartnett, L. Yemen Facing Hidden Cholera Crisis as COVID Cases Set to Peak in Coming Weeks. Oxfam America 2020. Available online: https://www.oxfamamerica.org/press/yemen-facing-hidden-cholera-crisis-as-covid-cases-set-to-peak-in-coming-weeks-oxfam/ (accessed on 12 March 2020).
- Patel, K. Predicting Cholera Risk in Yemen. NASA Earth Observatory, 23 February 2020. Available online: https://earthobservatory.nasa.gov/images/147101/predicting-cholera-risk-in-yemen (accessed on 12 March 2020).
- Castronovo, D.A.; Chui, K.K.; Naumova, E.N. Dynamic maps: A visual-analytic methodology for exploring spatio-temporal disease patterns. Environ. Health 2009, 8, 61. [Google Scholar] [CrossRef] [Green Version]
Location | Metric | O1 | P1 | R1 | O2.1 | P2.1 | O2.2 | P2.2 | O2.3 | P2.3 | R2 | O3.1 | P3.1 | O3.2 | P3.2 | R3 | O4.1 | P4.1 | O4.2 | P4.2 | O4.3 | P4.3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yemen | Timing | 1 | 9 | 17 | 26 | 46 | 50 | 54 | 82 | 90 | 111 | 116 | 119 | 125 | 137 | 142 | 149 | 154 | 158 | |||
Yemen | Rate | 0.01 | 0.06 | 0.03 | 0.01 | 151.33 | 122.17 | 141.13 | 6.34 | 7.89 | 53.12 | 44.42 | 45.59 | 31.84 | 99.65 | 66.79 | 73.41 | 59.91 | 66.08 | |||
Sana’a | Timing | 1 | 5 | 17 | 26 | 42 | 49 | 54 | 65 | 69 | 83 | 107 | 111 | 115 | 127 | 136 | 142 | 150 | ||||
Sana’a | Rate | 0.07 | 0.29 | 0.10 | 0.08 | 172.81 | 58.29 | 154.88 | 47.06 | 66.78 | 6.71 | 111.35 | 108.16 | 112.59 | 58.12 | 228.81 | 150.93 | 170.86 | ||||
Sana’a City | Timing | 3 | 9 | 17 | 26 | 46 | 50 | 54 | 83 | 92 | 107 | 111 | 115 | 124 | 136 | 145 | 150 | 155 | 158 | |||
Sana’a City | Rate | 0.03 | 0.14 | 0.06 | 0.04 | 131.36 | 49.80 | 82.07 | 9.23 | 6.82 | 50.96 | 50.24 | 51.07 | 34.71 | 146.37 | 67.45 | 86.48 | 54.42 | 61.33 | |||
Al-Hudaydah | Timing | 3 | 7 | 17 | 26 | 45 | 50 | 55 | 80 | 94 | 110 | 115 | 120 | 132 | 137 | 141 | 158 | |||||
Al-Hudaydah | Rate | 0.03 | 0.10 | 0.06 | 0.04 | 157.26 | 91.28 | 215.79 | 12.29 | 9.87 | 81.55 | 29.26 | 81.77 | 47.25 | 74.25 | 56.16 | 131.58 | |||||
Amran | Timing | 5 | 13 | 17 | 26 | 46 | 77 | 79 | 82 | 110 | 128 | 133 | 154 | 159 | ||||||||
Amran | Rate | 0.09 | 0.16 | 0.12 | 0.09 | 347.50 | 17.30 | 17.97 | 12.67 | 188.36 | 65.22 | 166.90 | 58.39 | 70.71 | ||||||||
Al-Mahwit | Timing | 27 | 46 | 75 | 78 | 83 | 107 | 127 | 137 | 154 | 159 | |||||||||||
Al-Mahwit | Rate | 0.14 | 397.67 | 42.16 | 49.68 | 18.50 | 90.84 | 41.36 | 208.86 | 70.65 | 99.38 | |||||||||||
Dhamar | Timing | 8 | 13 | 17 | 26 | 46 | 77 | 80 | 84 | 88 | 92 | 110 | 127 | 137 | 155 | 158 | ||||||
Dhamar | Rate | 0.05 | 0.12 | 0.08 | 0.05 | 216.32 | 22.95 | 27.49 | 14.35 | 19.02 | 9.44 | 93.51 | 38.23 | 112.44 | 53.09 | 58.28 | ||||||
Al-Bayda | Timing | 2 | 6 | 17 | 26 | 50 | 67 | 72 | 75 | 81 | 93 | 107 | 111 | 115 | 124 | 133 | 141 | 146 | 154 | 158 | ||
Al-Bayda | Rate | 0.13 | 0.28 | 0.16 | 0.14 | 391.53 | 29.84 | 52.82 | 39.38 | 54.40 | 25.95 | 68.28 | 60.67 | 63.07 | 33.13 | 166.26 | 108.80 | 135.80 | 112.76 | 125.31 | ||
Raymah | Timing | 8 | 13 | 17 | 26 | 42 | 67 | 71 | 82 | 98 | 107 | 124 | 133 | 141 | 146 | 154 | 158 | |||||
Raymah | Rate | 0.17 | 0.24 | 0.19 | 0.17 | 125.58 | 28.60 | 70.79 | 3.56 | 8.59 | 22.26 | 21.98 | 48.00 | 29.76 | 33.78 | 30.44 | 32.10 | |||||
Ibb | Timing | 3 | 9 | 17 | 26 | 43 | 74 | 78 | 83 | 90 | 115 | 125 | 136 | 145 | 150 | 154 | 158 | |||||
Ibb | Rate | 0.04 | 0.12 | 0.06 | 0.04 | 113.44 | 14.45 | 19.22 | 2.45 | 4.12 | 47.16 | 27.81 | 81.19 | 50.29 | 54.41 | 48.52 | 57.77 | |||||
Taizz | Timing | 3 | 10 | 17 | 26 | 45 | 75 | 78 | 83 | 99 | 111 | 124 | 137 | 141 | 150 | 158 | 163 | |||||
Taizz | Rate | 0.03 | 0.12 | 0.06 | 0.04 | 85.69 | 5.04 | 9.25 | 2.92 | 3.54 | 23.40 | 8.40 | 51.69 | 33.98 | 45.95 | 30.86 | 65.77 | |||||
Hajjah | Timing | 3 | 13 | 17 | 26 | 53 | 74 | 90 | 107 | 111 | 115 | 127 | 137 | 141 | 145 | 154 | 158 | |||||
Hajjah | Rate | 0.05 | 0.12 | 0.07 | 0.05 | 208.08 | 0.24 | 0.58 | 38.23 | 0.17 | 0.41 | 27.33 | 121.84 | 89.32 | 103.53 | 59.54 | 69.61 | |||||
Al-Jawf | Timing | 10 | 15 | 17 | 26 | 52 | 81 | 91 | 120 | 127 | 137 | 141 | 145 | 155 | 159 | |||||||
Al-Jawf | Rate | 0.17 | 0.22 | 0.20 | 0.18 | 192.51 | 0.77 | 0.78 | 23.95 | 22.20 | 91.12 | 65.35 | 80.27 | 49.93 | 53.51 | |||||||
Sa’ada | Timing | 27 | 56 | 72 | 92 | 110 | 128 | 137 | 141 | 149 | 155 | 158 | ||||||||||
Sa’ada | Rate | 0.10 | 72.96 | 0.19 | 0.10 | 48.94 | 33.86 | 87.60 | 72.49 | 111.12 | 64.63 | 72.69 | ||||||||||
Al-Dhale’e | Timing | 5 | 9 | 13 | 27 | 45 | 72 | 95 | 102 | 111 | 123 | 128 | 132 | 137 | ||||||||
Al-Dhale’e | Rate | 0.14 | 0.25 | 0.14 | 0.14 | 394.66 | 0.32 | 9.53 | 20.62 | 0.17 | 0.28 | 13.08 | 2.31 | 133.76 | ||||||||
Abyan | Timing | 8 | 13 | 17 | 26 | 45 | 72 | 93 | 110 | 115 | 128 | 137 | 141 | 146 | 154 | 167 | ||||||
Abyan | Rate | 0.18 | 0.25 | 0.20 | 0.18 | 358.26 | 0.17 | 0.17 | 2.96 | 0.40 | 0.20 | 18.60 | 7.71 | 13.60 | 7.67 | 21.13 | ||||||
Aden | Timing | 3 | 8 | 17 | 26 | 45 | 79 | 94 | 115 | 127 | 136 | 154 | 163 | |||||||||
Aden | Rate | 0.11 | 0.56 | 0.14 | 0.11 | 134.95 | 0.15 | 0.39 | 11.69 | 5.32 | 28.10 | 6.40 | 27.46 | |||||||||
Lahj | Timing | 3 | 9 | 17 | 26 | 49 | 64 | 68 | 72 | 93 | 111 | 115 | 120 | 124 | 128 | 132 | 137 | 154 | 163 | |||
Lahj | Rate | 0.10 | 0.17 | 0.13 | 0.10 | 164.88 | 2.63 | 10.37 | 0.13 | 0.10 | 7.26 | 1.13 | 10.99 | 6.56 | 11.85 | 7.85 | 30.16 | 6.83 | 17.10 | |||
Marib | Timing | 27 | 45 | 58 | 61 | 73 | 101 | 106 | 124 | 137 | 146 | 149 | 155 | 167 | ||||||||
Marib | Rate | 0.29 | 110.22 | 75.11 | 83.20 | 0.41 | 0.28 | 2.14 | 0.40 | 33.00 | 9.34 | 11.47 | 6.43 | 17.72 | ||||||||
Al-Maharah | Timing | 27 | 47 | 69 | 132 | 137 | 158 | 163 | ||||||||||||||
Al-Maharah | Rate | 0.66 | 72.63 | 0.65 | 0.63 | 17.68 | 1.24 | 8.48 | ||||||||||||||
Shabwah | Timing | 27 | 52 | 67 | 127 | 145 | ||||||||||||||||
Shabwah | Rate | 0.16 | 22.14 | 0.26 | 0.16 | 10.21 |
From | O1 | P1 | P1 | R1 | O2.1 | O2.1 | O2.1 | P2.1 | P2.2 | P2.3 | P2.1 | P2.2 | P2.3 | R2 | O3.1 | O3.1 | P3.1 | P3.1 | P3.2 | R3 | O4.1 | O4.1 | O4.1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | To | P1 | R1 | O2.1 | O2.1 | P2.1 | P2.2 | P2.3 | R2 | R2 | R2 | O3.1 | O3.1 | O3.1 | O3.1 | P3.1 | P3.2 | R3 | O4.1 | O4.1 | O4.1 | P4.1 | P4.2 | P4.3 |
Yemen | Duration | 8 | 8 | 17 | 9 | 20 | 28 | 36 | 28 | 44 | 36 | 8 | 21 | 29 | 14 | 6 | 24 | 29 | 33 | |||||
Yemen | Pace | 0.01 | 0.00 | 0.00 | 0.00 | 7.57 | 5.04 | −4.03 | −4.81 | −3.26 | −2.86 | 0.19 | 2.15 | 1.30 | −1.52 | −2.29 | 5.65 | 1.73 | 1.04 | |||||
Sana’a | Duration | 4 | 12 | 21 | 9 | 16 | 28 | 43 | 41 | 29 | 14 | 24 | 32 | 20 | 12 | 9 | 23 | |||||||
Sana’a | Pace | 0.07 | −0.02 | −0.01 | 0.00 | 10.80 | 5.53 | 1.55 | −4.05 | −5.11 | −4.29 | 4.36 | 3.31 | −2.66 | −4.54 | 18.97 | 4.90 | |||||||
Sana’a City | Duration | 6 | 8 | 17 | 9 | 20 | 28 | 37 | 29 | 46 | 38 | 9 | 15 | 23 | 17 | 9 | 26 | 31 | 34 | |||||
Sana’a City | Pace | 0.03 | −0.01 | −0.01 | 0.00 | 6.57 | 2.93 | −3.30 | −2.51 | −2.71 | −1.98 | −0.27 | 2.94 | 1.92 | −0.96 | −1.82 | 9.31 | 1.99 | 0.78 | |||||
Al-Hudaydah | Duration | 4 | 10 | 19 | 9 | 19 | 29 | 35 | 25 | 49 | 39 | 14 | 16 | 26 | 22 | 12 | 5 | 26 | ||||||
Al-Hudaydah | Pace | 0.03 | 0.00 | 0.00 | 0.00 | 8.27 | 7.44 | −4.14 | −8.14 | −3.01 | −5.28 | −0.17 | 4.48 | 2.77 | −1.56 | −2.88 | 5.40 | 3.24 | ||||||
Amran | Duration | 8 | 4 | 13 | 9 | 20 | 53 | 36 | 3 | 28 | 18 | 5 | 31 | |||||||||||
Amran | Pace | 0.09 | −0.01 | −0.01 | 0.00 | 17.37 | 0.34 | −9.30 | −1.77 | 6.27 | −6.84 | 20.34 | 0.18 | |||||||||||
Al-Mahwit | Duration | 19 | 51 | 37 | 5 | 24 | 20 | 10 | 32 | |||||||||||||||
Al-Mahwit | Pace | 20.92 | 0.97 | −10.25 | −6.24 | 3.01 | −2.47 | 16.75 | 1.81 | |||||||||||||||
Dhamar | Duration | 5 | 4 | 13 | 9 | 20 | 54 | 62 | 46 | 12 | 4 | 18 | 17 | 10 | 31 | |||||||||
Dhamar | Pace | 0.01 | −0.01 | −0.01 | 0.00 | 10.81 | 0.51 | 0.31 | −4.50 | −1.50 | −2.40 | 4.67 | −3.25 | 7.42 | 0.65 | |||||||||
Al-Bayda | Duration | 4 | 11 | 20 | 9 | 24 | 46 | 55 | 43 | 21 | 12 | 14 | 22 | 17 | 9 | 9 | 22 | 34 | ||||||
Al-Bayda | Pace | 0.04 | −0.01 | −0.01 | 0.00 | 16.31 | 1.15 | 0.99 | −8.50 | −1.28 | −2.37 | 3.02 | 1.69 | −3.25 | 0.30 | 14.79 | 4.67 | 2.71 | ||||||
Raymah | Duration | 5 | 4 | 13 | 9 | 16 | 45 | 40 | 11 | 56 | 27 | 16 | 9 | 17 | 9 | 22 | 34 | |||||||
Raymah | Pace | 0.01 | −0.01 | −0.01 | 0.00 | 7.84 | 1.57 | −3.05 | −6.11 | −2.09 | −2.30 | 0.31 | 1.52 | −0.02 | 2.89 | 0.54 | 0.30 | |||||||
Ibb | Duration | 6 | 8 | 17 | 9 | 17 | 52 | 40 | 5 | 47 | 12 | 7 | 25 | 10 | 11 | 25 | 33 | |||||||
Ibb | Pace | 0.01 | −0.01 | 0.00 | 0.00 | 6.67 | 0.37 | −2.77 | −3.35 | −2.33 | −1.26 | 0.24 | 1.72 | −1.94 | 4.85 | 1.06 | 0.91 | |||||||
Taizz | Duration | 7 | 7 | 16 | 9 | 19 | 52 | 38 | 5 | 54 | 21 | 16 | 12 | 13 | 13 | 26 | 39 | |||||||
Taizz | Pace | 0.01 | −0.01 | −0.01 | 0.00 | 4.51 | 0.18 | −2.18 | −1.27 | −1.52 | −0.27 | 0.04 | 1.66 | −1.15 | 3.33 | 1.44 | 1.47 | |||||||
Hajjah | Duration | 10 | 4 | 13 | 9 | 27 | 21 | 37 | 16 | 17 | 25 | 20 | 12 | 10 | 18 | 31 | ||||||||
Hajjah | Pace | 0.01 | −0.01 | −0.01 | 0.00 | 7.70 | −9.90 | −5.61 | 0.02 | 2.21 | −0.01 | −0.55 | 2.24 | 9.45 | 4.23 | 1.36 | ||||||||
Al-Jawf | Duration | 5 | 2 | 11 | 9 | 26 | 29 | 39 | 10 | 29 | 7 | 10 | 18 | 32 | ||||||||||
Al-Jawf | Pace | 0.01 | −0.01 | 0.00 | 0.00 | 7.40 | −6.61 | −4.92 | 0.00 | 0.80 | −0.25 | 6.89 | 3.23 | 0.98 | ||||||||||
Sa’ada | Duration | 29 | 16 | 36 | 20 | 18 | 18 | 9 | 21 | 30 | ||||||||||||||
Sa’ada | Pace | 2.51 | −4.55 | −2.02 | 0.00 | 2.71 | −0.84 | 5.97 | 3.68 | 1.29 | ||||||||||||||
Al-Dhale’e | Duration | 4 | 4 | 18 | 14 | 18 | 27 | 50 | 23 | 7 | 9 | 21 | 12 | 5 | 14 | |||||||||
Al-Dhale’e | Pace | 0.03 | −0.03 | −0.01 | 0.00 | 21.92 | −14.61 | −7.70 | 0.40 | 1.58 | −2.27 | −0.97 | 0.01 | 2.56 | 9.53 | |||||||||
Abyan | Duration | 5 | 4 | 13 | 9 | 19 | 27 | 48 | 21 | 17 | 5 | 18 | 13 | 9 | 18 | 39 | ||||||||
Abyan | Pace | 0.01 | −0.01 | −0.01 | 0.00 | 18.85 | −13.26 | −7.46 | 0.00 | 0.16 | −0.51 | −0.15 | −0.02 | 2.04 | 0.74 | 0.54 | ||||||||
Aden | Duration | 5 | 9 | 18 | 9 | 19 | 34 | 49 | 15 | 21 | 12 | 9 | 36 | |||||||||||
Aden | Pace | 0.09 | −0.05 | −0.03 | 0.00 | 7.10 | −3.96 | −2.75 | 0.02 | 0.54 | −0.53 | 2.53 | 0.62 | |||||||||||
Lahj | Duration | 6 | 8 | 17 | 9 | 23 | 42 | 23 | 4 | 44 | 25 | 21 | 18 | 27 | 13 | 4 | 4 | 13 | 39 | |||||
Lahj | Pace | 0.01 | −0.01 | 0.00 | 0.00 | 7.16 | 0.24 | −7.16 | −2.56 | −3.75 | −0.41 | 0.00 | 0.40 | 0.40 | −0.05 | −1.11 | 1.32 | 1.82 | 0.27 | |||||
Marib | Duration | 18 | 34 | 28 | 12 | 56 | 40 | 28 | 5 | 18 | 13 | 25 | 43 | |||||||||||
Marib | Pace | 6.11 | 2.44 | −3.92 | −6.90 | −1.96 | −2.07 | 0.00 | 0.37 | −0.10 | 2.51 | 0.44 | 0.40 | |||||||||||
Al-Maharah | Duration | 20 | 22 | 5 | 31 | |||||||||||||||||||
Al-Maharah | Pace | 3.60 | −3.27 | 3.41 | 0.25 | |||||||||||||||||||
Shabwah | Duration | 25 | 15 | 18 | ||||||||||||||||||||
Shabwah | Pace | 0.88 | −1.46 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, R.B.; Babool, S.; Tarnas, M.C.; Kaminski, P.M.; Hartwick, M.A.; Naumova, E.N. Signatures of Cholera Outbreak during the Yemeni Civil War, 2016–2019. Int. J. Environ. Res. Public Health 2022, 19, 378. https://doi.org/10.3390/ijerph19010378
Simpson RB, Babool S, Tarnas MC, Kaminski PM, Hartwick MA, Naumova EN. Signatures of Cholera Outbreak during the Yemeni Civil War, 2016–2019. International Journal of Environmental Research and Public Health. 2022; 19(1):378. https://doi.org/10.3390/ijerph19010378
Chicago/Turabian StyleSimpson, Ryan B., Sofia Babool, Maia C. Tarnas, Paulina M. Kaminski, Meghan A. Hartwick, and Elena N. Naumova. 2022. "Signatures of Cholera Outbreak during the Yemeni Civil War, 2016–2019" International Journal of Environmental Research and Public Health 19, no. 1: 378. https://doi.org/10.3390/ijerph19010378