Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instruments
2.3. Procedure
2.3.1. Estimation of 1RM in the Half-Squat Exercise
2.3.2. Vertical Jump
2.3.3. Activation Protocol
2.3.4. PAPE Monitoring during a Volleyball Match
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethke, N.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Ruiz, D.; Palmas, L.; Quiroga, M.E.; Palmas, L.; Miralles, J.A.; Palmas, L.; Canaria, D.G.; García-Manso, J.M.; Palmas, L.; Rodriguez-Ruiz, D.; et al. Study of the Technical and Tactical Variables Determining Set Win or Loss in Top-Level European Men’s Volleyball. J. Quant. Anal. Sports 2011, 7, 7. [Google Scholar] [CrossRef]
- Palao, J.M.; Manzanares, P.; Valadés, D. Way of scoring of Spanish first division volleyball teams in relation to winning/losing, home/away, final classification, and type of confrontation. J. Hum. Sport Exerc. 2015, 10, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Marcelino, R.; Lacerda, D.; João, P.V. Match Analysis in Volleyball: A systematic review. Monten. J. Sports Sci. 2016, 5, 35–46. [Google Scholar]
- Yu, Y.; García-de-alcaraz, A.; Wang, L.; Liu, T. Analysis of winning determinant performance indicators according to teams level in Chinese women’ s volleyball. Int. J. Perform. Anal. Sport 2018, 18, 750–763. [Google Scholar] [CrossRef]
- Toselli, S.; Campa, F. Anthropometry and Functional Movement Patterns in Elite Male Volleyball Players of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2601–2611. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Forza, J. Complex Training for Volleyball: An Original Article. Strength Cond. 2019, 27, 71–77. [Google Scholar]
- Holmberg, P.M. Weightlifting to Improve Volleyball Performance. Strength Cond. J. 2017, 35, 79–88. [Google Scholar] [CrossRef]
- Boullosa, D.; Beato, M.; Dello Iacono, A.; Cuenca-Fernández, F.; Doma, K.; Schumann, M.; Zagatto, A.M.; Loturco, I.; Behm, D.G. A New Taxonomy for Postactivation Potentiation in Sport. Int. J. Sports Physiol. Perform. 2020, 15, 1–4. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Smith, I.C.; Jordan, M.J.; MacIntosh, B.R.; López-Contreras, G.; Arellano, R.; Herzog, W. Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: A pilot study. Appl. Physiol. Nutr. Metab. 2017, 42, 1122–1125. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, H.B.; Macintodh, B.R.; Pupo, J.D. Does postactivation potentiation (PAP) increase voluntary performance? Appl. Physiol. Nutr. Metab. 2020, 45, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Maffiuletti, N.A.; Granacher, U. Postactivation potentiation of the plantar flexors does not directly translate to jump performance in female elite young soccer players. Front. Physiol. 2018, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- FIVB. Official Volleyball Rules 2017–2020; de Volleyball, F.I., Ed.; FIVB: Lausanne, Switzerland, 2014. [Google Scholar]
- Forza, J. Complex training for volleyball: A Critical Review. Strength Cond. 2018, 26, 57–63. [Google Scholar]
- Pagaduan, J.; Pojskic, H. A Meta-Analysis on the Effect of Complex Training on Vertical Jump Performance. J. Hum. Kinet. 2020, 71, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Sale, D. Postactivation potentiation: Role in performance. Br. J. Sports Med. 2004, 33, 196–198. [Google Scholar] [CrossRef] [Green Version]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Xenofondos, A.; Laparidis, K.; Kyranoudis, A.; Bassa, E.; Kotzamanidis, C.; Performance, S.; Science, S.; Science, S. Post-activation potentiation: Factors affeecting it and the effect on performance. J. Phys. Educ. Sport 2010, 28, 32–38. [Google Scholar]
- Seitz, L.; Trajano, G.S.; Maso, F.D.; Haff, G.G.; Blazevich, A.J. Post-activation potentiation during voluntary contractions after continued knee extensor task-specific practice. Appl. Physiol. Nutr. Metab. 2015, 40, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Ah Sue, R.; Adams, K.; DeBeliso, M. Optimal Timing for Post-Activation Potentiation in Women Collegiate Volleyball Players. Sports 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, T.J.; Lamont, H.S.; Moir, G.L. Understanding Vertical Jump Potentiation: A Deterministic Model. Sports Med. 2016, 46, 809–828. [Google Scholar] [CrossRef]
- Picón-martínez, M.; Chulvi-medrano, I.; Cortell-tormo, J.M.; Cardozo, L.A. La potenciación post-activación en el salto vertical: Una revisión Post-activation potentiation in vertical jump: A review. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación 2019, 2041, 44–51. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Met-Analysis of Postactivation Potentiation and Power: Effects of Conditioning Activity, Volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, W.; Tolusso, D.; Fedewa, M.; Esco, M. Effect of Postactivation Potentiation on Explosive Vertical Jump: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2019, 33, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Healy, R.; Comyns, T.M. The application of postactivation potentiation methods to improve sprint speed. Strength Cond. J. 2019, 33, 2009–2018. [Google Scholar] [CrossRef] [Green Version]
- Hilfiker, R.; Hubner, K.; Lorenz, T.; Marti, B. Effects of drop jumps added to the warm-up of elite sport athletes with a high capacity for explosive force development. J. Strength Cond. Res. 2007, 21, 550–555. [Google Scholar]
- Sañudo, B.; de Hoyo, M.; Haff, G.G.; Muñoz-López, A. Article influence of strength level on the acute post-activation performance enhancement following flywheel and free weight resistance training. Sensors 2020, 20, 7156. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Molina, S.; Salgado-Ramírez, U.; Chulvi-Medrano, I.; Carbone, L.; Maroto-Izquierdo, S.; Benítez-Porres, J. Comparison of post-activation performance enhancement (PAPE) after isometric and isotonic exercise on vertical jump performance. PLoS ONE 2021, 16, e0260866. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Bautista, I.J.; Rivera, F.M. Post-activation performance enhancement (PAPE) after a single bout of high-intensity flywheel resistance training. Biol. Sport 2020, 37, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.J.; Silva, A.S.; Baganha, R.J.; Barbosa, C.G.R.; Silva, J.A.O.; Dias, R.M.; Oliveira, L.H.S.; Pereira, A.A.; Ribeiro, A.G.S.V.; Pertille, A. Effect of Different Post-Activation Potentiation Intensities on Vertical Jump Performance in University Volleyball Players. Off. Res. J. Am. Soc. Exerc. Physiol. 2018, 21, 90–100. [Google Scholar]
- Chen, Z.R.; Lo, S.L.; Wang, M.H.; Yu, C.F.; Peng, H. Te Can Different Complex Training Improve the Individual Phenomenon of Post-Activation Potentiation? J. Hum. Kinet. 2017, 56, 167–175. [Google Scholar] [CrossRef]
- Maraboli, P.Q.; Garrido, A.B.; Hernández, C.A.; Guerra, S.C.; González, S.U. Jump height increase in university voleyball players. Apunt. Educ. Física Y Deport. 2016, 4, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Krzysztofik, M.; Kalinowski, R.; Trybulski, R.; Filip-Stachnik, A.; Stastny, P. Enhancement of Countermovement Jump Performance Using a Heavy Load with Velocity-Loss Repetition Control in Female Volleyball Players. Int. J. Environ. Res. Public Health 2021, 18, 11530. [Google Scholar] [CrossRef]
- Arabatzi, F.; Patikas, D.; Zafeiridis, A.; Kotzamanidis, C.M. The Post-Activation Potentiation Effect on Squat Jump Performance: Age and Sex Effect. Pediatr. Exerc. Sci. 2014, 26, 187–194. [Google Scholar] [CrossRef]
- Rixon, K.P.; Lamont, H.S.; Bemben, M.G. Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. J. Strength Cond. Res. 2007, 21, 500–505. [Google Scholar]
- López Villar, C.; Alvariñas Villaverde, M. Análisis muestrales desde una perspectiva de género en revistas de investigación de Ciencias de la Actividad Física y del Deporte españolas. Apunt. Educ. Física Y Deport. 2011, 62–70. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373. [Google Scholar] [CrossRef]
- Pueo, B.; Penichet-Tomas, A.; Jimenez-Olmedo, J.M. Reliability and validity of the Chronojump open-sourcejump mat system. Biol. Sport 2020, 37, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Jerez-Mayorga, D.; Martínez-García, D.; Rodríguez-Perea, Á.; Chirosa-Ríos, L.J.; García-Ramos, A. Comparison of the bench press one-repetition maximum obtained by different procedures: Direct assessment vs. lifts-to-failure equations vs. two-point method. Int. J. Sport. Sci. Coach. 2020, 15, 337–346. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Nibali, M.L.; Chapman, D.W.; Robergs, R.A.; Drinkwater, E.J. Validation of jump squats as a practical measure of post-activation potentiation. Appl. Physiol. Nutr. Metab. 2013, 313, 306–313. [Google Scholar] [CrossRef]
- de Oliveira, J.J.; Verlengia, R.; Barbosa, C.G.R.; Sindorf, M.A.G.; da Rocha, G.L.; Lopes, C.R.; Crisp, A.H. Effects of post-activation potentiation and carbohydrate mouth rinse on repeated sprint ability. J. Hum. Sport Exerc. 2018, 14, 159–169. [Google Scholar] [CrossRef]
- McCann, M.R.; Flanagan, S.P. The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. J. Strength Cond. Res. 2010, 24, 1285–1291. [Google Scholar] [CrossRef]
- Sanchez-Lopez, S.; Rodriguez-Perez, M.A. Effects of different protocols of Post-Activation Potentiation on Performance in the Vertical Jump, in relation to the F-V Profile in Female Elite Handball Players. E-Balonmano.com Rev. Ciencias Deport. 2018, 14, 16–17. [Google Scholar]
- Robbins, D.W. Postactivation potentiation and its practical applicability: A brief review. J. Strength Cond. Res. 2005, 19, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Vandenboom, R. Modulation of skeletal muscle contraction by myosin phosphorylation. Compr. Physiol. 2017, 7, 171–212. [Google Scholar] [CrossRef]
- Suchomel, T.; Sato, K.; DeWeese, B.; Ebben, W.; Stone, M. Potentiation effects of half-squats performed in a ballistic or nonballistic manner. J. Strength Cond. Res. 2016, 30, 1652–1660. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sport. Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef] [PubMed]
- Cairns, S.P.; Borrani, F. β-Adrenergic modulation of skeletal muscle contraction: Key role of excitation-contraction coupling. J. Physiol. 2015, 593, 4713–4727. [Google Scholar] [CrossRef] [Green Version]
- Evetovich, T.K.; Conley, D.S.; McCawley, P.F. Postactivation potentiation enhances upper- and lower-body atheltic performance in collegiate male and female athletes. J. Strength Cond. Res. 2015, 29, 336–342. [Google Scholar] [CrossRef]
- Wallace, B.J.; Shapiro, R.; Wallace, K.L.; Mark, G.A.; Symons, T.B. Muscular and neural contributions to postactivation potentiation. J. Strength Cond. Res. 2019, 33, 615–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choon, Y.N.; Chen, S.E.; Lum, D. Inducing Postactivation Potentiation With Different Modes of Exercise. Strength Cond. J. 2019, 42, 63–81. [Google Scholar] [CrossRef]
- Saez Saez de Villarreal, E.; González-Badillo, J.J.; Izquierdo, M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur. J. Appl. Physiol. 2007, 100, 393–401. [Google Scholar] [CrossRef]
- de Freitas, M.C.; Rossi, F.E.; Colognesi, L.A.; de Oliveira, J.V.N.S.; Zanchi, N.E.; Lira, F.S.; Cholewa, J.M.; Gobbo, L.A. Postactivation potentiation improves acute resistance exercise performance and muscular force in trained men. J. Strength Cond. Res. 2021, 35, 1357–1363. [Google Scholar] [CrossRef]
- Seitz, L.; Villareal, E.; Haff, G. The temporal profile os postactivation potentiation is related to streght level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, D.J.; Dawson, B.; Clarke, M.; Peeling, P. Can changes in resistance exercise workload influence internal load, countermovement jump performance and the endocrine response? J. Sports Sci. 2017, 36, 191–197. [Google Scholar] [CrossRef]
- Boullosa, D.; Abreu, L.; Beltrame, L.G.; Behm, D.G. The acute effect of different half squad set configurations on jump potentiation. J. Strength Cond. Res. 2013, 27, 2059–2066. [Google Scholar] [CrossRef]
- Pérez-López, A.; Valadés, D. Bases fisiológicas del calentamiento en voleibol: Propuesta práctica (Physiological Basis of Volleyball Warm-Up: Practical Proposal). Cult. Cienc. Y Deporte 2013, 8, 31–40. [Google Scholar] [CrossRef] [Green Version]
Experimental (n = 6) | Control (n = 5) | Total | |
---|---|---|---|
Age (years) | 21.33 ± 3.0 | 23.2 ± 3.8 | 22.2 ± 3.3 |
Height (cm) | 171.3 ± 7.0 | 172.4 ± 8.7 | 171.8 ± 7.8 |
Body mass (kg) | 64.0 ± 5.3 | 63.0 ± 3.8 | 63.5 ± 4.5 |
BMI (kg/m2) | 21.8 ± 5.3 | 21.3 ± 2.0 | 21.6 ± 1.6 |
Volleyball Experience (years) | 8.8 ± 2.7 | 11.0 ± 2.6 | 9.8 ± 2.7 |
Strength Experience (years) | 3.2 ± 1.8 | 3.2 ± 2.0 | 3.2 ± 1.9 |
CMJ Experimental (cm) n = 6 | CMJ Control (cm) n = 5 | p | ES (d) | |
---|---|---|---|---|
Pre-PAPE | 34.08 ± 3.98 | 31.35 ± 4.28 | 0.302 | 0.66 [Moderate] |
Post-PAPE | 35.40 ± 3.69 * | 29.61 ± 4.10 | 0.036 | 1.49 [Large] |
Pre-Match | 37.10 ± 4.09 *# | 31.38 ± 3.99 | 0.045 | 1.41 [Large] |
Set 1 | 38.84 ± 4.74 *# | 31.22 ±2.61 | 0.011 | 1.94 [Large] |
Set 2 | 41.37 ± 4.91 *# | 32.75 ±4.47 | 0.015 | 1.83 [Large] |
Set 3 | 39.15 ± 4.19 # | 34.60 ± 4.43 # | 0.115 | 1.05 [Large] |
Set 4 | 37.66 ± 3.98 # | 32.76 ± 2.44 | 0.073 | 1.23 [Large] |
Set 5 | 38.11 ± 5.40 *# | 34.32 ± 3.26 # | 0.205 | 0.83 [Moderate] |
Experimental | Control | |||
---|---|---|---|---|
p | ES (d) | p | ES (d) | |
Pre-PAPE vs. Post-PAPE | 0.147 | 0.70 [Moderate] | 0.127 | 0.87 [Moderate] |
Pre-PAPE vs. Pre-Match | 0.005 | 1.94 [Large] # | 0.922 | 0.04 [Trivial] |
Pre-PAPE vs. Set 1 | 0.002 | 2.31 [Large] # | 0.903 | 0.05 [Trivial] |
Pre-PAPE vs. Set 2 | 0.004 | 2.08 [Large] # | 0.069 | 1.10 [Large] |
Pre-PAPE vs. Set 3 | 0.002 | 2.40 [Large] # | 0.009 | 2.14 [Large] # |
Pre-PAPE vs. Set 4 | 0.012 | 1.60 [Large] # | 0.313 | 0.51 [Moderate] |
Pre-PAPE vs. Set 5 | 0.013 | 1.53 [Large] # | 0.046 | 1.28 [Large] # |
Pre-Match vs. Set 1 | 0.106 | 0.62 [Moderate] | 0.834 | 0.09 [Trivial] |
Pre-Match vs. Set 2 | 0.022 | 1.50 [Large] # | 0.050 | 0.74 [Moderate] |
Pre-Match vs. Set 3 | 0.057 | 0.79 [Moderate] | 0.003 | 1.76 [Large] # |
Pre-Match vs. Set 4 | 0.508 | 0.01 [Trivial] | 0.268 | 0.76 [Moderate] |
Pre-Match vs. Set 5 | 0.503 | 0.36 [Low] | 0.015 | 1.61 [Large] # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalon-Gasch, L.; Penichet-Tomas, A.; Sebastia-Amat, S.; Pueo, B.; Jimenez-Olmedo, J.M. Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. Int. J. Environ. Res. Public Health 2022, 19, 462. https://doi.org/10.3390/ijerph19010462
Villalon-Gasch L, Penichet-Tomas A, Sebastia-Amat S, Pueo B, Jimenez-Olmedo JM. Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. International Journal of Environmental Research and Public Health. 2022; 19(1):462. https://doi.org/10.3390/ijerph19010462
Chicago/Turabian StyleVillalon-Gasch, Lamberto, Alfonso Penichet-Tomas, Sergio Sebastia-Amat, Basilio Pueo, and Jose M. Jimenez-Olmedo. 2022. "Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players" International Journal of Environmental Research and Public Health 19, no. 1: 462. https://doi.org/10.3390/ijerph19010462
APA StyleVillalon-Gasch, L., Penichet-Tomas, A., Sebastia-Amat, S., Pueo, B., & Jimenez-Olmedo, J. M. (2022). Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. International Journal of Environmental Research and Public Health, 19(1), 462. https://doi.org/10.3390/ijerph19010462