The Association of Smartphone Usage Duration with Physical Fitness among Chinese University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Smartphone Use
2.3. Assessment of Physical Fitness
2.3.1. 50 m Sprint
2.3.2. 1000 m and 800 m Run
2.4. Pull-Ups
2.5. Sit-Ups
2.6. Vital Capacity
2.7. Assessment of Other Variables
2.8. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Smartphone Uses and Physical Fitness in Males
3.3. Smartphone Uses and Physical Fitness in Females
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domoff, S.E.; Sutherland, E.Q.; Yokum, S.; Gearhardt, A.N. Adolescents’ addictive phone use: Association with eating behavior and adiposity. Int. J. Environ. Res. Public Health 2020, 17, 2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomee, S.; Harenstam, A.; Hagberg, M. Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults—A prospective cohort study. BMC Public Health 2011, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Kim, D.J.; Choi, J.S.; Ahn, H.; Choi, E.J.; Song, W.Y.; Kim, S.; Youn, H. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction. J. Behav. Addict. 2015, 4, 308–314. [Google Scholar] [CrossRef]
- Kumar, V.A.; Chandrasekaran, V.; Brahadeeswari, H. Prevalence of smartphone addiction and its effects on sleep quality: A cross-sectional study among medical students. Ind. Psychiatry J. 2019, 28, 82–85. [Google Scholar]
- Arnett, J.J. Emerging adulthood. A theory of development from the late teens through the twenties. Am. Psychol. 2000, 55, 469–480. [Google Scholar] [CrossRef]
- Kim, S.Y.; Koo, S.J. Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults. J. Phys. Ther. Sci. 2016, 28, 1669–1672. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M.; Lim, H.J.; Jang, H.; Kim, K.; Choi, J.W.; Shin, C.; Lee, S.K.; Kwon, J.H.; Kim, N. A cross-sectional study of the association between mobile phone use and symptoms of ill health. Environ. Health Toxicol. 2016, 31, e2016022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kang, H.; Shin, G. Head flexion angle while using a smartphone. Ergonomics 2015, 58, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjostrom, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Blair, S.N.; Kohl, H.W., 3rd; Barlow, C.E.; Paffenbarger, R.S., Jr.; Gibbons, L.W.; Macera, C.A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 1995, 273, 1093–1098. [Google Scholar] [CrossRef]
- Momma, H.; Sawada, S.S.; Kato, K.; Gando, Y.; Kawakami, R.; Miyachi, M.; Huang, C.; Nagatomi, R.; Tashiro, M.; Ishizawa, M.; et al. Physical Fitness Tests and Type 2 Diabetes Among Japanese: A Longitudinal Study From the Niigata Wellness Study. J. Epidemiol. 2019, 29, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Juraschek, S.P.; Blaha, M.J.; Whelton, S.P.; Blumenthal, R.; Jones, S.R.; Keteyian, S.J.; Schairer, J.; Brawner, C.A.; Al-Mallah, M.H. Physical fitness and hypertension in a population at risk for cardiovascular disease: The Henry Ford ExercIse Testing (FIT) Project. J. Am. Heart Assoc. 2014, 3, e001268. [Google Scholar] [CrossRef] [Green Version]
- Blair, S.N.; Kohl, H.W., 3rd; Paffenbarger, R.S., Jr.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989, 262, 2395–2401. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Sanchez, A.; Moran-Garcia, J.; Abian, P.; Abian-Vicen, J. Association of the Use of the Mobile Phone with Physical Fitness and Academic Performance: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 1042. [Google Scholar] [CrossRef]
- Jun, I.Y.; Jin, K.C.; Kyung, W.B.; Min, H.K.; Ji, S.K. Relationship between smartphone use time, sitting time, and fitness level in university students. Exerc. Sci. 2020, 29, 170–177. [Google Scholar]
- Lepp, A.; Barkley, J.E.; Sanders, G.J.; Rebold, M.; Gates, P. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of U.S. college students. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Education of the People’s Republic of China. Notification of <Netional Student Physical Health Standard> Revised in 2014. 2014; (In Chinese). Available online: http://www.moe.gov.cn/s78/A17/twys_left/moe_938/moe_792/s3273/201407/t20140708_171692.html (accessed on 30 December 2021).
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Zung, W.W. A Self-Rating Depression Scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Cui, Y.; Huang, C.; Momma, H.; Ren, Z.; Sugiyama, S.; Guan, L.; Niu, K.; Nagatomi, R. Consumption of low-fat dairy, but not whole-fat dairy, is inversely associated with depressive symptoms in Japanese adults. Soc. Psychiatry Psychiatr. Epidemiol. 2017, 52, 847–853. [Google Scholar] [CrossRef]
- Osailan, A. The relationship between smartphone usage duration (using smartphone’s ability to monitor screen time) with hand-grip and pinch-grip strength among young people: An observational study. BMC Musculoskelet. Disord. 2021, 22, 186. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, F.D.; Alyahya, H.; Alshahwan, H.; Al Mahyijari, N.; Shaik, S.A. Smartphone addiction among university students in Riyadh, Saudi Arabia. Saudi Med. J. 2016, 37, 675–683. [Google Scholar] [CrossRef]
- Berolo, S.; Wells, R.P.; Amick, B.C., 3rd. Musculoskeletal symptoms among mobile hand-held device users and their relationship to device use: A preliminary study in a Canadian university population. Appl. Ergon. 2011, 42, 371–378. [Google Scholar] [CrossRef]
- Radwan, N.L.; Ibrahim, M.M.; Mahmoud, W.S.E. Evaluating hand performance and strength in children with high rates of smartphone usage: An observational study. J. Phys. Ther. Sci. 2020, 32, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaan, M.; Elnegmy, E.; Elnahhas, A.; Hendawy, A. Effect of prolonged smartphone use on cervical spine and hand grip strength in adolescence. Int. J. Multidiscip. Res. Dev. 2018, 5, 49–53. [Google Scholar]
- Eom, S.H.; Choi, S.Y.; Park, D.H. An empirical study on relationship between symptoms of musculoskeletal disorders and amount of smartphone usage. J. Korea Saf. Manag. Sci. 2013, 15, 113–120. [Google Scholar]
- Shin, G.; Zhu, X. User discomfort, work posture and muscle activity while using a touchscreen in a desktop PC setting. Ergonomics 2011, 54, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Lajunen, H.R.; Keski-Rahkonen, A.; Pulkkinen, L.; Rose, R.J.; Rissanen, A.; Kaprio, J. Are computer and cell phone use associated with body mass index and overweight? A population study among twin adolescents. BMC Public Health 2007, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.E.; Kim, J.W.; Jee, Y.S. Relationship between smartphone addiction and physical activity in Chinese international students in Korea. J. Behav. Addict. 2015, 4, 200–205. [Google Scholar] [CrossRef]
Male | Female | p Value a | |
---|---|---|---|
n (%) | 6770 (60.2) | 4472 (39.8) | |
BMI (kg/m2) b | 22.0 (22.0, 22.1) c | 20.4 (20.3, 20.5) | <0.001 |
Grade (%) | |||
Freshman | 29 | 31.3 | 0.011 |
Sophomore | 28.8 | 31.6 | 0.002 |
Junior | 26.3 | 28.6 | 0.007 |
Senior | 15.9 | 8.5 | <0.001 |
Minority race (%) | 3.9 | 5.7 | <0.001 |
Living expenses (%) | |||
Low | 39.7 | 35 | <0.001 |
Medium | 51 | 53.8 | 0.004 |
High | 9.3 | 11.2 | 0.001 |
Living status (dormitory; %) | 99 | 99.2 | 0.545 |
Nonsmoker (%) | 91.4 | 99.5 | <0.001 |
Drinking status (%) | |||
Nondrinker | 68.5 | 95.4 | <0.001 |
Drink 1–2 times/week | 28.2 | 4.2 | <0.001 |
Drink > 2 times/week | 3.2 | 0.4 | <0.001 |
PA (METs hour/week) | 51.1 (50.0, 52.2) | 50.4 (49.0, 51.7) | 0.409 |
Sleep duration (7–8 h/day; %) | 52.1 | 58.9 | <0.001 |
Depressive symptoms (%) | 11.7 | 12.1 | 0.493 |
Duration of smartphone use (Minutes/day) | 321.5 (317.3, 325.8) | 363.0 (357.8, 368.3) | <0.001 |
Physical fitness | |||
Vital capacity (mL/kg) | 24.5 (24.4, 24.6) | 18.1 (18.0, 18.1) | <0.001 |
50 m sprint (Second) | 7.38 (7.37, 7.39) | 9.11 (9.10, 9.13) | <0.001 |
1000 m run (Second) | 255.1 (254.5, 255.7) | ||
Pull-up (Times/minute) | 3.96 (3.87, 4.05) | ||
800 m run (Second) | 243.0 (242.4, 243.5) | ||
Sit-up (Times/minute) | 32.5 (32.3, 32.7) |
Males | Females | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Duration of Smartphone Use | 50 m Sprint | 1000 m Run | Pull-Up | Vital Capacity | Duration of Smartphone Use | 50 m Sprint | 800 m Run | Sit-Up | Vital Capacity | |
Duration of smartphone use | 1 | 0.02 | 0.02 | −0.04 ** | −0.01 | 1 | 0.00 | 0.04 ** | 0.00 | 0.03 |
50 m sprint | - | 1 | 0.45 *** | 0.33 *** | −0.03 * | - | 1 | 0.43 *** | 0.26 *** | −0.07 *** |
1000 m run | - | - | 1 | 0.33 *** | 0.03 * | - | - | - | - | - |
800 m run | - | - | - | - | - | - | - | 1 | 0.26 *** | 0.00 |
Pull-up | - | - | - | 1 | −0.03 ** | - | - | - | - | - |
Sit-up | - | - | - | - | - | - | - | - | 1 | 0.07 *** |
Vital capacity | - | - | - | - | 1 | - | - | - | - | 1 |
Duration of Smartphone Use | ||||
---|---|---|---|---|
Crude Beta | pa | Adjusted Beta b | pa | |
50 m sprint | 0.02 (−0.01, 0.04) c | 0.164 | 0.03 (0.01, 0.06) | 0.004 |
1000 m run | 0.02 (0.00, 0.05) | 0.072 | 0.04 (0.01, 0.06) | 0.002 |
Pull-up | −0.04(−0.06, −0.02) | 0.001 | −0.03 (−0.06, −0.01) | 0.002 |
Vital capacity | −0.01 (−0.04, 0.01) | 0.245 | −0.02 (-0.05, 0.00) | 0.040 |
Duration of Smartphone Use | ||||
---|---|---|---|---|
Crude Beta | pa | Adjusted Beta b | pa | |
50 m sprint | 0.00 (−0.03, 0.03) c | 0.777 | 0.01 (−0.02, 0.04) | 0.466 |
800 m run | 0.04 (0.01, 0.07) | 0.004 | 0.05 (0.02, 0.08) | <0.001 |
Sit-up | 0.00 (−0.02, 0.04) | 0.650 | −0.01 (−0.04, 0.02) | 0.491 |
Vital capacity | 0.03 (−0.01, 0.05) | 0.098 | 0.00 (−0.03, 0.03) | 0.965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Cui, Y.; Gong, Q.; Huang, C.; Guo, F. The Association of Smartphone Usage Duration with Physical Fitness among Chinese University Students. Int. J. Environ. Res. Public Health 2022, 19, 572. https://doi.org/10.3390/ijerph19010572
Li W, Cui Y, Gong Q, Huang C, Guo F. The Association of Smartphone Usage Duration with Physical Fitness among Chinese University Students. International Journal of Environmental Research and Public Health. 2022; 19(1):572. https://doi.org/10.3390/ijerph19010572
Chicago/Turabian StyleLi, Wang, Yufei Cui, Qiang Gong, Cong Huang, and Feng Guo. 2022. "The Association of Smartphone Usage Duration with Physical Fitness among Chinese University Students" International Journal of Environmental Research and Public Health 19, no. 1: 572. https://doi.org/10.3390/ijerph19010572
APA StyleLi, W., Cui, Y., Gong, Q., Huang, C., & Guo, F. (2022). The Association of Smartphone Usage Duration with Physical Fitness among Chinese University Students. International Journal of Environmental Research and Public Health, 19(1), 572. https://doi.org/10.3390/ijerph19010572