Vaccinations, Mobility and COVID-19 Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables and Sources
2.2. Country Classification
2.3. Structural Equation Modeling
3. Empirical Results
3.1. Results of Structural Equation Modeling
3.2. Results of Granger Causality Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Category | Countries | Quantity |
---|---|---|
PP group | Bangladesh, Cambodia, Estonia, Fiji, France, Germany, India, Laos, Malaysia, Mauritius, Nepal, Norway, Singapore, Sri Lanka, Switzerland, Thailand, Trinidad and Tobago, Turkey, Uganda, Uruguay | 20 |
PN group | Chile, Jordan, Vietnam | 3 |
NP group | Australia, Austria, Barbados, Belarus, Belgium, Belize, Bolivia, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Colombia, Costa Rica, Croatia, Czechia, Denmark, Dominican Republic, Egypt, El Salvador, Finland, Georgia, Ghana, Greece, Guatemala, Hungary, Ireland, Israel, Italy, Japan, Kuwait, Kyrgyzstan, Latvia, Lebanon, Lithuania, Luxembourg, Malta, Mexico, Mongolia, Morocco, Mozambique, Myanmar, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Oman, Panama, Papua New Guinea, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Slovakia, Slovenia, South Korea, Spain, Sweden, Ukraine, United Kingdom, United States, Venezuela, Zambia, Zimbabwe | 72 |
NN group | Afghanistan, Angola, Antigua and Barbuda, Argentina, Bahrain, Benin, Botswana, Cameroon, Cape Verde, Ecuador, Gabon, Honduras, Indonesia, Iraq, Jamaica, Kazakhstan, Kenya, Libya, Mali, Namibia, Pakistan, Paraguay, Tajikistan, Togo, United Arab Emirates, Yemen | 26 |
References
- COVID-19 Map. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2021. Available online: https://coronavirus.jhu.edu/map.html (accessed on 17 November 2021).
- Zimmer, C.; Corum, J.; Wee, S.-L. Coronavirus Vaccine Tracker. 2021. Available online: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html (accessed on 17 November 2021).
- Statistics and Research–Coronavirus (COVID-19) Vaccinations. 2021. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 17 November 2021).
- Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.; et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020, 369, 806–811. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Vasileiou, E.; Simpson, C.R.; Shi, T.; Kerr, S.; Agrawal, U.; Akbari, A.; Bedston, S.; Beggs, J.; Bradley, D.; Chuter, A.; et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: A national prospective cohort study. Lancet 2021, 397, 1646–1657. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA COVID-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Corchado-Garcia, J.; Puyraimond-Zemmour, D.; Hughes, T.; Cristea-Platon, T.; Lenehan, P.; Pawlowski, C.; Bade, S.; O’Horo, J.C.; Gores, G.J.; Williams, A.W.; et al. Real-world effectiveness of Ad26.COV2.S adenoviral vector vaccine for COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Hyams, C.; Marlow, R.; Maseko, Z.; King, J.; Ward, L.; Fox, K.; Heath, R.; Tuner, A.; Friedrich, Z.; Morrison, L.; et al. Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: A test-negative, case-control study. Lancet Infect. Dis. 2021, 21, 1539–1548. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef]
- Wagner, A.L.; Sheinfeld, G.S.; Boulton, M.L.; Glover, B.A.; Morenoff, J.D. Effect of vaccine effectiveness and safety on COVID-19 vaccine acceptance in Detroit, Michigan, July 2020. Hum. Vaccines Immunother. 2021, 17, 2940–2945. [Google Scholar] [CrossRef] [PubMed]
- Iboi, E.A.; Ngonghala, N.C.; Gumel, B.A. Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.? Infect. Dis. Model. 2020, 5, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Hill, E.M.; Tildesley, M.J.; Dyson, L.; Keeling, M.J. Vaccination and non-pharmaceutical interventions for COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2021, 21, 793–802. [Google Scholar] [CrossRef]
- Sandmann, F.G.; Davies, N.G.; Vassall, A.; Edmunds, W.J.; Jit, M. The potential health and economic value of SARS-CoV-2 vaccination alongside physical distancing in the UK: A transmission model-based future scenario analysis and economic evaluation. Lancet Infect. Dis. 2021, 21, 962–974. [Google Scholar] [CrossRef]
- Shen, M.; Zu, J.; Fairley, C.K.; Pagán, J.A.; An, L.; Du, Z.; Guo, Y.; Rong, L.; Xiao, Y.; Zhuang, G.; et al. Projected COVID-19 epidemic in the United States in the context of the effectiveness of a potential vaccine and implications for social distancing and face mask use. Vaccine 2021, 39, 2295–2302. [Google Scholar] [CrossRef]
- Das, P.; Upadhyay, R.K.; Misra, A.K.; Rihan, F.A.; Ghosh, D. Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination. Nonlinear Dyn. 2021, 106, 1213–1227. [Google Scholar] [CrossRef]
- Singanayagam, A.; Hakki, S.; Dunning, J.; Madon, J.K.; Crone, A.M.; Koycheva, A.; Derqui-Fernandez, N.; Barnett, L.K.; Whitfield, G.M.; Varro, R.; et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study. Lancet Infect. Dis. 2021, in press. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Bagozzi, R.P. Structural equation models in experimental research. J. Mark. Res. 1977, 14, 209–226. [Google Scholar] [CrossRef]
- Keller, S.D.; Ware, J.E., Jr.; Bentler, P.M.; Aaronson, N.L.; Alonso, J.; Apolone, G.; Bjorner, J.B.; Brazier, J.; Bullinger, M.; Kaasa, S.; et al. Use of structural equation modeling to test the construct validity of the SF-36 health survey in ten countries: Results from the IQOLA project. J. Clin. Epidemiol. 1998, 51, 1179–1188. [Google Scholar] [CrossRef]
- Pearl, J. Graphs, causality, and structural equation models. Sociol. Methods Res. 1998, 27, 226–284. [Google Scholar] [CrossRef]
- Bagozzi, R.P. Measurement and meaning in information systems and organizational research: Methodological and philosophical foundations. MIS Quart. 2011, 35, 261–292. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 2012, 40, 8–34. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, L.; Yang, Y. Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China. J. Public Econ. 2020, 191, 104272. [Google Scholar] [CrossRef]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore y Piontti, A.; Mu, K.; Rossi, L.; Sun, K.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Mullins, T.L.K.; Zimet, G.D.; Rosenthal, S.L.; Morrow, C.; Ding, L.; Shew, M.; Fortenberry, J.D.; Bernstein, D.I.; Kahn, J.A. Adolescent perceptions of risk and need for safer sexual behaviors after first human papillomavirus vaccination. Arch. Pediatr. Adolesc. Med. 2012, 166, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Ratanasiripong, N.T. Human papillomavirus vaccine increases high-risk sexual behaviors: A myth or valid concern. J. Sch. Nurs. 2014, 30, 456–463. [Google Scholar] [CrossRef]
- Community Mobility Reports. 2021. Available online: https://www.google.com/covid19/mobility/ (accessed on 17 November 2021).
- BBC News. 2021. Available online: https://www.bbc.com/news/world-australia-58182419 (accessed on 13 September 2021).
- New Zealand Government. History of the COVID-19 Alert System. 2021. Available online: https://covid19.govt.nz/alert-levels-and-updates/history-of-the-covid-19-alert-system/ (accessed on 13 September 2021).
- Farge, E.; Revill, J. WHO Recommends Two Doses of Pfizer COVID-19 Vaccine within 21–28 Days. Available online: https://www.reuters.com/article/us-health-coronavirus-who/who-recommends-two-doses-of-pfizer-covid-19-vaccine-within-21-28-days-idUSKBN29A25G (accessed on 30 August 2021).
- Li, P.; Fu, J.; Li, K.; Liu, J.; Wang, H.; Liu, L.; Chen, Y.; Zhang, Y.; Liu, S.; Tang, A.; et al. Transmission of COVID-19 in the terminal stages of the incubation period: A familial cluster. Int. J. Infect. Dis. 2020, 96, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Faasse, K.; Newby, J. Public perceptions of COVID-19 in Australia: Perceived risk, knowledge, health-protective behaviors, and vaccine intentions. Front. Psychol. 2020, 11, 551004. [Google Scholar] [CrossRef] [PubMed]
- Caserotti, M.; Girardi, P.; Rubaltelli, E.; Tasso, A.; Lotto, L.; Gavaruzzi, T. Associations of COVID-19 risk perception with vaccine hesitancy over time for Italian residents. Soc. Sci. Med. 2021, 272, 113688. [Google Scholar] [CrossRef] [PubMed]
- Rayani, M.; Rayani, S.; Najafi-Sharjabad, F. COVID-19-related knowledge, risk perception, information seeking, and adherence to preventive behaviors among undergraduate students, southern Iran. Environ. Sci. Pollut. Res. Int. 2021, 28, 59953–59962. [Google Scholar] [CrossRef]
- Alhinai, Z.A.; Elsidig, N. Countries with similar COVID-19 vaccination rates yet divergent outcomes: Are all vaccines created equal? Int. J. Infect. Dis. 2021, 110, 258–260. [Google Scholar] [CrossRef]
- Gu, F.; Wu, Y.; Hu, X.; Guo, J.; Yang, X.; Zhao, X. The role of conspiracy theories in the spread of COVID-19 across the United States. Int. J. Environ. Res. Public Health 2021, 18, 3843. [Google Scholar] [CrossRef]
Group | Model | Total_Vaccinations | Mobility | Moderator |
---|---|---|---|---|
(a) PP Group | I | 0.0016 *** (p = 0.000) | ||
II | 439.7427 *** (p = 0.000) | |||
III | 0.0023 *** (p = 0.000) | 79.1345 *** (p = 0.000) | −0.0001 *** (p = 0.000) | |
(b) PN Group | I | −0.0003 *** (p = 0.000) | ||
II | 119.6760 *** (p = 0.000) | |||
III | −0.0004 *** (p = 0.000) | 75.1117 *** (p = 0.000) | −0.0001 *** (p = 0.000) | |
(c) NN Group | I | 0.0003 *** (p = 0.000) | ||
II | −25.5850 *** (p = 0.000) | |||
III | 0.0004 *** (p = 0.000) | −15.1933 *** (p = 0.000) | 0.0001 *** (p = 0.000) | |
(d) Global Level | I | 0.0002 *** (p = 0.000) | ||
II | 154.0744 *** (p = 0.000) | |||
III | 0.0002 *** (p = 0.000) | 165.3865 *** (p = 0.000) | 0.000056 *** (p = 0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Deng, C.; Gu, F. Vaccinations, Mobility and COVID-19 Transmission. Int. J. Environ. Res. Public Health 2022, 19, 97. https://doi.org/10.3390/ijerph19010097
Guo J, Deng C, Gu F. Vaccinations, Mobility and COVID-19 Transmission. International Journal of Environmental Research and Public Health. 2022; 19(1):97. https://doi.org/10.3390/ijerph19010097
Chicago/Turabian StyleGuo, Jianfeng, Chao Deng, and Fu Gu. 2022. "Vaccinations, Mobility and COVID-19 Transmission" International Journal of Environmental Research and Public Health 19, no. 1: 97. https://doi.org/10.3390/ijerph19010097
APA StyleGuo, J., Deng, C., & Gu, F. (2022). Vaccinations, Mobility and COVID-19 Transmission. International Journal of Environmental Research and Public Health, 19(1), 97. https://doi.org/10.3390/ijerph19010097