Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Procedure
2.4. Outcome Measures
2.4.1. 10 m Walking Test
2.4.2. TUG Test
2.4.3. BBS
2.5. Intervention
2.5.1. Robot-Assisted Gait Training
2.5.2. Regular Gait Training
2.5.3. Neuro-Development Treatment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, D.; Liu, Y.; Wang, J.; Xiao, Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. J. Adv. Nurs. 2021, 77, 3255–3273. [Google Scholar] [CrossRef] [PubMed]
- Srinayanti, Y.; Widianti, W.; Andriani, D.; Firdaus, F.A.; Setiawan, H. Range of Motion Exercise to Improve Muscle Strength among Stroke Patients: A Literature Review. Int. J. Nurs. Health Serv. 2021, 4, 332–343. [Google Scholar] [CrossRef]
- Park, S.; Jeong, H.; Kim, B. Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study. J. Int. Acad. Phys. Ther. Res. 2021, 12, 2272–2278. [Google Scholar] [CrossRef]
- Beyaert, C.; Vasa, R.; Frykberg, G. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. Neurophysiol. 2015, 45, 335–355. [Google Scholar] [CrossRef]
- Drużbicki, M.; Przysada, G.; Guzik, A.; Brzozowska-Magoń, A.; Kołodziej, K.; Wolan-Nieroda, A.; Majewska, J.; Kwolek, A. The Efficacy of Gait Training Using a Body Weight Support Treadmill and Visual Biofeedback in Patients with Subacute Stroke: A Randomized Controlled Trial. BioMed Res. Int. 2018, 2018, 3812602. [Google Scholar] [CrossRef] [Green Version]
- Mehrholz, J.; Pohl, M.; Elsner, B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst. Rev. 2014, 2014, CD002840. [Google Scholar] [CrossRef]
- Mikołajewska, E. Normalized gait parameters in NDT-Bobath post-stroke gait rehabilitation. Open Med. 2012, 7, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Mikołajewska, E. Bobath and traditional approaches in post-stroke gait rehabilitation in adults. Biomed. Hum. Kinet. 2017, 9, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Xie, S.Q.; Das, R.; Zhu, G.L. Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Med. Eng. Phys. 2014, 36, 1555–1566. [Google Scholar] [CrossRef]
- Høyer, E.; Jahnsen, R.; Stanghelle, J.K.; Strand, L.I. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: A randomized controlled trial. Disabil. Rehabil. 2012, 34, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Harvey, L.A.; Thomas, S.; Elsner, B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 2017, 55, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Labas, M.P.; Triche, E.W.; Lo, A.C. Combination of Robot-Assisted and Conventional Body-Weight–Supported Treadmill Training Improves Gait in Persons with Multiple Sclerosis: A Pilot Study. J. Neurol. Phys. Ther. 2013, 37, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKay-Lyons, M.; McDonald, A.; Matheson, J.; Eskes, G.; Klus, M.-A. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: A randomized controlled trial. Neurorehabilit. Neural Repair 2013, 27, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kao, P.-C.; Kim, S.H.; Stegall, P.; Zanotto, D.; Higginson, J.S.; Agrawal, S.K.; Scholz, J.P. Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.; Lucas, L.; Thrasher, T.A. Robot-Assisted Gait Training for Patients with Hemiparesis Due to Stroke. Top. Stroke Rehabil. 2011, 18, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; You, J.S.H. A Review of Robot-Assisted Gait Training in Stroke Patients. Brain Neurorehabilit. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.S.; Yang, H.S.; Jung, S.; Kang, C.S.; Jang, S.; Kim, D.H. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: A randomized controlled pilot trial. Medicine 2018, 97, e11792. [Google Scholar] [CrossRef]
- Low, K. Robot-assisted gait rehabilitation: From exoskeletons to gait systems. In Proceedings of the 2011 Defense Science Research Conference and Expo (DSR), Singapore, 3–5 August 2011; pp. 1–10. [Google Scholar]
- Federici, S.; Meloni, F.; Bracalenti, M.; De Filippis, M.L. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation 2015, 37, 321–340. [Google Scholar] [CrossRef]
- Cho, D.Y.; Park, S.-W.; Lee, M.J.; Park, D.S.; Kim, E.J. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: Focus on dependent ambulators. J. Phys. Ther. Sci. 2015, 27, 3053–3057. [Google Scholar] [CrossRef] [Green Version]
- Chung, B.P.H. Effectiveness of robotic-assisted gait training in stroke rehabilitation: A retrospective matched control study. Hong Kong Physiother. J. 2017, 36, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, D.K.; Nelson, M.; Brooks, D.; Salbach, N.M. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top. Stroke Rehabil. 2020, 27, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Bang, D.-H.; Shin, W.-S.; Noh, H.-J.; Song, M.-S. Effect of Unstable Surface Training on Walking Ability in Stroke Patients. J. Phys. Ther. Sci. 2014, 26, 1689–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molad, R.; Alouche, S.R.; Demers, M.; Levin, M.F. Development of a Comprehensive Outcome Measure for Motor Coordination, Step 2: Reliability and Construct Validity in Chronic Stroke Patients. Neurorehabilit. Neural Repair 2021, 35, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Al-Eisa, E.S.; Anwer, S.; Sarkar, B. Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke. BMC Neurol. 2018, 18, 141. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-K.; Jeong, H.-J.; Lee, J.-S. Effect of respiratory exercise on pulmonary function, balance, and gait in patients with chronic stroke. J. Phys. Ther. Sci. 2018, 30, 984–987. [Google Scholar] [CrossRef] [Green Version]
- Cha, P.H.-G.; Shin, M.P.Y.-J.; Kim, P.M.-K. Effects of the Bad Ragaz Ring Method on muscle activation of the lower limbs and balance ability in chronic stroke: A randomised controlled trial. Hong Kong Physiother. J. 2017, 37, 39–45. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Jang, H.-Y.; Lee, J.-H.; Lee, S.-M. The Analysis on the Reliability and Validity of Korean-Version Balance Assessment Tools. Korean Soc. Phys. Med. 2017, 12, 139–146. [Google Scholar] [CrossRef]
- Gjelsvik, B.E.B.; Syre, L. The Bobath Concept in Adult Neurology; Thieme: Stuttgart, Germany, 2008. [Google Scholar]
- Peurala, S.H.; Tarkka, I.M.; Pitkänen, K.; Sivenius, J. The Effectiveness of Body Weight-Supported Gait Training and Floor Walking in Patients with Chronic Stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.; Sajin, A.; Fisher, I.; Neeb, M.; Shochina, M.; Katz-Leurer, M.; Meiner, Z. The Effectiveness of Locomotor Therapy Using Robotic-Assisted Gait Training in Subacute Stroke Patients: A Randomized Controlled Trial. PM&R 2009, 1, 516–523. [Google Scholar] [CrossRef]
- Sincheol, H. Effects of Robot-Assisted Gait Training with Visual Feedback on Gait, Balance and Balance Confidence in Chronic Stroke Patients; Gachon University Graduate School: Incheon, Korea, 2015. [Google Scholar]
- Barela, A.M.F.; De Freitas, P.B.; Celestino, M.; Camargo, M.R.; Barela, J.A. Ground reaction forces during level ground walking with body weight unloading. Braz. J. Phys. Ther. 2014, 18, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbeau, H.; Visintin, M. Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 2003, 84, 1458–1465. [Google Scholar] [CrossRef]
- Bonnyaud, C.; Pradon, D.; Bensmail, D.; Roche, N. Dynamic Stability and Risk of Tripping during the Timed Up and Go Test in Hemiparetic and Healthy Subjects. PLoS ONE 2015, 10, e0140317. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.; Laíns, J.; Pereira, A.I.; Nunes, R.; Caldas, J.; Amaral, C.; Pires, S.; Costa, A.; Alves, P.; Moreira, M.; et al. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys. 2007, 43, 499–504. [Google Scholar]
- Schwartz, I.; Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015, 43, 1260–1269. [Google Scholar] [CrossRef]
- Ismail, S.I.; Nunome, H.; Marzuki, F.F.; Su’Aidi, I. The Influence of Additional Surface on Force Platform’s Ground Reaction Force Data During Walking and Running. Am. J. Sports Sci. 2018, 6, 78. [Google Scholar] [CrossRef]
- Boehm, W.L. Lower-Limb Neuromuscular Coordination Post-Stroke: Evidence of Force Misdirection and Development of an Associated Therapeutic Device; The University of Wisconsin-Madison: Madison, WI, USA, 2017. [Google Scholar]
Robot A (n = 6) | Robot B (n = 6) | Robot C (n = 6) | Non-Robot (n = 6) | p | |
---|---|---|---|---|---|
Age (years) | 52.7 ± 15.4 | 54.7 ± 12.3 | 59.5 ± 15.3 | 61.4 ± 9.7 | 0.463 |
Sex, Females, n (%) * | 2 (33.3) | 4 (66.7) | 3 (50.0) | 3 (50.0) | 0.760 |
Height (cm) | 163.2 3 ± 7.6 | 168.8 ± 9.4 | 163.7 ± 3.8 | 165.7 ± 7.9 | 0.555 |
Weight (kg) | 57.5 ± 11.7 | 65.8 ± 4.1 | 61.7 ± 6.7 | 68.8 ± 10.3 | 0.153 |
Affected side, left, n (%) * | 3 (50.0) | 3 (50.0) | 3 (50.0) | 3 (50.0) | 0.999 |
Onset (months) | 20.2 ± 10.5 | 16.3 ± 9.5 | 16.8 ± 8.6 | 16.8 ± 6.9 | 0.834 |
K-MMSE (scores) | 25.8 ± 1.2 | 26.5 ± 1.4 | 25.3 ± 1.2 | 25.8 ± 0.8 | 0.397 |
Robot A (n = 6) | Robot B (n = 6) | Robot C (n = 6) | Non-Robot (n = 6) | F(p) | ||
---|---|---|---|---|---|---|
10MWT | Pre-test | 24.7 ± 4.7 | 33.8 ± 6.6 | 32.5 ±7.1 | 22.3 ± 3.8 | 21.93 (0.000) (A > B > C > N) |
Post-test | 15.5 ± 3.6 | 27.1 ± 7.6 | 28.6 ± 8.5 | 21.6 ± 4.4 | ||
△ pre-post | 9.2 ± 1.9 ** | 6.7 ± 2.0 ** | 3.9 ± 1.9 * | 0.7 ± 1.9 | ||
TUG | Pre-test | 25.4 ± 3.6 | 33.4 ± 7.4 | 35.6 ± 7.8 | 25.8 ± 4.9 | 30.62 (0.000) (A > B, C, N) |
Post-test | 17.4 ± 2.9 | 31.4 ± 8.5 | 34.8 ± 8.8 | 24.8 ± 4.8 | ||
△ pre-post | 8.0 ± 1.8 ** | 1.9 ± 1.8 * | 0.8 ±1.6 | 0.4 ± 1.0 | ||
BBS | Pre-test | 33.3 ± 3.1 | 36.7 ± 3.3 | 34.0 ± 4.3 | 34.3 ± 2.7 | 17.32 (0.000) (A > B, C, N) |
Post-test | 37.2 ± 2.8 | 36.8 ± 3.8 | 33.7 ± 4.2 | 34.5 ± 3.3 | ||
△ pre-post | 3.8 ± 1.3 ** | 0.2 ± 1.2 | 0.3 ± 1.2 | 0.2 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. Int. J. Environ. Res. Public Health 2022, 19, 5814. https://doi.org/10.3390/ijerph19105814
Choi W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. International Journal of Environmental Research and Public Health. 2022; 19(10):5814. https://doi.org/10.3390/ijerph19105814
Chicago/Turabian StyleChoi, Wonho. 2022. "Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients" International Journal of Environmental Research and Public Health 19, no. 10: 5814. https://doi.org/10.3390/ijerph19105814
APA StyleChoi, W. (2022). Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. International Journal of Environmental Research and Public Health, 19(10), 5814. https://doi.org/10.3390/ijerph19105814