Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey
Abstract
:1. Introduction
2. Literature Review
2.1. Air Purifiers and Health
2.2. Air Pollution from Cooking Activities and Health
3. Materials and Methods
3.1. Data
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Explanatory Variables
3.2.3. Control Variables
3.3. Model
4. Results and Discussion
4.1. The Effect of Indoor Air Purification and Self-Rated Health
4.2. Heterogeneity Analysis
4.3. Robustness Check
4.3.1. Changing the Methods of the Estimation Model
4.3.2. Changing the Sample
4.3.3. Replacing the Dependent Variable
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Health_self | Health_object | |||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |||
(i) | (ii) | (i) | (ii) | ||||
Air_purifier | 0.129 * | 0.126 | 0.125 * | 0.290 ** | 0.355 | 0.285 ** | 0.080 |
(0.069) | (0.140) | (0.072) | (0.141) | (0.402) | (0.141) | (0.171) | |
HHarea | 0.0005 *** | 0.0005 ** | 0.0005 *** | 0.0007 *** | 0.0010 * | 0.0006 *** | 0.0005 |
(0.0001) | (0.0002) | (0.0001) | (0.0002) | (0.0006) | (0.0002) | (0.0003) | |
Fuel | −0.073 * | −0.022 | −0.092 ** | −0.201 ** | −0.097 | −0.214 ** | 0.109 |
(0.040) | (0.067) | (0.043) | (0.081) | (0.181) | (0.084) | (0.112) | |
Lighting | 0.201 | 0.236 | 0.181 | 0.337 | 0.843 | 0.227 | −0.065 |
(0.208) | (0.328) | (0.228) | (0.403) | (0.625) | (0.407) | (0.622) | |
Gender | −0.007 | 0.043 | −0.020 | −0.030 | −0.062 | −0.037 | 0.116 |
(0.029) | (0.052) | (0.031) | (0.059) | (0.141) | (0.060) | (0.075) | |
Age | −0.011 *** | −0.011 *** | −0.011 *** | −0.022 *** | −0.033 *** | −0.021 *** | −0.030 *** |
(0.001) | (0.002) | (0.001) | (0.002) | (0.006) | (0.002) | (0.003) | |
Married | 0.109 *** | 0.091 | 0.116 *** | 0.233 *** | 0.395 ** | 0.220 *** | −0.051 |
(0.041) | (0.068) | (0.044) | (0.083) | (0.183) | (0.085) | (0.109) | |
Size | −0.024 *** | −0.017 * | −0.025 *** | −0.023 * | −0.002 | −0.024 * | 0.005 |
(0.006) | (0.010) | (0.006) | (0.013) | (0.030) | (0.013) | (0.016) | |
Edprim | 0.005 | 0.077 | −0.018 | 0.042 | 0.197 | 0.027 | 0.052 |
(0.030) | (0.050) | (0.033) | (0.064) | (0.145) | (0.065) | (0.081) | |
Edmid | 0.117 *** | 0.152 ** | 0.104 ** | 0.207 *** | 0.328 * | 0.193 ** | 0.060 |
(0.038) | (0.067) | (0.040) | (0.078) | (0.183) | (0.079) | (0.100) | |
Edhigh | 0.225 *** | 0.159 ** | 0.229 *** | 0.399 *** | 0.236 | 0.401 *** | −0.033 |
(0.043) | (0.079) | (0.045) | (0.085) | (0.228) | (0.086) | (0.109) | |
Work | 0.105 *** | 0.214 *** | 0.079 *** | 0.222 *** | 0.483 *** | 0.195 *** | 0.157 ** |
(0.027) | (0.049) | (0.029) | (0.054) | (0.126) | (0.055) | (0.075) | |
Income | 1.11 × 10−6 * | 7.23 ×10−6 *** | 5.83 × 10−7 | 1.89 × 10−6 | 2.44 × 10−5 *** | 1.22 × 10−6 | 4.03 × 10−6 |
(5.79 × 10−7) | (1.98 × 10−6) | (6.98 × 10−7) | (1.30 × 10−6) | (5.75 × 10−6) | (1.28 × 10−6) | (2.52 × 10−6) | |
Smoke | −0.017 | −0.029 | −0.014 | −0.035 | −0.080 | −0.031 | −0.119 ** |
(0.026) | (0.048) | (0.030) | (0.054) | (0.123) | (0.055) | (0.058) | |
Drink_f | 0.001 | 0.014 | -0.002 | -0.005 | 0.006 | -0.005 | −0.012 |
(0.008) | (0.013) | (0.008) | (0.015) | (0.036) | (0.015) | (0.020) | |
Activities | 0.160 *** | 0.021 | 0.189 *** | 0.283 *** | −0.102 | 0.307 *** | −0.019 |
(0.035) | (0.063) | (0.037) | (0.071) | (0.165) | (0.071) | (0.090) | |
PHS | −0.203 *** | −0.295 *** | −0.171 ** | −0.196 | −0.677 ** | −0.136 | −1.278 *** |
(0.061) | (0.094) | (0.067) | (0.144) | (0.269) | (0.145) | (0.117) | |
MI | −0.134 * | −0.083 | −0.146 * | −0.299 ** | −0.153 | −0.305 ** | 0.040 |
(0.078) | (0.145) | (0.082) | (0.150) | (0.371) | (0.151) | (0.209) | |
City | 0.001 | −0.055 | 0.004 | −0.072 | −0.398 *** | −0.057 | −0.446 *** |
(0.029) | (0.056) | (0.032) | (0.059) | (0.148) | (0.060) | (0.082) | |
URBAN | 3.44 × 10−5 | −0.0003 | 5.43 × 10−5 | −0.0001 | 0.0023 | −0.0005 | 0.0065 ** |
(0.001) | (0.002) | (0.001) | (0.002) | (0.005) | (0.002) | (0.003) | |
SANITATION | 0.031 *** | 0.032 ** | 0.031 *** | 0.032 ** | 0.050 | 0.032 ** | −0.037 * |
(0.008) | (0.014) | (0.008) | (0.015) | (0.037) | (0.016) | (0.021) | |
/cut1 | −1.675 *** | −3.315 *** | |||||
(0.240) | (0.476) | ||||||
/cut2 | −0.179 | −0.543 | |||||
(0.239) | (0.473) | ||||||
Constant | 1.454 *** | 0.237 | 2.167 ** | 0.710 | 3.423 *** | ||
(0.400) | (0.262) | (0.868) | (0.478) | 0.720 | |||
Observations | 9612 | 9622 | 9622 | 6923 | 6923 | 6923 | 9612 |
Log likelihood | −7935.31 | –7913.31 | −5500.91 | –5478.02 | −3297.69 | ||
Pseudo R2 | 0.031 | 0.025 | 0.030 | 0.061 |
References
- Bandehali, S.; Miri, T.; Onyeaka, H.; Kumar, P. Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere 2021, 12, e473. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zheng, S.; Ke, H. The new smart city programme: Evaluating the effect of the Internet of Energy on air quality in China. Sci. Total Environ. 2020, 714, 136380. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, Y.; Ma, S. Links of urban green space on environmental satisfaction: A spatial and temporarily varying approach. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Ma, S.; Li, L.; Ke, H.; Zheng, Y. Environmental Protection, Industrial Structure and Urbanization: Spatiotemporal Evidence from Beijing-Tianjin-Hebei, China. Sustainability 2022, 14, 795. [Google Scholar] [CrossRef]
- Li, L.; Ma, S.; Zheng, Y.; Xiao, X. Integrated Regional Development: Comparison of Urban Agglomeration Policies in China. Land Use Policy 2022, 114, 105939. [Google Scholar] [CrossRef]
- IQAir. The 2020 World Air Quality Report. 2021. Available online: https://www.iqair.cn/cn-en/world-air-quality-report (accessed on 5 February 2022).
- EPA, Indoor Air Pollution and Health. Report Series No. 104. 2013. Available online: https://ifbic51962026b2174191spvvxfnkpb66o6x9vfiac.eds.tju.edu.cn/pubs/reports/research/health/IndoorAirPollutionandHealth.pdf (accessed on 5 February 2022).
- Torpy, F.R.; Irga, P.J.; Burchett, M.D. Profiling Indoor Plants for the Amelioration of High CO2 concentrations. Urban For. Urban Green. 2014, 13, 227–233. [Google Scholar] [CrossRef]
- Hinwood, A.; Farrar, D.; Berko, H.; Runnion, T.; Galbally, I.; Weeks, I.; Gillet, R.; Powell, J.; Glass, D.; Denison, L.; et al. Technical Report No. 6: BTEX Personal Exposure Monitoring in Four Australian Cities; Environment Australia: Sydney, Australia, 2003; pp. 1–62. [Google Scholar]
- Vasile, V.; Petran, H.; Dima, A.; Petcu, C. Indoor Air Quality—A Key Element of the Energy Performance of the Buildings. Energy Procedia 2016, 96, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Mannan, M.; Al-Ghamdi, S.G. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. Int. J. Environ. Res. Public Health 2021, 18, e3276. [Google Scholar] [CrossRef]
- Cho, H.M.; Lee, J.; Wi, S.; Kim, S. Field Study on Indoor Air Quality of Wood Remodeled Welfare Facilities for Physical and Psychological Benefits. J. Clean. Prod. 2019, 233, 197–208. [Google Scholar] [CrossRef]
- Cooper, E.; Wang, Y.; Stamp, S.; Burman, E.; Mumovic, D. Use of Portable Air Purifiers in Homes: Operating Behaviour, Effect on Indoor PM2.5 and Perceived Indoor Air Quality. Build. Environ. 2021, 191, e107621. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, N.; Lu, N.; Chen, J.; Ding, Y. The Sources and Health Impacts of Indoor Air Pollution. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Guo, M.; Du, C.; Li, B.; Yao, R.; Tang, Y.; Jiang, Y.; Liu, H.; Su, H.; Zhou, Y.; Wang, L.; et al. Reducing Particulates in Indoor Air Can Improve the Circulation and Cardiorespiratory Health of Old People: A Randomized, Double-Blind Crossover Trial of Air Filtration. Sci. Total Environ. 2021, 798, e4149248. [Google Scholar] [CrossRef] [PubMed]
- Hsu, N.-Y.; Lee, C.C.; Wang, J.-Y.; Li, Y.; Chang, H.W.; Chen, C.Y.; Bornehag, C.G.; Wu, P.C.; Sundell, J.; Su, H.J. Predicted Risk of Childhood Allergy, Asthma, and Reported Symptoms Using Measured Phthalate Exposure in Dust and Urine. Indoor Air 2012, 22, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Hun, D.E.; Corsi, R.; Morandi, M.T.; Siegel, J.A. Formaldehyde in Residences: Long-Term Indoor Concentrations and Influencing Factors. Indoor Air 2010, 20, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Jacobs, D.; Mitchell, C.; Miller, D.; Karol Meryl, H. Improving Indoor Environmental Quality for Public Health: Impediments and Policy Recommendations. Environ. Health Perspect. 2007, 115, 953–957. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Liu, X.; Yan, M.; Wu, Y.; Liu, Z. Characteristics of Carbonyls and Volatile Organic Compounds (VOCs) in Residences in Beijing, China. Front. Env. Sci. Eng. 2016, 10, 73–84. [Google Scholar] [CrossRef]
- Schwela, P.D.; Kotzias, D. Pollution, Indoor Air. In Encyclopedia of Toxicology, 2nd ed.; Elsevier: New York, NY, USA, 2005; Volume 3, pp. 475–489. [Google Scholar]
- Moya, T.A.; van den Dobbelsteen, A.; Ottelé, M.; Bluyssen, P.M. A Review of Green Systems Within the Indoor Environment. Indoor Built Environ. 2018, 28, 298–309. [Google Scholar] [CrossRef]
- Irga, P.J.; Pettit, T.; Irga, R.F.; Paull, N.J.; Douglas, A.N.J.; Torpy, F.R. Does Plant Species Selection in Functional Active Green Walls Influence VOC Phytoremediation Efficiency? Environ. Sci. Pollut. Res. 2019, 26, 12851–12858. [Google Scholar] [CrossRef] [Green Version]
- Brągoszewska, E.; Bogacka, M.; Pikoń, K. Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study. Atmosphere 2019, 10, e742. [Google Scholar] [CrossRef] [Green Version]
- Kaunelienė, V.; Prasauskas, T.; Krugly, E.; Stasiulaitienė, I.; Čiužas, D.; Šeduikytė, L.; Martuzevičius, D. Indoor Air Quality in Low Energy Residential Buildings in Lithuania. Build. Environ. 2016, 108, 63–72. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A Review of Air Filtration Technologies for Sustainable and Healthy Building Ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Rounaghi, G.; Mohammadzadeh Kakhki, R.; Eshghi, H. Efficient Transport of Lead(II) Cations in Natural Water Using a Liquid Membrane System with Dicyclohexano-18-Crown-6 as Carrier. Arab J. Chem. 2017, 10, S339–S346. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Improving Indoor Air Quality, Health and Performance Within Environments Where People Live, Travel, Learn and Work. Atmos. Environ. 2019, 200, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Deng, Q. The Basic Roles of Indoor Plants in Human Health and Comfort. Environ. Sci. Pollut. Res. 2018, 25, 36087–36101. [Google Scholar] [CrossRef] [PubMed]
- Orita, I.; Yurimoto, H.; Hirai, R.; Kawarabayasi, Y.; Sakai, Y.; Kato, N. The Archaeon Pyrococcus Horikoshii Possesses a Bifunctional Enzyme for Formaldehyde Fixation via the Ribulose Monophosphate Pathway. J. Bacteriol. 2005, 187, 3636–3642. [Google Scholar] [CrossRef] [Green Version]
- Kil, M.; Kim, K.; Cho, J.; Park, C. Formaldehyde Gas Removal Effects and Physiological Responses of Fatsia Japonica and Epipremnum Aureum According to Various Light Intensity. Korean J. Hortic. Sci. Technol. 2008, 26, 189–196. [Google Scholar]
- Sawada, A.; Oyabu, T. Purification Characteristics of Pothos for Airborne Chemicals in Growing Conditions and its Evaluation. Atmos. Environ. 2008, 42, 594–602. [Google Scholar] [CrossRef]
- Dela Cruz, M.; Christensen, J.H.; Thomsen, J.D.; Müller, R. Can Ornamental Potted Plants Remove Volatile Organic Compounds from Indoor Air? A Review. Environ. Sci. Pollut. Res. 2014, 21, 13909–13928. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Nguyen, T.N.; Van Tran, V.; Hur, J.; Kim, I.T.; Park, D.; Lee, Y.-C. Photocatalytic Materials for Indoor Air Purification Systems: An Updated Mini-Review. Environ. Technol. Innov. 2021, 22, e101471. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Xue, L.; Wu, S.; Wang, B.; Li, G.; Huang, J.; Guo, X. Effects of Air Purification of Indoor PM2.5 on the Cardiorespiratory Biomarkers in Young Healthy Adults. Indoor Air 2021, 31, 1125–1133. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable Air Purification: Review of Impacts on Indoor Air Quality and Health. Sci. Total Environ. 2021, 766, e142585. [Google Scholar] [CrossRef]
- Park, H.-K.; Cheng, K.-C.; Tetteh, A.O.; Hildemann, L.M.; Nadeau, K.C. Effectiveness of Air Purifier on Health Outcomes and Indoor Particles in Homes of Children With Allergic Diseases in Fresno, California: A Pilot Study. J. Asthma 2017, 54, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bai, L.; He, Z.; Liu, X.; Xu, X. The Effect of Air Purifiers on the Reduction in Indoor PM2.5 Concentrations and Population Health Improvement. Sustain. Cities Soc. 2021, 75, e103298. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, B.; Wang, J.; Zhao, B. Health Benefits and Cost of Using Air Purifiers to Reduce Exposure to Ambient Fine Particulate Pollution in China. J. Hazard. Mater. 2021, 414, e125540. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.; Wang, Y.; Stamp, S.; Nijsen, T.; de Graaf, P.; Hofman, J.; Inki, T.; Driessen, R.; Liebmann, J.; Geven, I.T.M.; et al. Why Do People Use Portable Air Purifiers? Evidence from Occupant Surveys and Air Quality Monitoring in Homes in Three European Cities. Build. Res. Inf. 2022, 50, 213–229. [Google Scholar] [CrossRef]
- Dong, W.; Liu, S.; Chu, M.; Zhao, B.; Yang, D.; Chen, C.; Miller, M.R.; Loh, M.; Xu, J.; Chi, R.; et al. Different Cardiorespiratory Effects of Indoor Air Pollution Intervention With Ionization Air Purifier: Findings from a Randomized, Double-Blind Crossover Study Among School Children in Beijing. Environ. Pollut. 2019, 254, e113054. [Google Scholar] [CrossRef]
- Park, K.H.; Sim, D.W.; Lee, S.C.; Moon, S.; Choe, E.; Shin, H.; Kim, S.R.; Lee, J.-H.; Park, H.H.; Huh, D.; et al. Effects of Air Purifiers on Patients with Allergic Rhinitis: A Multicenter, Randomized, Double-Blind, and Placebo-Controlled Study. Yonsei Med. J. 2020, 61, 689–697. [Google Scholar] [CrossRef]
- Allen, R.W.; Barn, P. Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: A Review of the Recent Literature. Curr. Environ. Health Rep. 2020, 7, 424–440. [Google Scholar] [CrossRef]
- Tzoutzas, I.; Maltezou, H.C.; Barmparesos, N.; Tasios, P.; Efthymiou, C.; Assimakopoulos, M.N.; Tseroni, M.; Vorou, R.; Tzermpos, F.; Antoniadou, M.; et al. Indoor Air Quality Evaluation Using Mechanical Ventilation and Portable Air Purifiers in an Academic Dentistry Clinic during the COVID-19 Pandemic in Greece. Int. J. Environ. Res. Public Health 2021, 18, e8886. [Google Scholar] [CrossRef]
- Xia, X.; Chan, K.H.; Lam, K.B.H.; Qiu, H.; Li, Z.; Yim, S.H.L.; Ho, K.-F. Effectiveness of Indoor Air Purification Intervention in Improving Cardiovascular Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Total Environ. 2021, 789, e147882. [Google Scholar] [CrossRef]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A Review of Indoor Air Treatment Technologies. Rev. Environ. Sci. Bio/Technol. 2015, 14, 499–522. [Google Scholar] [CrossRef]
- Yoda, Y.; Tamura, K.; Adachi, S.; Otani, N.; Nakayama, S.F.; Shima, M. Effects of the Use of Air Purifier on Indoor Environment and Respiratory System Among Healthy Adults. Int. J. Environ. Res. Public Health 2020, 17, e3687. [Google Scholar] [CrossRef] [PubMed]
- Alshawa, A.; Russell, A.R.; Nizkorodov, S.A. Kinetic Analysis of Competition between Aerosol Particle Removal and Generation by Ionization Air Purifiers. Environ. Sci. Technol. 2007, 41, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Shen, F.; Zhou, F.; Zhu, T.; Zheng, Y.; Yang, Y.; Sun, Y.; Li, X.; Wu, Y.; Fu, P.; et al. Indoor Air Filtration Could Lead to Increased Airborne Endotoxin Levels. Environ. Int. 2020, 142, e105878. [Google Scholar] [CrossRef] [PubMed]
- Korhan, O. Indoor Environment and Health; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/books/8529 (accessed on 20 February 2022).
- Balakrishnan, K.; Ghosh, S.; Ganguli, B.; Sambandam, S.; Bruce, N.; Barnes, D.F.; Smith, K.R. State and National Household Concentrations of PM2.5 from Solid Cookfuel Use: Results from Measurements and Modeling in India for Estimation of the Global Burden of Disease. Environ. Health 2013, 12, e77. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Jahan, S.A.; Kabir, E. A Review of Diseases Associated with Household Air Pollution Due to the Use of Biomass Fuels. J. Hazard. Mater. 2011, 192, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.H.; Suk, C.W.; Lo, H.L.; Huang, R.Y.; Enarson, D.A.; Chiang, C.Y. Indoor Air Pollution from Solid Fuel and Tuberculosis: A Systematic Review and Meta-Analysis. Int. J. Tuberc. Lung Dis. 2014, 18, 613–621. [Google Scholar] [CrossRef]
- Perez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory Health Effects of Indoor Air Pollution. Int. J. Tuberc. Lung Dis. 2010, 14, 1079–1086. [Google Scholar]
- Lee, S.C.; Li, W.-M.; Ao, C.-H. Investigation of Indoor Air Quality at Residential Homes in Hong Kong—Case Study. Atmos. Environ. 2002, 36, 225–237. [Google Scholar] [CrossRef]
- Yang, W.; Sohn, J.; Kim, J.; Son, B.; Park, J. Indoor Air Quality Investigation According to Age of the School Buildings in Korea. J. Environ. Manag. 2009, 90, 348–354. [Google Scholar] [CrossRef]
- Funk, W.; Pleil, J.; Pedit, J.; Boundy, M.; Yeatts, K.; Nash, D.; Trent, C.; El-Sadig, M.; Davidson, C.; Leith, D. Indoor Air Quality in the United Arab Emirates. J. Environ. Prot. 2014, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, I.L.; Shrestha, S. Indoor Air Pollution from Biomass Fuels and Respiratory Health of the Exposed Population in Nepalese Households. Int. J. Occup. Environ. Health 2005, 11, 150–160. [Google Scholar] [CrossRef]
- WHO. Public Health, Environmental and Social Determinants of Health (PHE). 2014. Available online: https://www.who.int/phe/news/march2016/en/ (accessed on 20 February 2022).
- Sood, A. Indoor Fuel Exposure and the Lung in Both Developing and Developed Countries: An Update. Clin. Chest Med. 2012, 33, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Dong, D.; Ding, Y. The Impact of Dietary Knowledge on Health: Evidence from the China Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2021, 18, e3736. [Google Scholar] [CrossRef]
- Hu, L.-C. Marital Status and Self-Rated Health in China: A Longitudinal Analysis. Popul. Res. Policy Rev. 2021, 40, 499–531. [Google Scholar] [CrossRef]
- Zhang, J. The Impact of Water Quality on Health: Evidence from the Drinking Water Infrastructure Program in Rural China. J. Health Econ. 2012, 31, 122–134. [Google Scholar] [CrossRef]
- Van de Poel, E.; O’Donnell, O.; Van Doorslaer, E. Is There a Health Penalty of China’s Rapid Urbanization? Health Econ. 2012, 21, 367–385. [Google Scholar] [CrossRef]
- Feng, J.; Xie, Q.; Zhang, X. Trade Liberalization and the Health of Working-Age Adults: Evidence from China. World Dev. 2021, 139, e105344. [Google Scholar] [CrossRef]
- Miao, J.; Wu, X. Urbanization, Socioeconomic Status and Health Disparity in China. Health Place 2016, 42, 87–95. [Google Scholar] [CrossRef]
- Fan, L.; Liu, J.; Habibov, N.N. A Multilevel Logit Estimation on the Determinants of Utilization of Preventive Health Care and Healthy Lifestyle Practice in China. World Med. Health Policy 2015, 7, 309–328. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhu, S.; Zhang, T.; Wang, D.; Hu, J.; Gao, J.; Zhou, Z. Explaining Income-Related Inequalities in Dietary Knowledge: Evidence from the China Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2020, 17, e532. [Google Scholar] [CrossRef] [Green Version]
- Mueller, V.; Gray, C. Heat and Adult Health in China. Popul. Environ. 2018, 40, 1–26. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Q.; Zhang, B. Understanding Healthcare Utilization in China Through the Andersen Behavioral Model: Review of Evidence from the China Health and Nutrition Survey. Risk Manag. Healthc. Policy 2019, 12, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Jones-Smith, J.C.; Popkin, B.M. Understanding Community Context and Adult Health Changes in China: Development of an Urbanicity Scale. Soc. Sci. Medic. 2010, 71, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Mckelvey, R.D.; Zavoina, W. A statistical model for the analysis of ordinal level dependent variables. J. Math. Sociol. 1975, 4, 103–120. [Google Scholar] [CrossRef]
- Mccullagh, P. Regression models for ordinal data. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1980, 42, 109–127. [Google Scholar] [CrossRef]
- Brant, R. Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics 1990, 46, 1171–1178. [Google Scholar] [CrossRef]
- Riva, K.; Allen-Taylor, L.; Schupmann, W.D.; Mphele, S.; Moshashane, N.; Lowenthal, E.D. Prevalence and Predictors of Alcohol and Drug Use Among Secondary School Students in Botswana: A Cross-Sectional Study. BMC Public Health 2018, 18, e1396. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Konishi, Y.; Glewwe, P. Does Information on Health Status Lead to a Healthier Lifestyle? Evidence from China on the Effect of Hypertension Diagnosis on Food Consumption. J. Health Econ. 2013, 32, 367–385. [Google Scholar] [CrossRef]
- Wu, X.; Hu, X.; Qi, W.; Marinova, D.; Shi, X. Risk Knowledge, Product Knowledge, and Brand Benefits for Purchase Intentions: Experiences with Air Purifiers Against City Smog in China. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1930–1951. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, Y.; Lu, L. Dynamical Prediction Model of Consumers’ Purchase Intentions Regarding Anti-Smog Products During Smog Risk: Taking the Information Flow Perspective. Phys. A: Stat. Mech. Appl. 2021, 563, e125427. [Google Scholar] [CrossRef]
- Yuan, F.; Wu, M.; Li, W.; Zhang, H. The Effect of Self-Perceived Stress, the History of Smoking and Drinking on Weight Status in Chinese Adults—Evidence from the 2015 China Health and Nutrition Survey: A Cross-Sectional Study in Chongqing, China. Medicine 2020, 99, e21159. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Han, W. Exploring the Intergenerational Persistence of Health Behaviour: An Empirical Study of Smoking from China. BMC Public Health 2017, 17, e557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sereenonchai, S.; Arunrat, N.; Kamnoonwatana, D. Risk Perception on Haze Pollution and Willingness to Pay for Self-Protection and Haze Management in Chiang Mai Province, Northern Thailand. Atmosphere 2020, 11, 600. [Google Scholar] [CrossRef]
- Wei, W.; Wu, Y. Willingness to pay to control PM2.5 pollution in Jing-Jin-Ji Region, China. Appl. Econ. Lett. 2016, 24, 753–761. [Google Scholar] [CrossRef]
Variables | Definition | N | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Health_self | The residents’ self-rated health status: 1 = Bad; 2 = Fair; 3 = Good | 9612 | 2.506 | 0.601 | 1 | 3 |
Air_purifier | Number of air purifiers owned by the household | 9612 | 0.038 | 0.192 | 0 | 1 |
Indoor living conditions | ||||||
HHarea | Housing size (area) | 9612 | 141.550 | 115.621 | 15 | 960 |
Fuel | 1 = Household uses solid fuels; 0 = Other fuels | 9612 | 0.114 | 0.318 | 0 | 1 |
Lighting | Type of lighting generally used by household | 9612 | 0.997 | 0.057 | 0 | 1 |
Demographics | ||||||
Age | Age of the person (years) | 9612 | 49.697 | 15.009 | 15 | 94 |
Gender | 1 = Male; 0 = Female | 9612 | 0.509 | 0.500 | 0 | 1 |
Married | 1 = Yes; 0 = No | 9612 | 0.900 | 0.300 | 0 | 1 |
Size | Number of household members | 9612 | 4.434 | 2.264 | 1 | 17 |
Socioeconomic status | ||||||
Edprim | 1 = Lower middle school degree; 0 = Other | 9612 | 0.558 | 0.497 | 0 | 1 |
Edmid | 1 = Upper middle school degree or vocational degree; 0 = Other | 9612 | 0.268 | 0.443 | 0 | 1 |
Edhigh | 1 = University degree or higher; 0 = Other | 9612 | 0.171 | 0.377 | 0 | 1 |
Work | 1 = Yes; 0 = No | 9612 | 0.508 | 0.500 | 0 | 1 |
Income (yuan) | Per capita annual household income | 9612 | 18,108.470 | 23,207.910 | 0 | 666,667 |
Individual health beliefs | ||||||
Smoke | 1 = Yes; 0 = No | 9612 | 0.287 | 0.529 | 0 | 9 |
Drink_f | 5 = almost every day; 4 = 3–4 times a week; 3 = once or twice a week; 2 = once or twice a month; 1 = no more than once a month; 0 = Never | 9612 | 0.920 | 1.623 | 0 | 5 |
Activities | 1 = Participation in physical activities; 0 = No | 9612 | 0.160 | 0.367 | 0 | 1 |
PHS | 1 = Utilization of preventive health care (PHS); 0 = No | 9612 | 0.041 | 0.198 | 0 | 1 |
MI | 1 = Participation in medical insurance (MI); 0 = No | 9612 | 0.973 | 0.163 | 0 | 1 |
Community-enabling factors | ||||||
City | 1 = Household in an urban area; 0 = Household in a rural area | 9612 | 0.422 | 0.494 | 0 | 1 |
URBAN | Urbanization index | 9612 | 75.544 | 16.746 | 31.458 | 104.400 |
SANI | Sanitation score | 9612 | 7.552 | 2.236 | 0.3 | 10.000 |
Variables | Health_self | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Air_purifier | 0.507 *** | 0.476 *** | 0.237 * | 0.211 * |
(0.112) | (0.113) | (0.117) | (0.117) | |
HHarea | 0.001 *** | 0.001 *** | 0.001 *** | |
(0.0002) | (0.0002) | (0.0002) | ||
Fuel | −0.368 *** | −0.200 *** | −0.128 * | |
(0.062) | (0.064) | (0.067) | ||
Lighting | 0.392 | 0.342 | 0.310 | |
(0.351) | (0.354) | (0.353) | ||
Gender | −0.024 | −0.019 | ||
(0.048) | (0.049) | |||
Age | −0.017 *** | −0.018 *** | ||
(0.002) | (0.002) | |||
Married | 0.172 ** | 0.183 *** | ||
(0.068) | (0.068) | |||
Size | −0.044 *** | −0.041 *** | ||
(0.010) | (0.010) | |||
Edprim | -0.0003 | −0.001 | ||
(0.051) | (0.051) | |||
Edmid | 0.214 *** | 0.186 *** | ||
(0.064) | (0.064) | |||
Edhigh | 0.427 *** | 0.381 *** | ||
(0.071) | (0.072) | |||
Work | 0.149 *** | 0.159 *** | ||
(0.046) | (0.046) | |||
Income | 1.93 × 10−6 ** | 1.59 × 10−6 | ||
(1.02 × 10−6) | (1.05 × 10−6) | |||
Smoke | −0.036 | −0.025 | ||
(0.045) | (0.046) | |||
Drink_f | 0.0012 | 0.0002 | ||
(0.013) | (0.013) | |||
Activities | 0.298 *** | 0.287 *** | ||
(0.059) | (0.059) | |||
PHS | −0.308 *** | −0.326 *** | ||
(0.104) | (0.104) | |||
MI | −0.260 ** | −0.244 * | ||
(0.131) | (0.131) | |||
City | 0.008 | |||
(0.050) | ||||
URBAN | 0.0001 | |||
(0.002) | ||||
SANITATION | 0.051 *** | |||
(0.013) | ||||
/cut1 | −2.819 *** | −2.400 *** | −3.376 *** | −3.008 *** |
(0.045) | (0.354) | (0.398) | (0.410) | |
/cut2 | −0.226 *** | 0.201 | −0.711 * | −0.337 |
(0.021) | (0.352) | (0.395) | (0.408) | |
Observations | 9612 | 9612 | 9612 | 9612 |
Log likelihood | −8280.79 | −8157.79 | −7955.16 | −7940.50 |
Pseudo R2 | 0.001 | 0.004 | 0.030 | 0.031 |
Variables | Health_self | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | |||||
(i) | (ii) | (i) | (ii) | (i) | (ii) | (i) | (ii) | |
Air_purifier | 0.575 ** | 0.503 *** | 0.546 * | 0.472 *** | 0.306 | 0.228 * | 0.311 | 0.212 * |
(0.297) | (0.113) | (0.298) | (0.114) | (0.305) | (0.118) | (0.306) | (0.118) | |
HHarea | 0.001 * | 0.001 *** | 0.001 ** | 0.001 *** | 0.001** | 0.001 *** | ||
(0.0004) | (0.0002) | (0.0005) | (0.0002) | (0.0005) | (0.0002) | |||
Fuel | −0.319 ** | −0.375 *** | −0.100 | −0.213 *** | −0.032 | −0.143 ** | ||
(0.126) | (0.065) | (0.130) | (0.067) | (0.136) | (0.069) | |||
Lighting | 0.540 | 0.360 | 0.412 | 0.311 | 0.396 | 0.279 | ||
(0.610) | (0.363) | (0.622) | (0.367) | (0.621) | (0.367) | |||
Gender | 0.090 | −0.036 | 0.093 | −0.032 | ||||
(0.105) | (0.050) | (0.106) | (0.050) | |||||
Age | −0.022 *** | −0.016 *** | −0.023 *** | −0.017 *** | ||||
(0.004) | (0.002) | (0.004) | (0.002) | |||||
Married | 0.153 | 0.173 ** | 0.163 | 0.183 *** | ||||
(0.139) | (0.070) | (0.139) | (0.070) | |||||
Size | −0.035 * | −0.044 *** | −0.032 | −0.040 *** | ||||
(0.020) | (0.010) | (0.021) | (0.010) | |||||
Edprim | 0.161 | −0.027 | 0.157 | −0.028 | ||||
(0.105) | (0.052) | (0.105) | (0.052) | |||||
Edmid | 0.332 ** | 0.192 *** | 0.304 ** | 0.165 ** | ||||
(0.143) | (0.065) | (0.143) | (0.065) | |||||
Edhigh | 0.408 ** | 0.421 *** | 0.371 ** | 0.376 *** | ||||
(0.175) | (0.072) | (0.179) | (0.073) | |||||
Work | 0.446 *** | 0.117 ** | 0.452 *** | 0.127 *** | ||||
(0.105) | (0.047) | (0.106) | (0.047) | |||||
Income | 1.43 × 10−5 *** | 1.35 × 10−6 | 1.53 × 10−5 *** | 1.02 × 10−6 | ||||
(3.67 × 10−6) | (1.01 × 10−6) | (4.02 × 10−6) | (1.04 × 10−6) | |||||
Smoke | −0.072 | −0.030 | −0.057 | −0.020 | ||||
(0.093) | (0.046) | (0.094) | (0.047) | |||||
Drink_f | 0.030 | -0.002 | 0.029 | -0.003 | ||||
(0.029) | (0.013) | (0.029) | (0.013) | |||||
Activities | 0.051 | 0.316*** | 0.047 | 0.306 *** | ||||
(0.133) | (0.060) | (0.133) | (0.060) | |||||
PHS | −0.566 *** | −0.258 ** | −0.586 *** | −0.275 *** | ||||
(0.181) | (0.106) | (0.181) | (0.107) | |||||
MI | −0.225 | −0.259 * | −0.219 | −0.244 * | ||||
(0.314) | (0.133) | (0.315) | (0.133) | |||||
City | −0.105 | 0.009 | ||||||
(0.114) | (0.051) | |||||||
URBAN | −0.0009 | 0.0001 | ||||||
(0.004) | (0.002) | |||||||
SANITATION | 0.067 ** | 0.050 *** | ||||||
(0.029) | (0.013) | |||||||
Constant | 2.818 *** | 0.227 *** | 2.207 *** | −0.166 | 3.085 *** | 0.753 * | 2.700 *** | 0.391 |
(0.045) | (0.021) | (0.611) | (0.364) | (0.746) | (0.409) | (0.771) | (0.421) | |
Observations | 9612 | 9612 | 9612 | 9612 | 9612 | 9612 | 9612 | 9612 |
Log likelihood | –8180.75 | –8157.38 | –7928.59 | –7913.57 | ||||
Pseudo R2 | 0.001 | 0.004 | 0.032 | 0.034 |
Group | Model | Coefficient | SD | Covariates | Observations | Log Likelihood | Pseudo R2 | |
---|---|---|---|---|---|---|---|---|
(1) | Urban | (i) | 0.345 | 0.357 | Yes | 4059 | –3279.09 | 0.030 |
(ii) | 0.147 | 0.137 | Yes | 4059 | ||||
Rural | (i) | 0.171 | 0.604 | Yes | 5553 | –4598.70 | 0.043 | |
(ii) | 0.417 * | 0.239 | Yes | 5553 | ||||
(2) | High education | (i) | 0.244 | 0.418 | Yes | 3279 | –2454.42 | 0.032 |
(ii) | 0.277 * | 0.152 | Yes | 3279 | ||||
Low education | (i) | 0.448 | 0.468 | Yes | 6333 | –5443.18 | 0.026 | |
(ii) | 0.183 | 0.189 | Yes | 6333 | ||||
(3) | Work | (i) | 0.165 | 0.484 | Yes | 4887 | –3748.94 | 0.032 |
(ii) | 0.083 | 0.158 | Yes | 4887 | ||||
Nowork | (i) | 0.460 | 0.401 | Yes | 4725 | –4131.19 | 0.031 | |
(ii) | 0.373 ** | 0.179 | Yes | 4725 | ||||
(4) | Smoke | (i) | −0.326 | 0.503 | Yes | 2665 | –2202.03 | 0.039 |
(ii) | −0.064 | 0.248 | Yes | 2665 | ||||
Nosmoke | (i) | 0.613 | 0.394 | Yes | 6937 | –5680.13 | 0.035 | |
(ii) | 0.218 ** | 0.136 | Yes | 6937 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zheng, Y.; Ma, S. Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2022, 19, 6316. https://doi.org/10.3390/ijerph19106316
Li L, Zheng Y, Ma S. Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey. International Journal of Environmental Research and Public Health. 2022; 19(10):6316. https://doi.org/10.3390/ijerph19106316
Chicago/Turabian StyleLi, Lei, Yilin Zheng, and Shaojun Ma. 2022. "Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey" International Journal of Environmental Research and Public Health 19, no. 10: 6316. https://doi.org/10.3390/ijerph19106316
APA StyleLi, L., Zheng, Y., & Ma, S. (2022). Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey. International Journal of Environmental Research and Public Health, 19(10), 6316. https://doi.org/10.3390/ijerph19106316