Impacts of an Exercise Intervention on the Health of Pancreatic Beta-Cells: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Exercise-Related Effects of Mice Pancreatic Beta-Cells
3.1.1. Exercise Enhanced Beta-Cells Function in Healthy Mice
3.1.2. Exercise-Induced Hyperinsulinism (EIHI)
3.1.3. Paternal Obesity
3.1.4. Monosodium L-Glutamate-Obesity
3.1.5. High-Fat-Diet-Induced Obesity
3.1.6. Leptin-Deficient-Induced Obesity
3.1.7. Prediabetes
3.1.8. Type 1 Diabetes Mellitus
3.2. Exercise-Related Effects on Rats’ Pancreatic Beta-Cells
3.2.1. Effect of Exercise on Aging-Related Beta-Cells Impairment
3.2.2. Effect of Exercise on Healthy Rats’ Beta-Cells
3.2.3. Effect of Exercise on Prediabetic Beta-Cell Impairments
3.2.4. Effect of Exercise on T1DM Rats Beta-Cell Impairments
3.2.5. Effect of Exercise on T2DM Rats’ Beta-Cells
3.2.6. Effect of Exercise on Obesity Rats Beta-Cells
3.2.7. Effect of Exercise on the Onset of Pancreatic Beta-Cells
3.2.8. Effect of Exercise on Pancreatic Beta-Cells of Metabolic Syndrome Rats
3.3. Effect of Exercise on Human Pancreatic Beta-Cells
3.3.1. Effect of Regular Exercise on Islet Beta-Cells in Healthy People
3.3.2. Effect of Regular Exercise on Islet Beta-Cells in Athletes
3.3.3. Effect of Exercise on Islet Beta-Cells in Aging
3.3.4. Effect of Exercise on Islet Beta-Cells in Prediabetes
3.3.5. Effect of Physical Activity on Islet Beta-Cells in Type 1 Diabetes Mellitus
3.3.6. Effect of Exercise on Islet Beta-Cells in Type 2 Diabetes Mellitus
4. Discussion
4.1. Limitations of Exercise Intervention in Rats and Mice Models
4.2. Comparison of Exercise Interventions in Rats, Mice, and Humans
4.2.1. Aerobic Exercise
4.2.2. Resistance Training
4.2.3. Combined Exercise
4.3. Comparison of Exercise Intensity for Beta-Cell Function between Various Diseases
4.4. Limitations of Exercise Intervention in Diabetic Patients
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Diabetes mellitus and its complications in India. Nat. Rev. Endocrinol. 2016, 12, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108086. [Google Scholar] [CrossRef] [Green Version]
- Rorsman, P.; Ashcroft, F.M. Pancreatic beta-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018, 98, 117–214. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, E.S.; Dryden, D.M.; Vandermeer, B.; Ha, C.; Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 543–551. [Google Scholar] [CrossRef]
- Yardley, J.E.; Hay, J.; Abou-Setta, A.M.; Marks, S.D.; McGavock, J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res. Clin. Pract. 2014, 106, 393–400. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biankin, S.A.; Jenkins, A.B.; Campbell, L.V.; Choi, K.L.; Forrest, Q.G.; Chisholm, D.J. Target-seeking behavior of plasma glucose with exercise in type 1 diabetes. Diabetes Care 2003, 26, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, T.H.; Abraham, G.; Schiffrin, A.; Leiter, L.A.; Marliss, E.B. Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care 1988, 11, 311–317. [Google Scholar] [CrossRef]
- Curran, M.; Drayson, M.T.; Andrews, R.C.; Zoppi, C.; Barlow, J.P.; Solomon, T.P.J.; Narendran, P. The benefits of physical exercise for the health of the pancreatic beta-cell: A review of the evidence. Exp. Physiol. 2020, 105, 579–589. [Google Scholar] [CrossRef]
- Bronczek, G.A.; Soares, G.M.; de Barros, J.F.; Vettorazzi, J.F.; Kurauti, M.A.; Marconato-Júnior, E.; Zangerolamo, L.; Marmentini, C.; Boschero, A.C.; Costa-Júnior, J.M. Resistance exercise training improves glucose homeostasis by enhancing insulin secretion in C57BL/6 mice. Sci. Rep. 2021, 11, 8574. [Google Scholar] [CrossRef] [PubMed]
- Pullen, T.J.; Sylow, L.; Sun, G.; Halestrap, A.P.; Richter, E.A.; Rutter, G.A. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise. Diabetes 2012, 61, 1719–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, N.O.; Lane, M.; Sandeman, L.; Owens, J.A.; Fullston, T. An Exercise-Only Intervention in Obese Fathers Restores Glucose and Insulin Regulation in Conjunction with the Rescue of Pancreatic Islet Cell Morphology and MicroRNA Expression in Male Offspring. Nutrients 2017, 9, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Alves-Wagner, A.B.; Stanford, K.I.; Prince, N.B.; So, K.; Mul, J.D.; Dirice, E.; Hirshman, M.F.; Kulkarni, R.N.; Goodyear, L.J. Maternal and paternal exercise regulate offspring metabolic health and beta cell phenotype. BMJ Open Diabetes Res. Care 2020, 8, e000890. [Google Scholar] [CrossRef] [Green Version]
- Andreazzi, A.E.; Scomparin, D.X.; Mesquita, F.P.; Balbo, S.L.; Gravena, C.; De Oliveira, J.C.; Rinaldi, W.; Garcia, R.M.; Grassiolli, S.; Mathias, P.C. Swimming exercise at weaning improves glycemic control and inhibits the onset of monosodium L-glutamate-obesity in mice. J. Endocrinol. 2009, 201, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Miranda, R.A.; Branco, R.C.; Gravena, C.; Barella, L.F.; da Silva Franco, C.C.; Andreazzi, A.E.; de Oliveira, J.C.; Picinato, M.C.; de Freitas Mathias, P.C. Swim training of monosodium L-glutamate-obese mice improves the impaired insulin receptor tyrosine phosphorylation in pancreatic islets. Endocrine 2013, 43, 571–578. [Google Scholar] [CrossRef]
- Bittencourt, A.; Schroeder, H.T.; Porto, R.R.; de Lemos Muller, C.H.; Krause, M.; Homem de Bittencourt, P.I., Jr. Heat shock response to exercise in pancreatic islets of obese mice. Biochimie 2020, 168, 28–40. [Google Scholar] [CrossRef]
- Boschetti, D.; Muller, C.R.; Américo, A.L.V.; Vecchiatto, B.; Martucci, L.F.; Pereira, R.O.; Oliveira, C.P.; Fiorino, P.; Evangelista, F.S.; Azevedo-Martins, A.K. Aerobic Physical Exercise Improves Exercise Tolerance and Fasting Glycemia Independent of Body Weight Change in Obese Females. Front. Endocrinol. 2021, 12, 772914. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Tian, H.; Pei, Y.; Lu, Y.; Han, X.; Liu, Y.; Zhong, W.; Sun, B.; Fang, F.; et al. The DPP-4 inhibitor MK0626 and exercise protect islet function in early pre-diabetic kkay mice. Peptides 2013, 49, 91–99. [Google Scholar] [CrossRef]
- Paula, F.M.; Leite, N.C.; Vanzela, E.C.; Kurauti, M.A.; Freitas-Dias, R.; Carneiro, E.M.; Boschero, A.C.; Zoppi, C.C. Exercise increases pancreatic beta-cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB J. 2015, 29, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Oharomari, L.K.; de Moraes, C.; Navarro, A.M. Exercise Training but not Curcumin Supplementation Decreases Immune Cell Infiltration in the Pancreatic Islets of a Genetically Susceptible Model of Type 1 Diabetes. Sports Med. Open 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.H.; Farmer, K.; Windscheffel, J.; Yost, K.; Power, M.; Wright, D.E.; Stehno-Bittel, L. Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Exp. Diabetes Res. 2011, 2011, 481427. [Google Scholar] [CrossRef] [PubMed]
- Villaça, C.B.P.; de Paula, C.C.; de Oliveira, C.C.; Vilas-Boas, E.A.; Dos Santos-Silva, J.C.; de Oliveira, S.F.; Abdulkader, F.; Ferreira, S.M.; Ortis, F. Beneficial effects of physical exercise for β-cell maintenance in a type 1 diabetes mellitus animal model. Exp. Physiol. 2021, 106, 1482–1497. [Google Scholar] [CrossRef] [PubMed]
- Kurauti, M.A.; Costa-Júnior, J.M.; Ferreira, S.M.; Dos Santos, G.J.; Protzek, A.O.; Nardelli, T.R.; de Rezende, L.F.; Boschero, A.C. Acute exercise restores insulin clearance in diet-induced obese mice. J. Endocrinol. 2016, 229, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. S1), S46–S60. [CrossRef] [PubMed] [Green Version]
- Reaven, E.P.; Reaven, G.M. Structure and function changes in the endocrine pancreas of aging rats with reference to the modulating effects of exercise and caloric restriction. J. Clin. Investig. 1981, 68, 75–84. [Google Scholar] [CrossRef]
- Villela, F.G.; Curi, R.; Carpinelli, A.R. Metabolic mechanisms involved in the impaired insulin secretion in pancreatic islets isolated from exercised and fasted rats. Physiol. Behav. 1992, 52, 723–726. [Google Scholar] [CrossRef]
- Koranyi, L.I.; Bourey, R.E.; Slentz, C.A.; Holloszy, J.O.; Permutt, M.A. Coordinate reduction of rat pancreatic islet glucokinase and proinsulin mRNA by exercise training. Diabetes 1991, 40, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Lamontagne, J.; Masiello, P.; Marcil, M.; Delghingaro-Augusto, V.; Burelle, Y.; Prentki, M.; Nolan, C.J. Circulating lipids are lowered but pancreatic islet lipid metabolism and insulin secretion are unaltered in exercise-trained female rats. Appl. Physiol. Nutr. Metab. 2007, 32, 241–248. [Google Scholar] [CrossRef]
- Galbo, H.; Hedeskov, C.J.; Capito, K.; Vinten, J. The effect of physical training on insulin secretion of rat pancreatic islets. Acta Physiol. Scand. 1981, 111, 75–79. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Paiva, M.F.; Mota, C.A.; Ribeiro, C.; Leme, J.A.; Luciano, E.; Mello, M.A. Exercise at anaerobic threshold intensity and insulin secretion by isolated pancreatic islets of rats. Islets 2010, 2, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Fluckey, J.D.; Kraemer, W.J.; Farrell, P.A. Pancreatic islet insulin secretion is increased after resistance exercise in rats. J. Appl. Physiol. 1995, 79, 1100–1105. [Google Scholar] [CrossRef]
- Calegari, V.C.; Zoppi, C.C.; Rezende, L.F.; Silveira, L.R.; Carneiro, E.M.; Boschero, A.C. Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets. J. Endocrinol. 2011, 208, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Calegari, V.C.; Abrantes, J.L.; Silveira, L.R.; Paula, F.M.; Costa, J.M., Jr.; Rafacho, A.; Velloso, L.A.; Carneiro, E.M.; Bosqueiro, J.R.; Boschero, A.C.; et al. Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets. J. Appl. Physiol. 2012, 112, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.A.; Caston, A.L.; Rodd, D.; Engdahl, J. Effect of training on insulin secretion from single pancreatic beta cells. Med. Sci. Sports Exerc. 1992, 24, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Urano, Y.; Sakurai, T.; Kizaki, T.; Hitomi, Y.; Ohno, H.; Izawa, T. Enhanced expression of neuronal nitric oxide synthase in islets of exercise-trained rats. Biochem. Biophys. Res. Commun. 2003, 312, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.N.; Proenca, A.R.; Chimin, P.; Marcal, A.C.; Bessa-Lima, F.; Carvalho, C.R. Physical exercise and pancreatic islets: Acute and chronic actions on insulin secretion. Islets 2012, 4, 296–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, M.; Manabe, Y.; Yamada, K.; Furuichi, Y.; Hosaka, M.; Fujii, N.L. Chronic exercise enhances insulin secretion ability of pancreatic islets without change in insulin content in non-diabetic rats. Biochem. Biophys. Res. Commun. 2013, 430, 676–682. [Google Scholar] [CrossRef]
- Jimenez-Maldonado, A.; de Alvarez-Buylla, E.R.; Montero, S.; Melnikov, V.; Castro-Rodriguez, E.; Gamboa-Dominguez, A.; Rodriguez-Hernandez, A.; Lemus, M.; Murguia, J.M. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS ONE 2014, 9, e115177. [Google Scholar] [CrossRef]
- Pold, R.; Jensen, L.S.; Jessen, N.; Buhl, E.S.; Schmitz, O.; Flyvbjerg, A.; Fujii, N.; Goodyear, L.J.; Gotfredsen, C.F.; Brand, C.L.; et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 2005, 54, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Gregersen, S.; Kruhoeffer, M.; Agger, A.; Xiao, J.; Jeppesen, P.B.; Orntoft, T.; Ploug, T.; Galbo, H.; Hermansen, K. Prevention of hyperglycemia in Zucker diabetic fatty rats by exercise training: Effects on gene expression in insulin-sensitive tissues determined by high-density oligonucleotide microarray analysis. Metabolism 2005, 54, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Macedo, N.C.D.; Iessi, I.L.; Gallego, F.Q.; Netto, A.O.; Sinzato, Y.K.; Volpato, G.T.; Zambrano, E.; Damasceno, D.C. Swimming Program on Mildly Diabetic Rats in Pregnancy. Reprod. Sci. 2021, 28, 2223–2235. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.W.; Murray, M.R.; Hall, K.E.; Noble, E.G.; Melling, C.W. Morphological assessment of pancreatic islet hormone content following aerobic exercise training in rats with poorly controlled Type 1 diabetes mellitus. Islets 2014, 6, e29221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbari, A.; Azarbayjani, M.A.; Yusof, A.; Halim Mokhtar, A.; Akbarzadeh, S.; Ibrahim, M.Y.; Tarverdizadeh, B.; Farzadinia, P.; Hajiaghaee, R.; Dehghan, F. In vivo and in vitro evaluation of the effects of Urtica dioica and swimming activity on diabetic factors and pancreatic beta cells. BMC Complementary Altern. Med. 2016, 16, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, K.; Shi, K.; Mizuno, A.; Sano, T.; Ishida, K.; Yoshimoto, S. Effects of difference in amount of exercise training on prevention of diabetes mellitus in the Otsuka-Long-Evans-Tokushima fatty rats, a model of spontaneous non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 1994, 23, 147–154. [Google Scholar] [CrossRef]
- Shima, K.; Zhu, M.; Noma, Y.; Mizuno, A.; Murakami, T.; Sano, T.; Kuwajima, M. Exercise training in Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus: Effects on the B-cell mass, insulin content and fibrosis in the pancreas. Diabetes Res. Clin. Pract. 1997, 35, 11–19. [Google Scholar] [CrossRef]
- Piao, S.J.; Kim, S.H.; Suh, Y.J.; Hong, S.B.; Ahn, S.H.; Seo, D.H.; Park, I.S.; Nam, M. Beneficial Effects of Aerobic Exercise Training Combined with Rosiglitazone on Glucose Metabolism in Otsuka Long Evans Tokushima Fatty Rats. Diabetes Metab. J. 2017, 41, 474–485. [Google Scholar] [CrossRef]
- Park, S.; Hong, S.M.; Lee, J.E.; Sung, S.R. Exercise improves glucose homeostasis that has been impaired by a high-fat diet by potentiating pancreatic beta-cell function and mass through IRS2 in diabetic rats. J. Appl. Physiol. 2007, 103, 1764–1771. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Hong, S.M.; Sung, S.R. Exendin-4 and exercise promotes beta-cell function and mass through IRS2 induction in islets of diabetic rats. Life Sci. 2008, 82, 503–511. [Google Scholar] [CrossRef]
- Kiraly, M.A.; Bates, H.E.; Yue, J.T.; Goche-Montes, D.; Fediuc, S.; Park, E.; Matthews, S.G.; Vranic, M.; Riddell, M.C. Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: The effects of stress and non-volitional exercise. Metabolism 2007, 56, 732–744. [Google Scholar] [CrossRef]
- Delghingaro-Augusto, V.; Decary, S.; Peyot, M.L.; Latour, M.G.; Lamontagne, J.; Paradis-Isler, N.; Lacharite-Lemieux, M.; Akakpo, H.; Birot, O.; Nolan, C.J.; et al. Voluntary running exercise prevents beta-cell failure in susceptible islets of the Zucker diabetic fatty rat. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E254–E264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibenge, M.T.; Chan, C.B. The effects of high-fat diet on exercise-induced changes in metabolic parameters in Zucker fa/fa rats. Metabolism 2002, 51, 708–715. [Google Scholar] [CrossRef] [PubMed]
- De Souza, C.T.; Nunes, W.M.; Gobatto, C.A.; de Mello, M.A. Insulin secretion in monosodium glutamate (MSG) obese rats submitted to aerobic exercise training. Physiol. Chem. Phys. Med. NMR 2003, 35, 43–53. [Google Scholar]
- Svidnicki, P.V.; de Carvalho Leite, N.; Venturelli, A.C.; Camargo, R.L.; Vicari, M.R.; de Almeida, M.C.; Artoni, R.F.; Nogaroto, V.; Grassiolli, S. Swim training restores glucagon-like peptide-1 insulinotropic action in pancreatic islets from monosodium glutamate-obese rats. Acta Physiol. 2013, 209, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Leite Nde, C.; Ferreira, T.R.; Rickli, S.; Borck, P.C.; Mathias, P.C.; Emilio, H.R.; Grassiolli, S. Glycolytic and mitochondrial metabolism in pancreatic islets from MSG-treated obese rats subjected to swimming training. Cell Physiol. Biochem. 2013, 31, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.A.; Bonfleur, M.L.; Vanzela, E.C.; Zotti, A.I.; Scomparin, D.X.; Boschero, A.C.; Balbo, S.L. Physical exercise introduced after weaning enhances pancreatic islet responsiveness to glucose and potentiating agents in adult MSG-obese rats. Horm. Metab. Res. 2014, 46, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Laker, R.C.; Gallo, L.A.; Wlodek, M.E.; Siebel, A.L.; Wadley, G.D.; McConell, G.K. Short-term exercise training early in life restores deficits in pancreatic beta-cell mass associated with growth restriction in adult male rats. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E931–E940. [Google Scholar] [CrossRef] [Green Version]
- Quiclet, C.; Siti, F.; Dubouchaud, H.; Vial, G.; Berthon, P.; Fontaine, E.; Batandier, C.; Couturier, K. Short-term and long-term effects of submaximal maternal exercise on offspring glucose homeostasis and pancreatic function. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E508–E518. [Google Scholar] [CrossRef]
- Falcão-Tebas, F.; Marin, E.C.; Kuang, J.; Bishop, D.J.; McConell, G.K. Maternal exercise attenuates the lower skeletal muscle glucose uptake and insulin secretion caused by paternal obesity in female adult rat offspring. J. Physiol. 2020, 598, 4251–4270. [Google Scholar] [CrossRef]
- Amaral, F.; Lima, N.E.; Ornelas, E.; Simardi, L.; Fonseca, F.L.; Maifrino, L.B. Effect of different exercise intensities on the pancreas of animals with metabolic syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2015, 8, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Otero-Losada, M.; Gonzalez, J.; Muller, A.; Ottaviano, G.; Cao, G.; Azzato, F.; Ambrosio, G.; Milei, J. Exercise Ameliorates Endocrine Pancreas Damage Induced by Chronic Cola Drinking in Rats. PLoS ONE 2016, 11, e0155630. [Google Scholar] [CrossRef] [PubMed]
- Bovolini, A.; Garcia, J.; Silva, A.F.; Andrade, M.A.; Duarte, J.A. Islets of Langerhans phenotype alterations induced by fatty diet and physical activity levels in Wistar rats. Nutrition 2020, 79–80, 110838. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Leblanc, J. Pancreatic insulin response in relation to exercise training. Can. J. Physiol. Pharmacol. 1983, 61, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Zoppi, C.C.; Calegari, V.C.; Silveira, L.R.; Carneiro, E.M.; Boschero, A.C. Exercise training enhances rat pancreatic islets anaplerotic enzymes content despite reduced insulin secretion. Eur. J. Appl. Physiol. 2011, 111, 2369–2374. [Google Scholar] [CrossRef]
- Prigeon, R.L.; Kahn, S.E.; Porte, D., Jr. Changes in insulin sensitivity, glucose effectiveness, and B-cell function in regularly exercising subjects. Metabolism 1995, 44, 1259–1263. [Google Scholar] [CrossRef]
- Mikines, K.J.; Farrell, P.A.; Sonne, B.; Tronier, B.; Galbo, H. Postexercise dose-response relationship between plasma glucose and insulin secretion. J. Appl. Physiol. 1988, 64, 988–999. [Google Scholar] [CrossRef]
- King, D.S.; Staten, M.A.; Kohrt, W.M.; Dalsky, G.P.; Elahi, D.; Holloszy, J.O. Insulin secretory capacity in endurance-trained and untrained young men. Am. J. Physiol. 1990, 259, E155–E161. [Google Scholar] [CrossRef]
- Ryan, A.S.; Muller, D.C.; Elahi, D. Sequential hyperglycemic-euglycemic clamp to assess beta-cell and peripheral tissue: Studies in female athletes. J. Appl. Physiol. 2001, 91, 872–881. [Google Scholar] [CrossRef] [Green Version]
- O’Rahilly, S.O.; Hosker, J.P.; Rudenski, A.S.; Matthews, D.R.; Burnett, M.A.; Turner, R.C. The glucose stimulus-response curve of the beta-cell in physically trained humans, assessed by hyperglycemic clamps. Metabolism 1988, 37, 919–923. [Google Scholar] [CrossRef]
- Kahn, S.E.; Larson, V.G.; Schwartz, R.S.; Beard, J.C.; Cain, K.C.; Fellingham, G.W.; Stratton, J.R.; Cerqueira, M.D.; Abrass, I.B. Exercise training delineates the importance of B-cell dysfunction to the glucose intolerance of human aging. J. Clin. Endocrinol. Metab. 1992, 74, 1336–1342. [Google Scholar] [CrossRef]
- Krishnan, R.K.; Hernandez, J.M.; Williamson, D.L.; O’Gorman, D.J.; Evans, W.J.; Kirwan, J.P. Age-related differences in the pancreatic beta-cell response to hyperglycemia after eccentric exercise. Am. J. Physiol. 1998, 275, E463–E470. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Solomon, T.P.; Blaszczak, A.; Finnegan, S.; Filion, J.; Kirwan, J.P. Pancreatic β-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1248–E1254. [Google Scholar] [CrossRef] [Green Version]
- Bittel, A.J.; Bittel, D.C.; Mittendorfer, B.; Patterson, B.W.; Okunade, A.L.; Abumrad, N.A.; Reeds, D.N.; Cade, W.T. A Single Bout of Premeal Resistance Exercise Improves Postprandial Glucose Metabolism in Obese Men with Prediabetes. Med. Sci. Sports Exerc. 2021, 53, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Heding, L.G.; Ludvigsson, J. B-cell response to exercise in diabetic and non-diabetic children. Acta Paediatr. Scand. Suppl. 1980, 283, 57–61. [Google Scholar] [CrossRef]
- Zonderland, M.L.; Dubbeldam, S.; Erkelens, D.W.; van Haeften, T.W. Lower beta-cell secretion in physically active first-degree relatives of type 2 diabetes patients. Metabolism 2000, 49, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Dela, F.; von Linstow, M.E.; Mikines, K.J.; Galbo, H. Physical training may enhance beta-cell function in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E1024–E1031. [Google Scholar] [CrossRef] [Green Version]
- Carr, D.B.; Utzschneider, K.M.; Boyko, E.J.; Asberry, P.J.; Hull, R.L.; Kodama, K.; Callahan, H.S.; Matthys, C.C.; Leonetti, D.L.; Schwartz, R.S.; et al. A reduced-fat diet and aerobic exercise in Japanese Americans with impaired glucose tolerance decreases intra-abdominal fat and improves insulin sensitivity but not beta-cell function. Diabetes 2005, 54, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Snell-Bergeon, J.; Waugh, K.; Dong, F.; Steck, A.; Norris, J.; Rewers, M. Physical activity and progression to type 1 diabetes in children and youth with islet autoimmunity: The diabetes autoimmunity study in the young. Pediatric Diabetes 2022, 23, 462–468. [Google Scholar] [CrossRef]
- Li, M.; Zheng, Q.; Miller, J.D.; Zuo, P.; Yuan, X.; Feng, J.; Liu, C.; Bao, S.; Lou, Q. Aerobic training reduces pancreatic fat content and improves β-cell function: A randomized controlled trial using IDEAL-IQ magnetic resonance imaging. Diabetes/Metab. Res. Rev. 2021, 38, e3516. [Google Scholar] [CrossRef]
- Johansen, M.Y.; Karstoft, K.; MacDonald, C.S.; Hansen, K.B.; Ellingsgaard, H.; Hartmann, B.; Wewer Albrechtsen, N.J.; Vaag, A.A.; Holst, J.J.; Pedersen, B.K.; et al. Effects of an intensive lifestyle intervention on the underlying mechanisms of improved glycaemic control in individuals with type 2 diabetes: A secondary analysis of a randomised clinical trial. Diabetologia 2020, 63, 2410–2422. [Google Scholar] [CrossRef]
- Lyngbaek, M.P.P.; Legaard, G.E.; Bennetsen, S.L.; Feineis, C.S.; Rasmussen, V.; Moegelberg, N.; Brinkløv, C.F.; Nielsen, A.B.; Kofoed, K.S.; Lauridsen, C.A.; et al. The effects of different doses of exercise on pancreatic β-cell function in patients with newly diagnosed type 2 diabetes: Study protocol for and rationale behind the “DOSE-EX” multi-arm parallel-group randomised clinical trial. Trials 2021, 22, 244. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.A.; Williams, K.; DeFronzo, R.A.; Stern, M. What is the best predictor of future type 2 diabetes? Diabetes Care 2007, 30, 1544–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, J.; Ashcroft, F.M.; Wollheim, C.B.; Kieffer, T.J.; Cherrington, A.D.; Bergman, R.N.; Taylor, R.; Najjar, S.M.; Pedersen, O.; Ellingsgaard, H.; et al. Voices: Insulin and beyond. Cell Metab. 2021, 33, 692–699. [Google Scholar] [CrossRef] [PubMed]
Disease | Training | Duration | Frequency | Intensity | Mouse Model | Effect (Positive/Negative) | Reference |
---|---|---|---|---|---|---|---|
Health | Resistance exercise | 10 weeks | 5 day/week | 50–100% of the maximum carrying | 8-week-old male C57Bl/6 mice | Positive | [11] |
Hyperinsulinism | Treadmill exercise | Once | - | 80% max running speed, 5° incline | Mct1-Luc transgenic mice | Positive | [12] |
Paternal obesity | Swimming | 9 weeks | 3 day/week | 15–30 min/day | 5-week-old male C57BL/6NHsd (Harlan), HFD-induced obesity | Positive | [13] |
Paternal obesity | Running wheel | 4 weeks | - | Free to exercise | 6–7-week-old C57BL/6J mice, HFD- induced obesity | Positive | [14] |
Monosodium L-glutamate-obesity | Swimming | 8 weeks | 3 day/week | 15 min/day | 5-day-old pup, monosodium l-glutamate MSG injected | Positive | [15] |
Monosodium L-glutamate-obesity | Swimming | 8 weeks | 3 day/week | 15 min/day | 5-day-old pup, monosodium l-glutamate MSG injected | Positive | [16] |
High-fat-diet- induced obesity | Swimming | 8 weeks | 5 day/week | 8–30 min/day | 21-day-old weaned B6.129SF2/J mice, HFD-induced obesity | Positive | [17] |
Obesity | Treadmill exercise | 8 weeks | 5 day/week | 60 m/day | 5-week-old leptin-deficient mice | Positive | [18] |
Prediabetes | Swimming | 8 weeks | 7 day/week | 40 min/day | 5-week-old male Yellow KK mice, HFD-induced prediabetes | Positive | [19] |
Type 1 diabetes | Treadmill exercise | 8 weeks | 5 day/week | 60 min/day | 3-week-old wild-type and IL-6 knockout (KO) C57BL/6 mice | Positive | [20] |
Type 1 diabetes | Treadmill exercise | 20 weeks | 5 day/week | 60 min/day | 5-week-old non-obese diabetic (NOD) mice | Positive | [21] |
Type 1 diabetes | Running wheel | 6 weeks | - | Free to exercise | 8-week-old male A/J mice, STZ injected | Positive | [22] |
Type 1 diabetes | Treadmill exercise | 6 weeks | 5 day/week | 60 min/day | 6-week-old male C57B6/6J mice, STZ injected | Positive | [23] |
Intensity | %VO2max | |
---|---|---|
Treadmill exercise | Low intensity | <45 |
Moderate intensity | 46–63 | |
High intensity | >63 | |
Intensity | Time (min/day) | |
Swimming | Low intensity | <30 |
Moderate intensity | 30–59 | |
High intensity | ≥60 | |
Running wheel | Low intensity |
Disease | Training | Duration | Frequency | Intensity | Mouse Model | Effect (Positive/Negative) | Reference |
---|---|---|---|---|---|---|---|
Aging | Running wheel | 1 year | - | Free to exercise | 40-day-old male Sprague-Dawley rats | Positive | [26] |
Health | Swimming | 10 weeks | 6 day/week | 120 min/day | Female Wistar rats—180 g | Positive | |
Health | Rotating wheel | 4 weeks | 7 day/week | 4.6 km/day | Female Wistar rats—180 g | Positive | [27] |
Health | Treadmill exercise | 3 weeks | 6 day/week | 90 min/day | Female Wistar rats—180 g | Positive | [28] |
Health | Treadmill exercise | 10 weeks | 4 day/week | 90 min/day | Female Wistar rats—180 g | Positive | [29] |
Health | Swimming | 12 weeks | 5 day/week | 60 min/day | Male Sprague-Dawley rats (90–110 g) | Positive | [30] |
Health | Swimming | 8 weeks | 5 day/week | 60 min/day | Male Wistar rats | Positive | [31] |
Health | Resistance exercise | 4 day | 7 day/week | 4 exercise sessions (50 reps each) with increased resistance for each session (70→120→120→190 g) | Male Sprague Dawley rats—400 g | Positive | [32] |
Health | Resistance exercise | 8 weeks | 1, 3, 5 day/week | initially for 5 min at 5 m/min, reaching 60 min at 30 m/min in the last training week | Male Wistar rats | Positive | [33] |
Health | Resistance exercise | 8 weeks | 1, 3, 5 day/week | initially for 5 min at 5 m/min, reaching 60 min at 30 m/min in the last training week | Male Wistar rats | Positive | [34] |
Health | Treadmill exercise | 11 weeks | 5 day/week | 60 min/day | Male Sprague Dawley rats | Positive | [35] |
Health | Treadmill exercise | 9 weeks | 5 day/week | 90 min/day | Male Sprague Dawley rats | Positive | [36] |
Health | Treadmill exercise | 8 weeks | 5 day/week | 60 min/day | Male Wistar rats | Positive | [37] |
Health | Treadmill exercise | 6, 9, 12 weeks | 5 day/week | 60 min/day | Male Wistar rats | Positive | [38] |
Health | Treadmill exercise | 8 weeks | 3 day/week | 60 min/day | Male Wistar rats | Positive | [39] |
Prediabetes | Treadmill exercise | Once | 5-week-old male Zucker diabetic fatty (ZDF) rats | Positive | [40] | ||
Prediabetes | Treadmill exercise | 8 weeks | 5 day/week | 60 min/day at 25 m/min at 5% incline | |||
Prediabetes | Treadmill exercise | 5 weeks | 6 day/week | 60 min/day at 20 m/min | 7-week-old male Zucker diabetic fatty (ZDF) rats | Positive | [41] |
Prediabetes | Swimming | 10 days | 6 day/week | 30 min/day | Streptozotocin induced diabetes | [42] | |
Type 1 diabetes | Treadmill exercise | 10 weeks | 5 day/week | 60 min/day at 27 m/min | Streptozotocin induced diabetes | Positive | [43] |
Type 1 diabetes | Swimming | 4 weeks | 5 day/week | 15 min→20 min→40 min→45 min | Streptozotocin induced diabetes | Positive | [44] |
Type 2 diabetes | Rotating wheel | 24 weeks | every other day, every 3 days and every 7 days | Free to exercise | Otsuka-Long-Evans-Tokushima fatty rats | Positive | [45] |
Type 2 diabetes | Running wheel | 6 weeks | - | Free to exercise | Otsuka-Long-Evans-Tokushima fatty rats | Positive | [46] |
Type 2 diabetes | Treadmill exercise | 12 or 28 weeks | 5 day/week | 30 min/day at 15 m/min | Otsuka Long-Evans Tokushima Fatty rats | Positive | [47] |
Type 2 diabetes | Treadmill exercise | 3 weeks | 5 day/week | 30 min/day | 90% pancreatectomized diabetic male rats | Positive | [48] |
Type 2 diabetes | Treadmill exercise | 8 weeks | 5 day/week | 30 min/day at 20 m/min at 15% incline | 90% pancreatectomized diabetic male rats | Positive | [49] |
Type 2 diabetes | Swimming | 6 weeks | 5 day/week | 60 min/day | 7-week-old male Zucker diabetic fatty (ZDF) rats | Positive | [50] |
Type 2 diabetes | Running wheel | 6 weeks | - | Free to exercise | 5-week-old male Zucker diabetic fatty (ZDF) rats | Positive | [51] |
Obesity | Swimming | 4 weeks | 5 day/week | 60 min/day | fa/fa and lean Zucker rats | Positive | [52] |
Obesity | Swimming | 10 weeks | 5 day/week | 60 min/day | Monosodium l-glutamate MSG (4 mg/g body weight) was injected s.c. in the 5 days old pup’s cervical area | Positive | [53] |
Obesity | Swimming | 10 weeks | 3 day/week | 30 min/day | Positive | [54] | |
Obesity | Swimming | 10 weeks | 3 day/week | 30 min/day | Positive | [55] | |
Obesity | Swimming | 10 weeks | 3 day/week | 30 min/day | Positive | [56] | |
Fetal growth restriction | Treadmill exercise | 4 weeks | 5 day/week | 60 min/day at 20 m/min | Positive | [57] | |
Offspring | Treadmill exercise | 4 weeks (gestation) | 5 day/week | 60 min/day at 25 m/min | 15-week-old nulliparous female Wistar rats | Positive | [58] |
Offspring | Voluntary wheel running | 8 weeks | 3 day/week | - | 4 to 14-week-old mice with high-fat-diet | Positive | [59] |
Metabolic syndrome | Treadmill exercise | 9 weeks | 5 day/week | 60 min/day, 5 d/week, 0.3 km/h, 50–60% VO2max | Fructose intake in the drinking water (D-fructose, 100 g/L), for 18 weeks | Positive | [60] |
Metabolic syndrome | Treadmill exercise | 6 months | 5 day/week | 30 min, 5 d/week, 20 m/min, 10° | Cola-drinking rats | Positive | [61] |
Metabolic syndrome | Running wheel | 21 weeks | - | Free to exercise | Fed with fat (SFD) for 21 wk | Positive | [62] |
Disease | Training | Duration | Frequency | Intensity | Sample Size, Subjects Characteristics | Effect (Positive/Negative) | Reference |
---|---|---|---|---|---|---|---|
Health | Aerobic exercise | 3–14 weeks | 4–6 day/week | 30–40 min/day | 7 subjects, 21–30 years men | Positive | [65] |
Health | Braked bicycle | 60 min | once | 150 W | 7 subjects, 24–26 years men | Positive | [66] |
Health | Resistance training | - | 5 day/week | 45 min/day | 8 well-trained and 9 untrained | Positive | [67] |
Athletes | Swimming/running/triathletes | - | 5–6 day/week | 12 h/week | 67 subjects (53 athletes, 14 controls), 18–69 years with body mass index (BMI), 25 kg/m2 | Positive | [68] |
Athletes | Running | - | - | 40 miles/week | 6 subjects, veteran athletes | Positive | [69] |
Health | Running or bicycling | 6 months | 5 day/week | 45 min/week | 25 subjects, 14 older-aged 61–82 years and 11 younger-aged 24–31 years | Positive | [70] |
Health | Eccentric resistance exercise | once | - | 10 repetitions of leg extension (right and left legs, separately) | 16 subjects, 8 younger-aged 21–28 years and 8 older-aged 59–75 years | Positive | [71] |
Health | Physical activity | - | - | - | 58 subjects, 37 subjects are first-degree relatives of type 2 diabetes patients and 21 subjects are healthy | Positive | [75] |
Prediabetes | Aerobic exercise | 12 weeks | 5 day/week | 60 min/day | 35 obese (66.8 ± 0.8 year) adults with prediabetes | Positive | [72] |
Prediabetes | Resistance training | once | once | 3 sets of 10–12 repetitions | 10 obese (30–65 year) men | Positive | [73] |
Type 1 diabetes | Physical activity | 7 years | 7 day/week | - | 95 children and youth | Negative | [78] |
Type 2 diabetes | Bicycle ergometer exercise | once | - | 20 min | 31 subjects, 20 non diabetic children aged 8–16 years and 11 insulin-dependent diabetic children aged 7–16 years | Positive | [74] |
Type 2 diabetes | Bicycle ergometer exercise | 3 months | 5 day/week | 30–40 min/day | 24 subjects aged 46–57 years | Positive | [76] |
Type 2 diabetes | Stretching exercises/endurance exercise | 24 months | 3 day/week | 60 min/day | 62 Japanese Americans (age 56.5 +/− 1.3 years) with impaired glucose tolerance | Positive | [77] |
Type 2 diabetes | Aerobic exercise | 6 months | 3 day/week | 60 min/day | 106 patients with type 2 diabetes | Positive | [79] |
Type 2 diabetes | Aerobic exercise and resistance training | 12 months | 5–6 day/week | 98 individuals with type 2 diabetes | Positive | [80] | |
Type 2 diabetes | Aerobic exercise | 16 weeks | 3–6 day/week | 40–60 min/day | 80 patients with type 2 diabetes | Positive | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wei, Y.; Wang, C. Impacts of an Exercise Intervention on the Health of Pancreatic Beta-Cells: A Review. Int. J. Environ. Res. Public Health 2022, 19, 7229. https://doi.org/10.3390/ijerph19127229
Zhang S, Wei Y, Wang C. Impacts of an Exercise Intervention on the Health of Pancreatic Beta-Cells: A Review. International Journal of Environmental Research and Public Health. 2022; 19(12):7229. https://doi.org/10.3390/ijerph19127229
Chicago/Turabian StyleZhang, Shuang, Yaru Wei, and Chunxiao Wang. 2022. "Impacts of an Exercise Intervention on the Health of Pancreatic Beta-Cells: A Review" International Journal of Environmental Research and Public Health 19, no. 12: 7229. https://doi.org/10.3390/ijerph19127229