Environmental Performance Evaluation of Key Polluting Industries in China—Taking the Power Industry as an Example
Abstract
:1. Introduction
2. Literature Review
3. Methodological Description and Selection of Indicators
3.1. Methodological Description
3.2. The Construction of the Index System
3.3. Data Sources and Processing
4. Analysis of Empirical Results
4.1. Measurement of Environmental Performance in China’s Power Industry
4.1.1. Time-Series Characteristics of the Power Industry
4.1.2. Trends in the Environmental Performance of the National Power Industry
4.1.3. Trends in Environmental Performance of Electric Power Industry by Region
4.1.4. Spatial Characteristics of Environmental Performance in the Power Industry
4.2. Redundancy Analysis of the Environmental Performance of China’s Power Industry
4.2.1. Analysis of the Redundancy Degree of the Environmental Performance of the National Power Industry
4.2.2. Analysis of the Redundancy of the Environmental Performance of the Power Industry in Each Province
5. Conclusions and Insights
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, H.Q.; Dai, S.Z.; Yu, H.C. Spatial effect of innovation efficiency on ecological footprint: City-level empirical evidence from China. Environ. Technol. Innov. 2021, 22, 101536. [Google Scholar] [CrossRef]
- Liu, S.; Fan, F.; Zhang, J.Q. Are small cities more environmentally friendly? An empirical study from China. Int. J. Environ. Res. Public Health 2019, 16, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Jia, M.; Zhou, Y. Impacts of changing urban form on ecological efficiency in China: A comparison between urban agglomerations and administrative areas. J. Environ. Plan. Manag. 2019, 8, 1–23. [Google Scholar] [CrossRef]
- Ke, H.Q.; Dai, S.Z. Does innovation efficiency inhibit the ecological footprint? An empirical study of China’s provincial regions. Technol. Anal. Strateg. Manag. 2021, 33, 1959910. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Sun, C.Z.; Zhao, L.S. Effect of the marine system on the pressure of the food–energy–water nexus in the coastal regions of China. J. Clean. Prod. 2021, 319, 128753. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Q.; Wang, S.H.; Li, X.P. Does environmental regulation affect export quality? Theory and evidence from China. Int. J. Environ. Res. Public Health 2020, 17, 8237. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Lian, H.; Liu, X. Can environmental regulation promote urban green innovation efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2020, 287, 125060. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Wang, S.; Yang, P.L. Analysis of scale factors on China’s sustainable development efficiency based on three-stage DEA and a double threshold test. Sustainability 2020, 12, 2225. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, X.L.; Lu, F. The impact of collaborative innovation on ecological efficiency—Empirical research based on China’s regions. Technol. Anal. Strateg. Manag. 2020, 32, 242–256. [Google Scholar] [CrossRef]
- Sun, C.Z.; Yan, X.D.; Zhao, L.S. Coupling efficiency measurement and spatial correlation characteristic of water-energy-food nexus in China. Resour. Conserv. Recycl. 2021, 164, 105151. [Google Scholar] [CrossRef]
- Yu, H.C.; Liu, Y.; Liu, C.L. Spatiotemporal variation and inequality in China’s economic resilience across cities and urban agglomerations. Sustainability 2018, 10, 4754. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, Q. Environmental regulation, subsidy and underperforming firms’ R&D expenditure: Evidence from Chinese listed companies. Int. J. Technol. Manag. 2021, 85, 190–211. [Google Scholar] [CrossRef]
- Zhang, H.; Lan, T.; Li, Z.L. Fractal evolution of urban street networks in form and structure: A case study of Hong Kong. Int. J. Geogr. Inf. Sci. 2022, 36, 1100–1118. [Google Scholar] [CrossRef]
- Guo, S.L.; Ma, H. Does industrial agglomeration promote high-quality development of the Yellow River Basin in China? Empirical test from the moderating effect of environmental regulation. Growth Chang. 2021, 52, 2040–2070. [Google Scholar] [CrossRef]
- Schaltegger, S.; Sturm, A. Environmental rationality. Company 1990, 4, 117–131. [Google Scholar]
- Xie, J.; Liu, L. Present situation and Countermeasures of social organization participation in environmental governance. Environ. Prot. 2013, 41, 21–23. [Google Scholar]
- Liao, Z.J.; Weng, C.; Long, S.; Xiao, Z. Do social ties foster firms’ environmental innovation? The moderating effect of resource bricolage. Technol. Anal. Strateg. Manag. 2021, 33, 476–490. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. The hidden mediating role of innovation efficiency in coordinating development of economy and ecological environment: Evidence from 283 Chinese cities. Environ. Sci. Pollut. Res. 2021, 28, 47668–47684. [Google Scholar] [CrossRef]
- Peng, Y. Dynamic environmental performance evaluation of China’s electric power industry. Comp. Econ. Soc. Syst. 2011, 5, 185–191. [Google Scholar]
- Zhou, Y.; Xing, X.; Fang, K.N.; Liang, D.P.; Xu, C.L. Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy 2013, 57, 68–75. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China. Energy Econ. 2015, 48, 230–241. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.M.; Huang, Z. Environmental efficiency and abatement efficiency measurements of China’s thermal power industry:A data envelopment analysis based materials balance approach. Eur. J. Oper. Res. 2018, 269, 35–50. [Google Scholar] [CrossRef]
- Guo, L.; Nan, K.H.; Wang, J.Y.; Yang, Q.G. Regional difference analysis of environmental efficiency in electric power industry based on SBM-GML. Ecol. Econ. 2020, 36, 44–49. [Google Scholar]
- Chai, J.; Fan, W.; Han, J. Does the energy efficiency of power companies affect their industry status? A DEA analysis of listed companies in thermal power sector. Sustainability 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Qu, Q.Q.; Xie, B.C.; Yin, K.X. Analysis of inter provincial differences in efficiency of China’s thermal power industry considering non ideal output. Resour. Sci. 2012, 34, 1160–1166. [Google Scholar]
- Zhu, Z.W. Environmental performance evaluation of China power listed companies (2011~2013)—Based on SBM model considering non-expected output. Ind. Technol. Econ. 2015, 34, 83–90. [Google Scholar]
- Wang, T.T.; Zhu, J.P. Energy efficiency of electric power industry under environmental constraints. China Popul. Resour. Environ. 2015, 25, 120–127. [Google Scholar] [CrossRef]
- Wang, C.; Zou, B.; Jin, Q.; Tang, X.W.; Xie, Q.W.; Chen, W.G. Evaluation of provincial power energy efficiency based on two-stage DEA method in China. Math. Pract. Cogn. 2020, 50, 150–161. [Google Scholar]
- Fan, Y.X.; Yuan, X.L. Research on technical efficiency and total factor productivity of power industry in China based on NSBM-ML model. Contemp. Econ. Sci. 2015, 37, 90–99. [Google Scholar]
- Fare, R.; Lovell, C. Measuring the technical efficiency of production. J. Econ. Theory 1978, 19, 150–162. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, L.; Wang, S. Marketisation as a channel of international technology diffusion and green total factor productivity: Research on the spillover effect from China’s first-tier cities. Technol. Anal. Strateg. Manag. 2021, 33, 491–504. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Chen, T.T. Empirical research on time-varying characteristics and efficiency of the Chinese economy and monetary policy: Evidence from the MI-TVP-VAR model. Appl. Econ. 2018, 50, 3596–3613. [Google Scholar] [CrossRef]
- Yang, W.Y.; Fan, F.; Wang, X.L. Knowledge innovation network externalities in the Guangdong-Hong Kong-Macao Greater Bay Area: Borrowing size or agglomeration shadow? Technol. Anal. Strateg. Manag. 2021, 33, 1940922. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, Y.; Dan, S.; Jiang, S.J. Country risk and international trade: Evidence from the China-B & R countries. Appl. Econ. Lett. 2021, 28, 1784–1788. [Google Scholar]
- Yu, H.C.; Zhang, J.Q.; Zhang, M.Q. Cross-national knowledge transfer, absorptive capacity, and total factor productivity: The intermediary effect test of international technology spillover. Technol. Anal. Strateg. Manag. 2021, 33, 1915476. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Du, X.Y. Convergence in China’s high-tech industry development performance: A spatial panel model. Appl. Econ. 2017, 49, 5296–5308. [Google Scholar]
- Liu, N. Threshold effect of international technology spillovers on China’s regional economic growth. Technol. Anal. Strateg. Manag. 2020, 32, 923–935. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wei, C.; Wang, X.; Fan, F. Collaborative innovation efficiency: From within cities to between cities—Empirical analysis based on innovative cities in China. Growth Chang. 2021, 52, 1330–1360. [Google Scholar] [CrossRef]
- Fan, F.; Du, D.B. The Measure and the characteristics of temporal-spatial evolution of China science and technology resource allocation efficiency. J. Geogr. Sci. 2014, 24, 492–508. [Google Scholar] [CrossRef]
- Korhonen, P.J.; Luptacik, M. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. Eur. J. Oper. Res. 2004, 154, 437–446. [Google Scholar] [CrossRef]
- Bai, X.J.; Song, Y. Environmental regulation, technological innovation and efficiency improvement in China’s thermal power industry. China Ind. Econ. 2009, 8, 68–77. [Google Scholar]
- Sueyoshi, T.; Goto, M.; Ueno, T. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies. Energy Policy 2010, 38, 1675–1688. [Google Scholar] [CrossRef]
- Arabi, B.; Munisamy, S.; Emrouznejad, A.; Shadman, F. Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement. Energy Policy 2014, 68, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Munisamy, S.; Arabi, B. Eco-efficiency change in power plants: Using a slacks-based measure for the meta-frontier Malmquist–Luenberger productivity index. J. Clean. Prod. 2015, 105, 218–232. [Google Scholar] [CrossRef]
- Wang, X.P.; Yang, L.K. Research on threshold effect of sewage charge on environmental governance efficiency of thermal power generation. Ecol. Econ. 2019, 35, 168–173. [Google Scholar]
- Halkos, G.E.; Polemis, M.L. The impact of economic growth on environmental efficiency of the electricity sector:A hybrid window DEA methodology for the USA. J. Environ. Manag. 2018, 211, 334–346. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X.R. Transformation effect of resource-based cities based on PSM-DID model: An empirical analysis from China. Environ. Impact Assess. Rev. 2021, 91, 911–912. [Google Scholar] [CrossRef]
- Zhao, L.S.; Hu, R.; Sun, C.Z. Analyzing the spatial-temporal characteristics of the marine economic efficiency of countries along the Maritime Silk Road and the influencing factors. Ocean Coast. Manag. 2021, 204, 105517. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yin, H.L. Science and technology insurance and regional innovation: Evidence from provincial panel data in China. Technol. Anal. Strateg. Manag. 2022, 34, 1054348. [Google Scholar] [CrossRef]
- Yu, H.C.; Zhang, J.Q. Agglomeration and flow of innovation elements and the impact on regional innovation efficiency. Int. J. Technol. Manag. 2022, 28, 12564. [Google Scholar]
- Zheng, Y.; Han, W.; Yang, R. Does government behaviour or enterprise investment improve regional innovation performance?—Evidence from China. Int. J. Technol. Manag. 2021, 85, 274–296. [Google Scholar] [CrossRef]
- Fan, F.; Dai, S.Z.; Zhang, K.K. Innovation agglomeration and urban hierarchy: Evidence from Chinese cities. Appl. Econ. 2021, 53, 6300–6318. [Google Scholar] [CrossRef]
- Tang, H.Y.; Zhang, J.Q. High-speed rail, urban form, and regional innovation: A time-varying difference-in-differences approach. Technol. Anal. Strateg. Manag. 2022, 34, 2026322. [Google Scholar] [CrossRef]
- Kesavan, D.P.; Deif, A.M. Exploring national culture impact on logistics performance. Transp. J. 2021, 60, 20–42. [Google Scholar] [CrossRef]
- Yu, H.C.; Zhang, J.Q. Industrial collaborative agglomeration and green economic efficiency—Based on the intermediary effect of technical change. Growth Chang. 2022, 53, 578–596. [Google Scholar]
- Fan, F.; Zhang, X.Y.; Wang, X.L. Are there political cycles hidden inside collaborative innovation efficiency? An empirical study based on Chinese cities. Sci. Public Policy 2022, 45, 101093005. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Aparicio, J.; Ruiz, J.L.; Sirvent, I. Closest targets and minimum distance to the Pareto-Efficient Front in DEA. J. Product. Anal. 2007, 28, 209–218. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, Y.; Yuan, Y.-H.; Xue, X.; Sheng, F. Exploring the influence of resource management between green innovation strategy and sustainable competitive advantage: The differences between emerging and traditional industries. Int. J. Technol. Manag. 2021, 85, 101–126. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X.R.; Yang, W.Y. Spatiotemporal evolution of China’s ports in the international container transport network under upgraded industrial structure. Transp. J. 2021, 60, 43–69. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, L. The spatiotemporal evolution of COVID-19 in China and its impact on urban economic resilience. China Econ. Rev. 2022, 74, 101806. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, J.Q. The symbiosis of scientific and technological innovation efficiency and economic efficiency in China—An analysis based on data envelopment analysis and logistic model. Technol. Anal. Strateg. Manag. 2019, 31, 67–80. [Google Scholar] [CrossRef]
- Wang, X.P.; Liu, X.H. Regional differences and spatial correlation analysis of carbon emission performance of power industry. Ind. Technol. Econ. 2014, 33, 129–135. [Google Scholar]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J. Research on geographical environment unit division based on the method of Natural Breaks (Jenks). ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 3, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.X.; Yuan, X.L. Environmental technical efficiency and influencing factors of China’s power industry: Based on provincial panel data from 1995 to 2012. J. Beijing Inst. Technol. Soc. Sci. Ed. 2015, 17, 57–66. [Google Scholar]
- Luo, J.H. Analysis on Technical Efficiency and Influencing Factors of Electric Power Industry in China; Chongqing University: Chongqing, China, 2018; pp. 1–65. [Google Scholar]
- Jiang, W.Y. Spatial and temporal differences of regional environmental efficiency in electric power industry and its influencing factors. Stat. Decis. 2018, 34, 135–138. [Google Scholar]
Category | Primary Indicator | Secondary Indicators | Unit |
---|---|---|---|
Input indicators | Capital investment | Installed capacity | million kilowatts |
Fuel input | Consumption of standard coal for power generation | million tons | |
Labor input | Number of workers | million people | |
Technical input | The electricity consumption rate of power plants | % | |
Line Loss Rate | % | ||
Length of power transmission lines | Kilometers | ||
Output indicators | normal product | Electricity generation | Kilowatt-hour |
GDP | Billion Yuan | ||
Environmental Pollution Emissions | CO2 emissions | million tons | |
SO2 emissions | million tons | ||
Nitrogen oxides | million tons |
Statistical Quantities | Average | Standard Deviation | Minimum | Maximum | Median |
---|---|---|---|---|---|
Installed power generation capacity | 4713 | 3079 | 66 | 14,044 | 4196.46 |
Standard coal consumption | 5594 | 3796 | 66.42 | 17,043 | 4805.236 |
Employment | 11.94 | 6.701 | 0.740 | 32.18 | 11.43 |
Electricity consumption rate of power plants | 4.915 | 1.732 | 0.500 | 8.400 | 5.15 |
Line loss rate | 6.443 | 1.926 | 2.230 | 13.80 | 6.4 |
Length of transmission line | 52,394 | 26,904 | 6507 | 118,665 | 55,994.5 |
Electricity generation | 1872 | 1283 | 21.02 | 5897 | 1614.7 |
GDP | 20,272 | 17,314 | 512.9 | 90,788 | 15,442 |
CO2 emissions | 18,317 | 13,758 | 199.4 | 66,759 | 14,376.74 |
SO2 emissions | 551.2 | 414.0 | 6 | 2009 | 432.6 |
Nitrogen oxides | 275.6 | 207.0 | 3 | 1004 | 216.3 |
DMU | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | 1.032 | 1.054 | 1.041 | 1.027 | 1.028 | 1.017 | 1.009 | 1.011 | 1.017 | 1.010 | 0.014 |
Beijing | 1.351 | 1.474 | 1.430 | 1.391 | 1.376 | 1.401 | 1.445 | 1.505 | 1.456 | 1.399 | 0.045 |
Fujian | 1.001 | 1.006 | 1.005 | 1.004 | 0.991 | 0.998 | 0.999 | 1.008 | 1.019 | 1.029 | 0.010 |
Gansu | 0.796 | 0.791 | 0.851 | 0.905 | 0.859 | 0.735 | 0.719 | 0.726 | 0.773 | 0.800 | 0.058 |
Guangdong | 1.058 | 1.069 | 1.052 | 1.044 | 1.040 | 1.054 | 1.052 | 1.041 | 1.060 | 1.040 | 0.009 |
Guangxi | 0.867 | 0.854 | 0.860 | 0.816 | 0.883 | 0.835 | 0.861 | 0.787 | 0.901 | 0.865 | 0.031 |
Guizhou | 1.025 | 0.848 | 1.015 | 1.003 | 1.101 | 0.832 | 0.712 | 0.899 | 0.901 | 0.915 | 0.108 |
Hainan | 1.159 | 1.071 | 1.133 | 1.140 | 1.166 | 1.168 | 1.163 | 1.201 | 1.166 | 1.235 | 0.041 |
Hebei | 0.757 | 0.732 | 0.764 | 0.794 | 0.833 | 0.839 | 0.826 | 0.816 | 0.852 | 0.824 | 0.038 |
Henan | 0.836 | 0.864 | 0.860 | 0.893 | 0.870 | 0.854 | 0.864 | 0.842 | 0.848 | 0.789 | 0.026 |
Heilongjiang | 0.769 | 0.778 | 0.768 | 0.759 | 0.786 | 0.800 | 0.798 | 0.771 | 0.779 | 0.802 | 0.014 |
Hubei | 1.090 | 1.086 | 1.106 | 1.040 | 1.053 | 1.042 | 1.032 | 1.028 | 1.034 | 1.021 | 0.028 |
Hunan | 0.838 | 0.872 | 0.858 | 0.861 | 0.826 | 0.807 | 1.001 | 1.003 | 0.785 | 0.809 | 0.073 |
Jilin | 0.802 | 0.824 | 0.822 | 0.807 | 0.816 | 1.002 | 1.000 | 0.742 | 0.799 | 1.011 | 0.095 |
Jiangsu | 1.123 | 1.123 | 1.154 | 1.198 | 1.195 | 1.150 | 1.209 | 1.252 | 1.242 | 1.191 | 0.043 |
Jiangxi | 0.884 | 0.897 | 0.847 | 0.862 | 0.861 | 0.855 | 0.943 | 0.918 | 0.913 | 0.924 | 0.032 |
Liaoning | 0.754 | 0.774 | 0.774 | 0.813 | 0.849 | 0.824 | 0.814 | 0.814 | 0.822 | 0.800 | 0.027 |
Inner Mongolia | 1.043 | 1.061 | 1.055 | 1.072 | 1.076 | 1.068 | 1.041 | 1.063 | 1.065 | 1.081 | 0.012 |
Ningxia | 1.013 | 1.065 | 1.051 | 1.069 | 1.076 | 1.054 | 1.070 | 1.101 | 1.086 | 1.074 | 0.022 |
Qinghai | 1.513 | 1.363 | 1.266 | 1.221 | 1.206 | 1.192 | 1.135 | 1.079 | 1.108 | 1.135 | 0.125 |
Shandong | 0.864 | 0.876 | 0.895 | 0.937 | 0.887 | 1.053 | 1.042 | 1.020 | 1.045 | 1.038 | 0.076 |
Shanxi | 1.030 | 1.011 | 1.014 | 1.006 | 0.969 | 0.843 | 1.001 | 0.826 | 0.883 | 0.873 | 0.076 |
Shaanxi | 0.903 | 0.927 | 1.018 | 1.044 | 1.048 | 1.046 | 1.031 | 1.021 | 0.871 | 0.864 | 0.073 |
Shanghai | 1.177 | 1.209 | 1.211 | 1.266 | 1.290 | 1.304 | 1.307 | 1.325 | 1.364 | 1.652 | 0.127 |
Sichuan | 0.873 | 0.917 | 0.919 | 1.018 | 1.042 | 1.056 | 1.052 | 1.059 | 1.047 | 1.051 | 0.068 |
Tianjin | 1.052 | 1.045 | 1.039 | 1.045 | 1.015 | 1.034 | 1.025 | 1.017 | 1.028 | 1.013 | 0.013 |
Xinjiang | 0.833 | 0.807 | 0.849 | 0.859 | 0.917 | 0.804 | 0.696 | 0.664 | 0.711 | 1.005 | 0.099 |
Yunnan | 0.918 | 0.917 | 0.941 | 1.007 | 1.044 | 1.063 | 1.087 | 1.084 | 1.086 | 1.070 | 0.067 |
Zhejiang | 1.024 | 1.014 | 1.017 | 1.005 | 0.934 | 1.019 | 0.920 | 0.923 | 0.924 | 0.936 | 0.045 |
Chongqing | 0.883 | 0.914 | 0.943 | 0.948 | 0.950 | 0.945 | 0.956 | 0.952 | 0.945 | 0.927 | 0.021 |
Standard deviation | 0.172 | 0.168 | 0.153 | 0.146 | 0.144 | 0.156 | 0.165 | 0.182 | 0.171 | 0.185 | 0.165 |
Type | Region |
---|---|
Ultra-high level | Beijing, Shanghai, Jiangsu, Hainan, Qinghai |
High level | Inner Mongolia, Tianjin, Anhui, Fujian, Guangdong, Yunnan, Hubei, Sichuan, Ningxia |
Medium level | Shanxi, Shaanxi, Chongqing, Guizhou, Jiangxi, Zhejiang, Shandong |
Low level | Heilongjiang, Jilin, Liaoning, Hebei, Henan, Hunan, Gansu, Xinjiang, Guangxi |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Qiu, C.; Sun, M.; Zhang, D. Environmental Performance Evaluation of Key Polluting Industries in China—Taking the Power Industry as an Example. Int. J. Environ. Res. Public Health 2022, 19, 7295. https://doi.org/10.3390/ijerph19127295
Liu Z, Qiu C, Sun M, Zhang D. Environmental Performance Evaluation of Key Polluting Industries in China—Taking the Power Industry as an Example. International Journal of Environmental Research and Public Health. 2022; 19(12):7295. https://doi.org/10.3390/ijerph19127295
Chicago/Turabian StyleLiu, Zuoming, Changbo Qiu, Min Sun, and Dongmin Zhang. 2022. "Environmental Performance Evaluation of Key Polluting Industries in China—Taking the Power Industry as an Example" International Journal of Environmental Research and Public Health 19, no. 12: 7295. https://doi.org/10.3390/ijerph19127295
APA StyleLiu, Z., Qiu, C., Sun, M., & Zhang, D. (2022). Environmental Performance Evaluation of Key Polluting Industries in China—Taking the Power Industry as an Example. International Journal of Environmental Research and Public Health, 19(12), 7295. https://doi.org/10.3390/ijerph19127295