The Association of Dietary Pattern with the Risk of Prehypertension and Hypertension in Jiangsu Province: A Longitudinal Study from 2007 to 2014
Abstract
:1. Introduction
2. Methods and Materials
2.1. Participants
2.2. Dietary Assessment and Other Covariates
2.3. Assessment of Hypertension
2.4. Statistical Analysis
2.5. Ethics Approval and Consent to Participate
3. Results
3.1. Basic Information of Population
3.2. Dietary Patterns and the Characteristics of the Individuals in Each Dietary Pattern
3.3. Association between Dietary Patterns and Abnormal Blood Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhang, L.; Wang, X.; Hao, G.; Zhang, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; et al. Status of Hypertension in China: Results from the China Hypertension Survey, 2012–2015. Circulation 2018, 137, 2344–2356. [Google Scholar] [CrossRef]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Evans, J.C.; O’Donnell, C.J.; Kannel, W.B.; Levy, D. Impact of High-Normal Blood Pressure on the Risk of Cardiovascular Disease. N. Engl. J. Med. 2001, 345, 1291–1297. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, J.; Zhang, X.; Hu, C.; Zhao, Z.; Li, C.; Huang, Z.; Zhou, M.; Wang, L. Study on the prevalence and control of hypertension in Chinese adult residents in 2018. Chin. J. Epidemiol. 2021, 42, 1780–1789. [Google Scholar] [CrossRef]
- Qi, Y.; Han, X.; Zhao, D.; Wang, W.; Wang, M.; Sun, J.; Liu, J.; Li, Y.; Gao, S.; Hao, Y.; et al. Long-Term Cardiovascular Risk Associated With Stage 1 Hypertension Defined by the 2017 ACC/AHA Hypertension Guideline. J. Am. Coll. Cardiol. 2018, 72, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Svetkey, L.P. Management of Prehypertension. Hypertension 2005, 45, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Elmer, P.J.; Obarzanek, E.; Vollmer, W.M.; Simons-Morton, D.; Stevens, V.J.; Young, D.R.; Lin, P.-H.; Champagne, C.; Harsha, D.W.; Svetkey, L.P.; et al. Effects of Comprehensive Lifestyle Modification on Diet, Weight, Physical Fitness, and Blood Pressure Control: 18-Month Results of a Randomized Trial. Ann. Intern. Med. 2006, 144, 485–495. [Google Scholar] [CrossRef]
- Williams, D.E.M.; Prevost, A.T.; Whichelow, M.J.; Cox, B.D.; Day, N.E.; Wareham, N.J. A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. Br. J. Nutr. 2000, 83, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.; Muller, D.; Hallfrisch, J.; Qiao, N.; Andres, R.; Tucker, K.L. Dietary patterns and changes in body mass index and waist circumference in adults. Am. J. Clin. Nutr. 2003, 77, 1417–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, M.; Breslow, R.A.; DeVellis, R.F.; Ziegler, R.G. Dietary Patterns and Prostate Cancer Risk in the National Health and Nutrition Examination Survey Epidemiological Follow-up Study Cohort. Cancer Epidemiol. Biomark. Prev. 2004, 13, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, T.T.; Willett, W.C.; Stampfer, M.J.; Manson, J.E.; Hu, F.B. Dietary Patterns and the Risk of Coronary Heart Disease in Women. Arch. Intern. Med. 2001, 161, 1857–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dam, R.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Dietary Patterns and Risk for Type 2 Diabetes Mellitus in U.S. Men. Ann. Intern. Med. 2002, 136, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osler, M.; Heitmann, B.L.; Gerdes, L.U.; Jørgensen, L.M.; Schroll, M. Dietary patterns and mortality in Danish men and women: A prospective observational study. Br. J. Nutr. 2001, 85, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, S.E.; Marshall, J.R.; Brasure, J.R.; Graham, S.; Freudenheim, J.L. Analysis of patterns of food intake in nutritional epidemiology: Food classification in principal components analysis and the subsequent impact on estimates for endometrial cancer. Public Health Nutr. 2001, 4, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Srinath Reddy, K.; Katan, M.B. Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr. 2004, 7, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Kahleova, H.; Levin, S.; Barnard, N.D. Vegetarian Dietary Patterns and Cardiovascular Disease. Prog. Cardiovasc. Dis. 2018, 61, 54–61. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, C.; Cui, L.; Han, A.; Tu, Q.; Lou, P.; Ding, G.; Qin, Y.; Xiang, Q. A population-based survey for dietary patterns and prediabetes among 7555 Chinese adults in urban and rural areas in Jiangsu Province. Sci. Rep. 2020, 10, 10488. [Google Scholar] [CrossRef]
- Naja, F.; Itani, L.; Hwalla, N.; Sibai, A.M.; Kharroubi, S.A. Identification of dietary patterns associated with elevated blood pressure among Lebanese men: A comparison of principal component analysis with reduced rank regression and partial least square methods. PLoS ONE 2019, 14, e0220942. [Google Scholar] [CrossRef]
- He, F.; Xiao, R.-D.; Lin, T.; Xiong, W.-M.; Xu, Q.-P.; Li, X.; Liu, Z.-Q.; He, B.-C.; Hu, Z.-J.; Cai, L. Dietary patterns, BCMO1 polymorphisms, and primary lung cancer risk in a Han Chinese population: A case-control study in Southeast China. BMC Cancer 2018, 18, 445. [Google Scholar] [CrossRef]
- Yongqing, Z.; Ming, W.; Jian, S.; Pengfei, L.; Xiaoqun, P.; Meihua, D.; Peian, L.; Jianmei, D.; Guoyu, Z.; Jie, Y.; et al. Prevalence, awareness, treatment and control of hypertension and sodium intake in Jiangsu Province, China: A baseline study in 2014. BMC Public Health 2015, 16, 56. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. J. Hypertens. 1999, 17, 151–183. [Google Scholar]
- O’Neal, W.T.; Soliman, E.Z.; Qureshi, W.; Alonso, A.; Heckbert, S.R.; Herrington, D. Sustained pre–hypertensive blood pressure and incident atrial fibrillation: The Multi–Ethnic Study of Atherosclerosis. J. Am. Soc. Hypertens. 2015, 9, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Gepner, A.D.; Tedla, Y.; Colangelo, L.A.; Tattersall, M.C.; Korcarz, C.; Kaufman, J.; Liu, K.; Burke, G.L.; Shea, S.; Greenland, P.; et al. Progression of Carotid Arterial Stiffness With Treatment of Hypertension Over 10 Years: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2017, 69, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Appleby, P.N.; Davey, G.K.; Key, T.J. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC–Oxford. Public Health Nutr. 2002, 5, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Tzoulaki, I.; Brown, I.J.; Chan, Q.; Van Horn, L.; Ueshima, H.; Zhao, L.; Stamler, J.; Elliott, P.; International Collaborative Research Group on Macro-/Micronutrients and Blood Pressure. Relation of iron and red meat intake to blood pressure: Cross sectional epidemiological study. BMJ 2008, 337, a258. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Meat intake and the risk of hypertension in middle-aged and older women. J. Hypertens. 2008, 26, 215–222. [Google Scholar] [CrossRef]
- Ascherio, A.; Hennekens, C.; Willett, W.C.; Sacks, F.; Rosner, B.; Manson, J.; Witteman, J.; Stampfer, M.J. Prospective Study of Nutritional Factors, Blood Pressure, and Hypertension Among US Women. Hypertension 1996, 27, 1065–1072. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Q.; Wang, L.; Jiang, H.; Wang, Y.; Wang, H.; Zhang, J.; Zhai, F.; Zhang, B. Moderate Intake of Lean Red Meat Was Associated with Lower Risk of Elevated Blood Pressure in Chinese Women: Results from the China Health and Nutrition Survey, 1991–2015. Nutrients 2020, 12, 1369. [Google Scholar] [CrossRef] [PubMed]
- Nowson, C.A.; Wattanapenpaiboon, N.; Pachett, A. Low-sodium Dietary Approaches to Stop Hypertension–type diet including lean red meat lowers blood pressure in postmenopausal women. Nutr. Res. 2009, 29, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Stamler, J.; Brown, I.J.; Ueshima, H.; Nakagawa, H.; Sakurai, M.; Chan, Q.; Appel, L.J.; Okayama, A.; Okuda, N.; et al. Relationship of dietary monounsaturated fatty acids to blood pressure: The International Study of Macro/Micronutrients and Blood Pressure. J. Hypertens. 2013, 31, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Shi, M.-Q.; Li, Z.-H.; Yang, J.-J.; Li, D. Fish, Long-Chain n-3 PUFA and Incidence of Elevated Blood Pressure: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-A.; Cai, H.; Yang, G.; Xu, W.-H.; Zheng, W.; Li, H.; Gao, Y.-T.; Xiang, Y.-B.; Shu, X.O. Dietary patterns and blood pressure among middle-aged and elderly Chinese men in Shanghai. Br. J. Nutr. 2010, 104, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Sun, D.; He, Y. Fruit and vegetables consumption and incident hypertension: Dose–response meta-analysis of prospective cohort studies. J. Hum. Hypertens. 2016, 30, 573–580. [Google Scholar] [CrossRef]
- Qin, C.; Lv, J.; Guo, Y.; Bian, Z.; Si, J.; Yang, L.; Chen, Y.; Zhou, Y.; Zhang, H.; Liu, J.; et al. Associations of egg consumption with cardiovascular disease in a cohort study of 0.5 million Chinese adults. Heart 2018, 104, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. Int. Rev. J. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Arora, M.; Singhal, S.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Kumar, A.; Mishra, A. Snacks and Snacking: Impact on Health of the Consumers and Opportunities for its Improvement. Curr. Nutr. Food Sci. 2020, 16, 1028–1043. [Google Scholar] [CrossRef]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Bahadoran, Z.; Azizi, F. Prediction of metabolic syndrome by a high intake of energy-dense nutrient-poor snacks in Iranian children and adolescents. Pediatr. Res. 2015, 79, 697–704. [Google Scholar] [CrossRef]
- Qin, Y.; Melse-Boonstra, A.; Pan, X.; Zhao, J.; Yuan, B.; Dai, Y.; Zhou, M.; Geleijnse, J.M.; Kok, F.J.; Shi, Z. Association of dietary pattern and body weight with blood pressure in Jiangsu Province, China. BMC Public Health 2014, 14, 948. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; MacGregor, G.A. Effect of modest salt reduction on blood pressure: A meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 2002, 16, 761–770. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Reducing salt intake in populations : Report. In Proceedings of the Reducing Salt Intake in Populations: Report of a WHO Forum and Technical Meeting, Paris, France, 5–7 October 2006; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Haddy, F.J. Role of dietary salt in hypertension. Life Sci. 2006, 79, 1585–1592. [Google Scholar] [CrossRef]
- Dumler, F. Dietary Sodium Intake and Arterial Blood Pressure. J. Ren. Nutr. 2009, 19, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Midgley, J.P.; Matthew, A.G.; Greenwood, C.M.T.; Logan, A.G. Effect of Reduced Dietary Sodium on Blood Pressure: A meta-analysis of randomized controlled trials. JAMA 1996, 275, 1590–1597. [Google Scholar] [CrossRef]
- Cook, N.R.; Cutler, J.A.; Obarzanek, E.; Buring, J.E.; Rexrode, K.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: Observational follow-up of the trials of hypertension prevention (TOHP). BMJ 2007, 334, 885. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; MacGregor, G.A. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef]
- Ohmori, S.; Kiyohara, Y.; Kato, I.; Kubo, M.; Tanizaki, Y.; Iwamoto, H.; Nakayama, K.; Abe, I.; Fujishima, M. Alcohol intake and future incidence of hypertension in a general Japanese population: The Hisayama study. Alcohol. Clin. Exp. Res. 2002, 26, 1010–1016. [Google Scholar] [CrossRef]
- Sesso, H.D.; Cook, N.R.; Buring, J.E.; Manson, J.E.; Gaziano, J.M. Alcohol Consumption and the Risk of Hypertension in Women and Men. Hypertension 2008, 51, 1080–1087. [Google Scholar] [CrossRef] [Green Version]
- Zilkens, R.R.; Burke, V.; Hodgson, J.M.; Barden, A.; Beilin, L.J.; Puddey, I.B. Red Wine and Beer Elevate Blood Pressure in Normotensive Men. Hypertension 2005, 45, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.A.; Burke, V.; Beilin, L.J.; Puddey, I.B. Randomized Controlled Intervention of the Effects of Alcohol on Blood Pressure in Premenopausal Women. Hypertension 2015, 66, 517–523. [Google Scholar] [CrossRef] [PubMed]
Food Groups | Meat-Based Pattern | Modern Pattern | Snack Pattern | Frugal Pattern |
---|---|---|---|---|
Cereals and cereal products | −0.110 | 0.042 | −0.118 | 0.563 a |
Tubers, starches and products | 0.032 | −0.111 | 0.512 a | 0.128 |
Meat | 0.697 a | −0.018 | 0.042 | −0.111 |
Poultry | 0.686 a | 0.010 | 0.062 | −0.096 |
Organ meat | 0.463 a | −0.025 | −0.020 | −0.003 |
Seafood | 0.569 a | 0.142 | 0.144 | 0.035 |
Milk and milk products | −0.067 | 0.211 a | 0.532 a | −0.277 a |
Eggs and egg products | 0.212 a | 0.041 | 0.420 a | 0.327 a |
Dried legumes and legume products | 0.063 | −0.137 | 0.522 a | 0.267 a |
Vegetables | 0.307 a | 0.082 | 0.352 a | 0.006 |
Salted and preserved vegetables | −0.063 | −0.068 | 0.076 | 0.511 a |
Fruit | 0.189 | 0.056 | 0.494 a | −0.214 a |
Nuts | 0.312 a | 0.133 | 0.129 | −0.042 |
Snacks | −0.014 | 0.381 a | 0.161 | −0.315 a |
Pastry snacks | 0.018 | 0.134 | 0.481 a | −0.219 a |
Alcoholic beverage | 0.287 a | 0.030 | 0.024 | 0.278 a |
Fats and oils | −0.037 | 0.565 a | 0.036 | 0.398 a |
Salt | −0.118 | 0.478 a | −0.086 | 0.466 a |
Desalted condiments | 0.202 | 0.791 a | 0.063 | 0.059 |
Soft beverages | 0.166 | 0.579 a | −0.029 | −0.195 |
Patterns | Meat-Based Pattern | Modern Pattern | Snack Pattern | Frugal Pattern | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1(509) | Q2(482) | Q3(374) | Q4(397) | Q1(387) | Q2(615) | Q3(418) | Q4(342) | Q1(395) | Q2(675) | Q3(343) | Q4(349) | Q1(439) | Q2(440) | Q3(444) | Q4(439) | |
Age | 51.7 ± 13.9 | 51.1 ± 12.6 | 49.5 ± 12.5 | 47.0 ± 12.9 a | 53.0 ± 12.6 | 50.1 ± 12.8 | 49.5 ± 13.2 | 47.0 ± 13.7 a | 50.4 ± 12.8 | 50.2 ± 12.6 | 49.6 ± 13.5 | 49.4 ± 14.3 | 47.2 ± 15.0 | 51.0 ± 12.7 | 50.5 ± 12.9 | 51.3 ± 11.5 a |
sex(%) | ||||||||||||||||
Male | 183(22.4) | 207(25.3) | 184(22.5) | 243(29.7) | 204(25.0) | 275(33.7) | 184(22.5) | 154(18.8) | 185(22.6) | 313(38.3) | 145(17.7) | 174(21.3) | 150(18.4) | 177(21.7) | 248(30.4) | 242(29.6) |
Female | 326(34.5) | 275(29.1) | 190(20.1) | 154(16.3) | 183(19.4) | 340(36.0) | 234(24.8) | 188(19.9) | 210(22.2) | 362(38.3) | 198(21.0) | 175(18.5) | 289(30.6) | 263(27.8) | 196(20.7) | 197(20.8) |
height(cm) | 160.0 ± 8.3 | 161.0 ± 7.8 | 161.4 ± 8.5 | 163.8 ± 7.5 a | 161.3 ± 7.8 | 161.2 ± 8.7 | 161.4 ± 8 | 161.9 ± 7.7 | 161.5 ± 8.5 | 161.3 ± 8.2 | 161.2 ± 7.8 | 161.8 ± 8.1 | 160.2 ± 8.1 | 160.1 ± 8.0 | 162.5 ± 8.4 | 162.9 ± 7.7 a |
weight(kg) | 61.4 ± 10.3 | 61.4 ± 10.2 | 61.0 ± 10.3 | 63.3 ± 10.5 | 61.8 ± 10.9 | 61.7 ± 10.2 | 61.3 ± 10.2 | 62.4 ± 10.2 | 62.5 ± 10.2 | 61.5 ± 10.3 | 61.7 ± 10.6 | 61.4 ± 10.4 | 59.9 ± 9.9 | 61.0 ± 10.1 | 62.3 ± 11.2 | 63.8 ± 9.7 a |
Waist circumstance(cm) | 81.5 ± 10.3 | 80.9 ± 10.2 | 80.3 ± 10.3 | 81.0 ± 10.5 | 81.1 ± 9.8 | 81.1 ± 9.6 | 80.3 ± 9.7 | 81.5 ± 9.2 | 81.6 ± 9.1 | 80.7 ± 9.4 | 80.6 ± 10.4 | 81.0 ± 9.6 | 78.8 ± 9.4 | 80.9 ± 10 | 81.4 ± 9.7 | 82.7 ± 8.9 a |
BMI(kg/m2) | 24.1 ± 3.8 | 23.7 ± 3.3 | 23.4 ± 3.1 | 23.5 ± 3.2 | 23.7 ± 3.6 | 23.7 ± 3.4 | 23.5 ± 3.3 | 23.8 ± 3.3 | 24.0 ± 3.5 | 23.6 ± 3.3 | 23.7 ± 3.5 | 23.4 ± 3.3 | 23.3 ± 3.1 | 23.8 ± 3.6 | 23.5 ± 3.3 | 24.1 ± 3.5 a |
BMI grade(%) | ||||||||||||||||
Light | 15(24.6) | 17(27.9) | 17(27.9) | 12(19.7) | 11(18.0) | 15(24.6) | 23(37.7) | 12(19.7) | 11(18.0) | 24(39.3) | 8(13.1) | 18(29.5) | 16(26.2) | 19(31.1) | 18(29.5) | 8(13.1) |
Normal | 258(27.6) | 250(26.8) | 202(21.6) | 224(24.0) | 211(22.6) | 334(35.8) | 220(23.6) | 169(18.1) | 207(22.2) | 348(37.3) | 182(19.5) | 197(21.1) | 247(26.4) | 220(23.6) | 251(26.9) | 216(23.1) |
Overweight | 173(29.2) | 165(27.9) | 126(21.3) | 128(21.6) | 128(21.6) | 208(35.1) | 133(22.5) | 123(20.8) | 130(22.0) | 249(42.1) | 114(19.3) | 99(16.7) | 140(23.6) | 157(26.5) | 128(21.6) | 167(28.2) a |
Obesity | 63(36.0) | 50(28.6) | 29(16.6) | 33(18.9) | 37(21.1) | 58(33.1) | 42(24.0) | 38(21.7) | 47(26.9) | 54(30.9) | 39(22.3) | 35(20.0) | 36(20.6) | 44(25.1) | 47(26.9) | 48(27.4) a |
Central obesity(%) | ||||||||||||||||
Yes | 158(34.6) | 132(28.9) | 83(18.2) | 84(18.4) a | 102(22.3) | 155(33.9) | 105(23.0) | 95(20.8) | 105(23.0) | 169(37.0) | 96(21.0) | 87(19.0) | 96(21.0) | 118(25.8) | 114(24.9) | 129(28.2) |
No | 351(26.9) | 350(26.8) | 291(22.3) | 313(24.0) | 285(21.8) | 460(35.2) | 313(24.0) | 247(18.9) | 290(22.2) | 506(38.8) | 247(18.9) | 262(20.1) | 343(26.3) | 322(24.7) | 330(25.3) | 310(23.8) |
Smoke(%) | ||||||||||||||||
Yes | 94(18.3) | 121(23.6) | 123(24.0) | 175(34.1) a | 131(25.5) | 168(32.7) | 121(23.6) | 93(18.1) | 113(22.0) | 204(39.8) | 88(17.2) | 108(21.1) | 82(16.0) | 118(23.0) | 166(32.4) | 147(28.7) a |
No | 415(33.2) | 361(28.9) | 251(20.1) | 222(17.8) | 256(20.5) | 447(35.8) | 297(23.8) | 249(19.9) | 282(22.6) | 471(37.7) | 255(20.4) | 241(19.3) | 357(28.6) | 322(25.8) | 278(22.3) | 292(23.4) |
Drink (%) | ||||||||||||||||
Yes | 52(15.4) | 87(25.7) | 74(21.9) | 125(37.0) a | 93(27.5) | 108(32.0) | 76(22.5) | 61(18.0) | 81(24.0) | 121(35.8) | 66(19.5) | 70(20.7) | 37(10.9) | 69(20.4) | 101(29.9) | 131(38.8) a |
No | 457(32.1) | 395(27.7) | 300(21.1) | 272(19.1) | 294(20.6) | 507(35.6) | 342(24.0) | 281(19.7) | 314(22.1) | 554(38.9) | 277(19.5) | 279(19.6) | 402(28.2) | 371(26.1) | 343(24.1) | 308(21.6) |
SBP(mmHg) | 125.4 ± 18.9 | 127 ± 19.3 | 125.4 ± 19.5 | 125.4 ± 20.4 | 127.5 ± 20.0 | 126.2 ± 19.1 | 124.6 ± 19.4 | 124.9 ± 19.6 | 125.8 ± 20.0 | 125.7 ± 18.9 | 125.6 ± 19.1 | 126.4 ± 20.6 | 122.1 ± 19.0 | 128.2 ± 20.3 | 127.5 ± 19.4 | 125.5 ± 18.9 a |
DBP(mmHg) | 79.4 ± 10.9 | 80.6 ± 10.2 | 81.1 ± 10.3 | 81.2 ± 11.4 a | 80.7 ± 10.6 | 80.6 ± 10.9 | 80.2 ± 10.2 | 80.6 ± 11.2 | 80.1 ± 11.2 | 80.5 ± 10.6 | 79.7 ± 10.3 | 81.8 ± 10.8 | 78.2 ± 11.1 | 81.7 ± 10.2 | 81.4 ± 10.7 | 80.8 ± 10.6 a |
High SBP(%) | ||||||||||||||||
Yes | 309(29.0) | 302(28.3) | 223(20.9) | 233(21.8) | 239(22.4) | 389(36.5) | 239(22.4) | 200(18.7) | 235(22.0) | 416(39.0) | 207(19.4) | 209(19.6) | 229(21.5) | 287(26.9) | 287(26.9) | 264(24.7) a |
No | 200(28.8) | 180(25.9) | 151(21.7) | 164(23.6) | 148(18.0) | 226(24.6) | 179(37.7) | 142(19.7) | 160(23.0) | 259(37.3) | 136(19.6) | 140(20.1) | 210(30.2) | 153(22.0) | 157(22.6) | 175(25.2) |
High DBP(%) | ||||||||||||||||
Yes | 263(26.7) | 277(28.1) | 218(22.1) | 228(23.1) | 218(22.1) | 349(35.4) | 220(22.3) | 199(20.2) | 217(22.0) | 376(38.1) | 171(17.3) | 222(22.5) | 205(20.8) | 269(27.3) | 258(26.2) | 254(25.8) a |
No | 246(31.7) | 205(26.4) | 156(20.1) | 169(21.8) | 169(21.8) | 266(34.3) | 198(25.5) | 143(18.4) | 178(22.9) | 299(38.5) | 172(22.2) | 127(16.4) | 234(30.2) | 171(22.0) | 186(24.0) | 185(23.8) |
Hypertension and prehypertension(%) | ||||||||||||||||
Yes | 343(27.7) | 347(28.1) | 265(21.4) | 282(22.8) | 273(22.1) | 441(35.7) | 284(23.0) | 239(19.3) | 274(22.2) | 476(38.5) | 230(18.6) | 257(20.8) | 270(21.8) | 326(26.4) | 326(26.4) | 315(25.5) a |
No | 166(31.6) | 135(25.7) | 109(20.8) | 115(21.9) | 114(22.1) | 174(35.4) | 134(22.3) | 103(20.2) | 121(23.0) | 199(37.9) | 113(21.5) | 92(17.5) | 169(32.2) | 114(21.7) | 118(22.5) | 124(23.6) |
Outcome | Dietary Pattern | Model | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|---|---|
OR(95%CI) | OR(95%CI) | OR(95%CI) | ||||
High SBP | Meat-based dietary pattern | model 1 | 1.000 | 1.086(0.840~1.403) | 0.956(0.728~1.255) | 0.920(0.704~1.202) |
model 2 | 1.000 | 1.141(0.859~1.514) | 1.051(0.768~1.439) | 1.045(0.760~1.436) | ||
Modern pattern | model 1 | 1.000 | 1.066(0.820~1.386) | 0.827(0.624~1.096) | 0.872(0.648~1.174) | |
model 2 | 1.000 | 1.254(0.946~1.663) | 1.013(0.745~1.377) | 1.152(0.830~1.599) | ||
Snack pattern | model 1 | 1.000 | 1.094(0.848~1.410) | 1.036(0.771~1.392) | 1.016(0.758~1.363) | |
model 2 | 1.000 | 1.121(0.853~1.474) | 1.044(0.756~1.442) | 1.219(0.878~1.694) | ||
Frugal pattern | model 1 | 1.000 | 1.720(1.312~2.256) a | 1.676(1.280~2.196) a | 1.383(1.059~1.808) a | |
model 2 | 1.000 | 1.477(1.101~1.981) a | 1.514(1.127~2.035) a | 1.063(0.782~1.446) | ||
High DBP | Meat-based dietary pattern | model 1 | 1.000 | 1.264(0.984~1.624) | 1.307(0.999~1.711) | 1.262(0.969~1.643) |
model 2 | 1.000 | 1.284(0.976~1.690) | 1.331(0.981~1.806) | 1.149(0.842~1.567) | ||
Modern pattern | model 1 | 1.000 | 1.017(0.787~1.315) | 0.861(0.652~1.137) | 1.079(0.804~1.448) | |
model 2 | 1.000 | 1.137(0.864~1.495) | 0.939(0.695~1.267) | 1.144(0.830~1.576) | ||
Snack pattern | model 1 | 1.000 | 1.032(0.804~1.324) | 0.816(0.610~1.090) | 1.434(1.068~1.925) a | |
model 2 | 1.000 | 0.982(0.752~1.282) | 0.725(0.530~0.994) | 1.442(1.044~1.993) a | ||
Frugal pattern | model 1 | 1.000 | 1.796(1.373~2.348) a | 1.583(1.214~2.066) a | 1.567(1.201~2.046) a | |
model 2 | 1.000 | 1.814(1.363~2.416) a | 1.581(1.185~2.109) a | 1.395(1.031~1.888) a | ||
Hypertension and prehypertension | Meat-based dietary pattern | model 1 | 1.000 | 1.244(0.948~1.632) | 1.177(0.880~1.572) | 1.187(0.892~1.579) |
model 2 | 1.000 | 1.335(0.989~1.801) | 1.328(0.951~1.855) | 1.306(0.931~1.833) | ||
Modern pattern | model 1 | 1.000 | 1.058(0.800~1.401) | 0.885(0.656~1.195) | 0.969(0.705~1.332) | |
model 2 | 1.000 | 1.281(0.947~1.733) | 1.082(0.780~1.502) | 1.203(0.847~1.709) | ||
Snack pattern | model 1 | 1.000 | 1.056(0.806~1.384) | 0.899(0.659~1.226) | 1.234(0.896~1.699) | |
model 2 | 1.000 | 1.044(0.780~1.396) | 0.836(0.595~1.174) | 1.379(0.965~1.969) | ||
Frugal pattern | model 1 | 1.000 | 1.790(1.343~2.385) a | 1.729(1.300~2.300) a | 1.590(1.198~2.110) a | |
model 2 | 1.000 | 1.627(1.195~2.217) a | 1.620(1.186~2.212) a | 1.285(0.928~1.781) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Zhou, Y.; Wang, Y.; Sun, G.; Dai, Y. The Association of Dietary Pattern with the Risk of Prehypertension and Hypertension in Jiangsu Province: A Longitudinal Study from 2007 to 2014. Int. J. Environ. Res. Public Health 2022, 19, 7620. https://doi.org/10.3390/ijerph19137620
Xia H, Zhou Y, Wang Y, Sun G, Dai Y. The Association of Dietary Pattern with the Risk of Prehypertension and Hypertension in Jiangsu Province: A Longitudinal Study from 2007 to 2014. International Journal of Environmental Research and Public Health. 2022; 19(13):7620. https://doi.org/10.3390/ijerph19137620
Chicago/Turabian StyleXia, Hui, Yuhao Zhou, Yuanyuan Wang, Guiju Sun, and Yue Dai. 2022. "The Association of Dietary Pattern with the Risk of Prehypertension and Hypertension in Jiangsu Province: A Longitudinal Study from 2007 to 2014" International Journal of Environmental Research and Public Health 19, no. 13: 7620. https://doi.org/10.3390/ijerph19137620
APA StyleXia, H., Zhou, Y., Wang, Y., Sun, G., & Dai, Y. (2022). The Association of Dietary Pattern with the Risk of Prehypertension and Hypertension in Jiangsu Province: A Longitudinal Study from 2007 to 2014. International Journal of Environmental Research and Public Health, 19(13), 7620. https://doi.org/10.3390/ijerph19137620