Microbial Source Tracking as a Method of Determination of Beach Sand Contamination
Abstract
:1. Introduction
The Case under Study
2. Materials and Methods
2.1. Collection and Preservation of the Sand Samples
2.2. Microbiological Parameters
2.3. DNA Extraction from Sand Samples
2.4. Microbial Source Tracking (MST) Analyses
2.4.1. Primers
2.4.2. DNA Extraction for MST Validation
2.4.3. PCR Detection 1—Fresh Coastal Sand Samples
2.4.4. PCR Detection 2—Fecal Samples for MST Validation and Frozen Coastal Sand Samples
3. Results
3.1. Management and Remediation Measures
3.2. MST Markers Validation
3.3. Microbiological and MST Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, A.B.; Oliveira, A.J.F.C. Diversidade de microrganismos indicadores utilizados na avaliação da contaminação fecal de areias de praias recreacionais marinhas: Estado atual do conhecimento e perspectivas. Mundo Saúde 2011, 35, 105–114. [Google Scholar] [CrossRef]
- Brandão, J.; Wergikosky, B.; Rosado, C.; Noronha, G.; Veríssimo, C.; Falcão, L.; Giraldes, A.; Simões, M.; Rebelo, H. Qualidade Microbiológica de Areias de Praias Litorais—Relatório Final; Associação Bandeira Azul da Europa: Alfragide, Portugal, 2002; pp. 1–132. [Google Scholar]
- Brandão, J.; Silva, C.; Alves, C.; Cunha, M.; Moura, I.; Veríssimo, C.; Wergikoski, B.; Parada, H.; Falcão, L.; Barroso, M.; et al. Monitorização da qualidade das areias em zonas balneares—Época balnear de 2008; Associação Bandeira Azul da Europa: Lisboa, Portugal, 2008; pp. 1–35. [Google Scholar]
- Brito, S.; Sabino, R.; Veríssimo, C.; Silva, S.; Valério, E.; Brandão, J. Fungos em areias e águas costeiras e interiores em Portugal—Relevância para a saúde humana e bem-estar. Obs. Bol. Epidemiol. 2019, 11, 49–54. [Google Scholar]
- Lescreck, M.C.; Petroni, R.G.G.; Cortez, F.S.; Santos, A.R.; Coutinho, P.O.; Pusceddu, F.H. Análise da qualidade sanitária da areia das praias de Santos, litoral do estado de São Paulo. Eng. Sanit. E Ambient. 2016, 21, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Safaie, A.; Weiskerger, C.J.; Nevers, M.B.; Byappanahalli, M.N.; Phanikumar, M.S. Evaluating the impacts of foreshore sand and birds on microbiological contamination at a freshwater beach. Water Res. 2021, 190, 116671. [Google Scholar] [CrossRef] [PubMed]
- Weiskerger, C.J.; Brandão, J. Fungal contaminants in water and sand: A new frontier for quantitative microbial risk assessment. Curr. Opin. Environ. Sci. Health 2020, 16, 73–81. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines on Recreational Water Quality: Volume 1 Coastal and Fresh Waters; World Health Organization: Geneva, Switzerland, 2021; pp. 1–164. [Google Scholar]
- World Health Organization. Guidelines for Safe Recreational Water Environments: Volume 1 Coastal and Fresh Waters; World Health Organization: Geneva, Switzerland, 2003; pp. 1–219. [Google Scholar]
- Solo-Gabriele, H.M.; Harwood, V.J.; Kay, D.; Fujioka, R.S.; Sadowsky, M.J.; Whitman, R.L.; Wither, A.; Caniça, M.; da Fonseca, R.C.; Duarte, A.; et al. Beach sand and the potential for infectious disease transmission: Observations and recommendations. J. Mar. Biol. Assoc. UK 2015, 96, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Brandão, J.; Albergaria, I.; Albuquerque, J.; José, S.; Grossinho, J.; Ferreira, F.; Raposo, A.; Rodrigues, R.; Silva, C.; Jordao, L.; et al. Untreated sewage contamination of beach sand from a leaking underground sewage system. Sci. Total Environ. 2020, 740, 140237. [Google Scholar] [CrossRef]
- Gast, R.J.; Gorrell, L.; Raubenheimer, B.; Elgar, S. Impact of erosion and accretion on the distribution of enterococci in beach sands. Cont. Shelf Res. 2011, 31, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Brandão, J.; Gangneux, J.; Arikan-Akdagli, S.; Barac, A.; Bostanaru, A.; Brito, S.; Bull, M.; Çerikçioğlu, N.; Chapman, B.; Efstratiou, M.; et al. Mycosands: Fungal diversity and abundance in beach sand and recreational waters—Relevance to human health. Sci. Total Environ. 2021, 781, 146598. [Google Scholar] [CrossRef]
- Ko, H.Y.; Cho, K.; Park, S.; Kim, J.H.; Kang, J.-H.; Jeong, Y.S.; Choi, J.D.; Sin, Y.; Lee, C.; Ko, G. Host-Specific Bacteroides Markers-Based Microbial Source Tracking in Aquaculture Areas. Microbes Environ. 2018, 33, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Pathogen Safety Data Sheets. Available online: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment.html (accessed on 20 April 2022).
- Romão, D.; Abreu, R.; Calado, G.; Freitas, F.; Rodrigues, P.; Ferreira, C.; Campos, A.; Temtem, R.; Freitas, M.; Andrade, C.; et al. Madeira 2010—Aftermath of flashfloods and mudslides on bathing water quality indicators and on sand microbial levels. In Proceedings of thePan-European Symposium on Water and Sanitation Safety Planning and Extreme Weather Events, Bilthoven, The Netherlands, 7 April 2017. [Google Scholar] [CrossRef]
- Henry, R.; Schang, C.; Coutts, S.; Kolotelo, P.; Prosser, T.; Crosbie, N.; Grant, T.; Cottam, D.; O’Brien, P.; Deletic, A.; et al. Into the deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal waters. Water Res. 2016, 93, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Nevers, M.B.; Byappanahalli, M.N.; Nakatsu, C.H.; Kinzelman, J.L.; Phanikumar, M.S.; Shively, D.A.; Spoljaric, A. Interaction of bacterial communities and indicators of water quality in shoreline sand, sediment, and water of Lake Michigan. Water Res. 2020, 178, 115671. [Google Scholar] [CrossRef] [PubMed]
- Ballesté, E.; Demeter, K.; Masterson, B.; Timoneda, N.; Sala-Comorera, L.; Meijer, W.G. Implementation and integration of microbial source tracking in a river watershed monitoring plan. Sci. Total Environ. 2020, 736, 139573. [Google Scholar] [CrossRef]
- Gawler, A.H.; Beecher, J.E.; Brandão, J.; Carroll, N.M.; Falcão, L.; Gourmelon, M.; Masterson, B.; Nunes, B.; Porter, J.; Rincé, A.; et al. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res. 2007, 41, 3780–3784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, K.; Waines, P.; Nisr, R.; Glegg, G.; Bradley, G. Development and use of Bacteroides 16S rRNA polymerase chain reaction assay for source tracking dog faecal pollution in bathing waters. Hydrol. Curr. Res. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mieszkin, S.; Furet, J.-P.; Corthier, G.; Gourmelon, M. Estimation of Pig Fecal Contamination in a River Catchment by Real-Time PCR Using Two Pig-Specific Bacteroidales 16S rRNA Genetic Markers. Appl. Environ. Microbiol. 2009, 75, 3045–3054. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.; Senay, C.; Young, S.; Nayak, B.; Lobos, A.; Conrad, J.; Harwood, V. Determination of wild animal sources of fecal indicator bacteria by microbial source tracking (MST) influences regulatory decisions. Water Res. 2018, 144, 424–434. [Google Scholar] [CrossRef]
- Ryu, H.; Griffith, J.F.; Khan, I.U.H.; Hill, S.; Edge, T.A.; Toledo-Hernandez, C.; Gonzalez-Nieves, J.; Domingo, J.S. Comparison of Gull Feces-Specific Assays Targeting the 16S rRNA Genes of Catellicoccus marimammalium and Streptococcus spp. Appl. Environ. Microbiol. 2012, 78, 1909–1916. [Google Scholar] [CrossRef] [Green Version]
- Shanks, O.C.; White, K.; Kelty, C.A.; Hayes, S.; Sivaganesan, M.; Jenkins, M.; Varma, M.; Haugland, R.A. Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution. Appl. Environ. Microbiol. 2010, 76, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, Z.; Liu, R.; Liang, H.; Yu, Z.; Zhang, H. Validation of Bacteroidales-based microbial source tracking markers for pig fecal pollution and their application in two rivers of North China. Front. Environ. Sci. Eng. 2020, 14, 67. [Google Scholar] [CrossRef]
- Schoen, M.E.; Ashbolt, N.J. Assessing Pathogen Risk to Swimmers at Non-Sewage Impacted Recreational Beaches. Environ. Sci. Technol. 2010, 44, 2286–2291. [Google Scholar] [CrossRef] [PubMed]
- Schoen, M.E.; Soller, J.A.; Ashbolt, N.J. Evaluating the importance of faecal sources in human-impacted waters. Water Res. 2011, 45, 2670–2680. [Google Scholar] [CrossRef] [PubMed]
- Soller, J.A.; Bartrand, T.; Ashbolt, N.J.; Ravenscroft, J.; Wade, T.J. Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Res. 2010, 44, 4736–4747. [Google Scholar] [CrossRef] [PubMed]
- Soller, J.A.; Schoen, M.E.; Bartrand, T.; Ravenscroft, J.; Ashbolt, N.J. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res. 2010, 44, 4674–4691. [Google Scholar] [CrossRef]
- Zhang, Q.; Gallard, J.; Wu, B.; Harwood, V.J.; Sadowsky, M.J.; Hamilton, K.A.; Ahmed, W. Synergy between quantitative microbial source tracking (qMST) and quantitative microbial risk assessment (QMRA): A review and prospectus. Environ. Int. 2019, 130, 104703. [Google Scholar] [CrossRef]
- Fujioka, R.S.; Solo-Gabriele, H.M.; Byappanahalli, M.N.; Kirs, M. U.S. Recreational Water Quality Criteria: A Vision for the Future. Int. J. Environ. Res. Public Health 2015, 12, 7752–7776. [Google Scholar] [CrossRef] [Green Version]
- Delahoy, M.J.; Wodnik, B.; McAliley, L.; Penakalapati, G.; Swarthout, J.; Freeman, M.C.; Levy, K. Pathogens transmitted in animal feces in low- and middle-income countries. Int. J. Hyg. Environ. Health 2018, 221, 661–676. [Google Scholar] [CrossRef]
- Penakalapati, G.; Swarthout, J.; Delahoy, M.J.; McAliley, L.; Wodnik, B.; Levy, K.; Freeman, M.C. Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities. Environ. Sci. Technol. 2017, 51, 11537–11552. [Google Scholar] [CrossRef] [Green Version]
- García-Aljaro, C.; Blanch, A.R.; Campos, C.; Jofre, J.; Lucena, F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J. Appl. Microbiol. 2018, 126, 701–717. [Google Scholar] [CrossRef] [Green Version]
- Griffith, J.; Layton, B.; Boehm, A.; Holden, P.; Jay, J.; Hagedorn, C.; McGee, C.; Weisberg, S. The California Microbial Source Identification Manual: A Tiered Approach to Identifying Fecal Pollution Sources to Beaches; Southern California Coastal Water Research Project (SCCWRP): Costa Mesa, CA, USA, 2013; pp. 1–88. [Google Scholar]
- Hughes, B.; Beale, D.J.; Dennis, P.G.; Cook, S.; Ahmed, W. Cross-Comparison of Human Wastewater-Associated Molecular Markers in Relation to Fecal Indicator Bacteria and Enteric Viruses in Recreational Beach Waters. Appl. Environ. Microbiol. 2017, 83, e00028-17. [Google Scholar] [CrossRef] [Green Version]
- Unno, T.; Staley, C.; Brown, C.M.; Han, D.; Sadowsky, M.J.; Hur, H.-G. Fecal pollution: New trends and challenges in microbial source tracking using next-generation sequencing. Environ. Microbiol. 2018, 20, 3132–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, K.G.; Samadpour, M. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 2007, 41, 3517–3538. [Google Scholar] [CrossRef] [PubMed]
- Harwood, V.J.; Staley, C.; Badgley, B.D.; Borges, K.; Korajkic, A. Microbial source tracking markers for detection of fecal contamination in environmental waters: Relationships between pathogens and human health outcomes. FEMS Microbiol. Rev. 2014, 38, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Staley, Z.R.; Boyd, R.J.; Shum, P.; Edge, T.A. Microbial Source Tracking Using Quantitative and Digital PCR To Identify Sources of Fecal Contamination in Stormwater, River Water, and Beach Water in a Great Lakes Area of Concern. Appl. Environ. Microbiol. 2018, 84, e01634-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoeckel, D. Selection and application of microbial source tracking tools for water-quality investigations. In Book 2: Collection of Environmental Data, Section A. Biological Science—Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2005; pp. 1–43. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency; Office of Water; Office of Science and Technology; Health and Ecological Criteria Division. Overview of Technical Support Materials: A Guide to the Site-Specific Alternative Recreational Criteria TSM Documents; Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–20.
- Vadde, K.K.; McCarthy, A.J.; Rong, R.; Sekar, R. Quantification of Microbial Source Tracking and Pathogenic Bacterial Markers in Water and Sediments of Tiaoxi River (Taihu Watershed). Front. Microbiol. 2019, 10, 699. [Google Scholar] [CrossRef]
- Ahmed, W.; Gyawali, P.; Feng, S.; McLellan, S.L. Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Appl. Environ. Microbiol. 2019, 85, e00641-19. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, A.E.; Field, K.G. A PCR Assay To Discriminate Human and Ruminant Feces on the Basis of Host Differences in Bacteroides-Prevotella Genes Encoding 16S rRNA. Appl. Environ. Microbiol. 2000, 66, 4571–4574. [Google Scholar] [CrossRef] [Green Version]
- Sabino, R.; Veríssimo, C.; Cunha, M.A.; Wergikoski, B.; Ferreira, F.C.; Rodrigues, R.; Parada, H.; Falcão, L.; Rosado, L.; Pinheiro, C.; et al. Pathogenic fungi: An unacknowledged risk at coastal resorts? New insights on microbiological sand quality in Portugal. Mar. Pollut. Bull. 2011, 62, 1506–1511. [Google Scholar] [CrossRef] [Green Version]
- Google Earth, ©2019 CNES/Airbus. Available online: https://earth.google.com/web/search/Zona+Balnear+da+Prainha,+Azores/@38.6534365,-27.21972419,6.49766264a,418.27412965d,35y,360h,0t,0r/data=CigiJgokCesEdVva90VAEZVuSXJ-8j1AGSM6s_f9kRjAIdK8ln2W6UjA (accessed on 21 January 2021).
- Simbiente Açores—Engenharia e Gestão Ambiental. Plano de Gestão da Região Hidrográfica dos Açores 2022–2027—Relatório Técnico: Volume 3. Terceira—Caracterização e Diagnóstico da Situação de Referência; Simbiente Açores—Engenharia e Gestão Ambiental: Lagoa, Portugal, 2021; pp. 1–323. [Google Scholar]
- Holcomb, D.A.; Knee, J.; Sumner, T.; Adriano, Z.; de Bruijn, E.; Nalá, R.; Cumming, O.; Brown, J.; Stewart, J.R. Human fecal contamination of water, soil, and surfaces in households sharing poor-quality sanitation facilities in Maputo, Mozambique. Int. J. Hyg. Environ. Health 2020, 226, 113496. [Google Scholar] [CrossRef]
- Green, H.C.; Haugland, R.A.; Varma, M.; Millen, H.T.; Borchardt, M.A.; Field, K.G.; Walters, W.A.; Knight, R.; Sivaganesan, M.; Kelty, C.A.; et al. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples. Appl. Environ. Microbiol. 2014, 80, 3086–3094. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Domingo, J.W.S.; Lamendella, R.; Edge, T.; Hill, S. Phylogenetic Diversity and Molecular Detection of Bacteria in Gull Feces. Appl. Environ. Microbiol. 2008, 74, 3969–3976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanks, O.C.; Atikovic, E.; Blackwood, A.D.; Lu, J.; Noble, R.T.; Domingo, J.S.; Seifring, S.; Sivaganesan, M.; Haugland, R.A. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution. Appl. Environ. Microbiol. 2008, 74, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, P.; Dias, D.; Costa, S.; Brown, B.; Silva, S.; Valério, E. Bacteroides spp. and traditional fecal indicator bacteria in water quality assessment—An integrated approach for hydric resources management in urban centers. J. Environ. Manag. 2020, 271, 110989. [Google Scholar] [CrossRef]
- Whitman, R.L.; Harwood, V.J.; Edge, T.A.; Nevers, M.B.; Byappanahalli, M.N.; Vijayavel, K.; Brandão, J.; Sadowsky, M.J.; Alm, E.W.; Crowe, A.; et al. Microbes in beach sands: Integrating environment, ecology and public health. Rev. Environ. Sci. Bio. Technol. 2014, 13, 329–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, C.D.; Sams, E.; Dufour, A.P.; Brenner, K.P.; Haugland, R.A.; Chern, E.; Wing, S.; Marshall, S.; Love, D.C.; Serre, M.; et al. Fecal Indicators in Sand, Sand Contact, and Risk of Enteric Illness Among Beachgoers. Epidemiology 2012, 23, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirs, M.; Harwood, V.; Fidler, A.; Gillespie, P.; Fyfe, W.; Blackwood, A.; Cornelisen, C. Source tracking faecal contamination in an urbanised and a rural waterway in the Nelson-Tasman region, New Zealand. N. Z. J. Mar. Freshw. Res. 2011, 45, 43–58. [Google Scholar] [CrossRef]
- Somnark, P.; Chyerochana, N.; Kongprajug, A.; Mongkolsuk, S.; Sirikanchana, K. PCR data and comparative performance of Bacteroidales microbial source tracking genetic markers. Data Brief 2018, 19, 156–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, R.; Lin, K.; Wang, Y.; Lu, J. Performance of host-associated genetic markers for microbial source tracking in China. Water Res. 2020, 175, 115670. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Ashbolt, N.; Grabow, W.; Snozzi, M. Indicators of microbial water quality. In Water Quality: Guidelines, Standards and Health: Assessment of Risk and Risk Management for Water-Related Infectious Disease; Fewtrell, L., Bartram, J., Eds.; World Health Organization: London, UK, 2001; pp. 289–316. [Google Scholar]
- Bolinger, H. The Survival of Enterococcus faecalis and Bacteroides fragilis on Four Different Food Contact Surfaces. Master’s Thesis, Rutgers University, Graduate School, New Brunswick, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Elmanama, A.A.; Fahd, M.I.; Afifi, S.; Abdallah, S.; Bahr, S. Microbiological beach sand quality in Gaza Strip in comparison to seawater quality. Environ. Res. 2005, 99, 1–10. [Google Scholar] [CrossRef]
- Halliday, E.; Gast, R.J. Bacteria in Beach Sands: An Emerging Challenge in Protecting Coastal Water Quality and Bather Health. Environ. Sci. Technol. 2011, 45, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.; Figueira, C.; Aguiar, N.; Vasconcelos, R.; Vasconcelos, S.; Calado, G.; Brandão, J.; Prada, S. Microbiological and mycological beach sand quality in a volcanic environment: Madeira archipelago, Portugal. Sci. Total Environ. 2013, 461–462, 469–479. [Google Scholar] [CrossRef] [PubMed]
Target | Primers’ Names | Sequence (5′–3′) | Conventional PCR Annealing Temperature | Tested by Probe-Based qPCR | References |
---|---|---|---|---|---|
Humans | HF183F BacR287 | F: ATCATGAGTTCACATGTCCG R: CTTCCTCTCAGAACCCCTATCC P: FAM–CTAATGGAACGCATCCC–MGBEQ | 53 °C | YES | [51] |
Dogs | DF113F DF472R | F: ATCTCAAGAGCACATGCAA R: AATAAATCCGGATAACGCTC | 53 °C | NO | [21] |
Seagulls | Gull-2F Gull-2R | F: TGCATCGACCTAAAGTTTTGAG R: GTCAAAGAGCGAGCAGTTACTA | 53 °C | NO | [52] |
Ruminants | RUM_CF128F RUM_Bac708R | F: CCAACYTTCCCGWTACTC R: CAATCGGAGTTCTTCGTG | 60 °C | NO | [46] |
Cows | CowM2F CowM2R | F: CGGCCAAATACTCCTGATCGT R: GCTTGTTGCGTTCCTTGAGATAAT P: FAM–AGGCACCTATGTCCTTTACCT CATCAACTACAGACA–MGBEQ | ND | YES | [53] |
Cows | CowM3F CowM3R | F: CCTCTAATGGAAAATGGATGGTATCT R: CCATACTTCGCCTGCTAATACCTT | 53 °C | NO | [53] |
Pigs | Bac41F Bac163R | F: GCATGAATTTAGCTTGCTAAATTTGAT R: ACCTCATACGGTATTAATCCGC | 60 °C | NO | [22] |
Sampling Date | 21 August 2019 | 27 August 2019 | 3 September 2019 | 10 September 2019 | |||||
---|---|---|---|---|---|---|---|---|---|
Sampling Sites | Fecal Indicator Bacteria Results | MST Results | Fecal Indicator Bacteria Results | ||||||
Humans | Dogs | Seagulls | Ruminants | Bovine | |||||
Site 1 | Coliform bacteria, 1 MPN/g Escherichia coli, 1 MPN/g Enterococcus spp., <1 MPN/g | NEG | NEG | NEG | NEG | ND | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | ||
Site 2 | Coliform bacteria, 201 MPN/g Escherichia coli, 84 MPN/g Enterococcus spp., 201 MPN/g | NEG | NEG | NEG | NEG | NEG | Coliform bacteria, 4 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, 102 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g |
Site 3 | Coliform bacteria, >201 MPN/g Escherichia coli, >201 MPN/g Enterococcus spp., 201 MPN/g | NEG | NEG | NEG | NEG | ND | Coliform bacteria, 4 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | |
Site 4 | Coliform bacteria, 14 MPN/g Escherichia coli, 1 MPN/g Enterococcus spp., 10 MPN/g | NEG | POS | NEG | NEG | NEG | Coliform bacteria, 9 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., 9 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | |
Site 5 | Coliform bacteria, >201 MPN/g Escherichia coli, 110 MPN/g Enterococcus spp., 74 MPN/g | NEG | NEG | POS | NEG | ND | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | |
Site 6 | Coliform bacteria, 166 MPN/g Escherichia coli, 63 MPN/g Enterococcus spp., 51 MPN/g | NEG | NEG | NEG | NEG | ND | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | ||
Site 7 | Coliform bacteria, 5 MPN/g Escherichia coli, 1 MPN/g Enterococcus spp., 130 MPN/g | NEG | NEG | NEG | NEG | NEG | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | ||
Site 8 | Coliform bacteria, >201 MPN/g Escherichia coli, 12 MPN/g Enterococcus spp., 24 MPN/g | NEG | NEG | NEG | POS | NEG | Coliform bacteria, 1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., 1 MPN/g | ||
Site 9 | Coliform bacteria, >201 MPN/g Escherichia coli, 28 MPN/g Enterococcus spp., 28 MPN/g | NEG | NEG | NEG | POS | NEG | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g |
Site 10 | Coliform bacteria, 201 MPN/g Escherichia coli, 13 MPN/g Enterococcus spp., 4 MPN/g | NEG | NEG | NEG | NEG | ND | Coliform bacteria, 2 MPN/g Escherichia coli, 1 MPN/g Enterococcus spp., <1 MPN/g | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g | |
Site 11 | Coliform bacteria, <1 MPN/g Escherichia coli, <1 MPN/g Enterococcus spp., <1 MPN/g |
Target | Primers’ Names | Humans | Domestic Animals | Livestock | Birds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cat | Dog | Donkey | Horse | Cow | Goat | Sheep | Pig | Canaries | Seagull | Chicken | Duck | Turkey | |||
Humans | HF183F BacR287 | ✓ | ND | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ND | ✗ | ✗ | ✗ | ✗ |
Dogs | DF113F DF472R | ✗ | ✗ | ✓ | ND | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ND | ✗ | ND | ND |
Seagulls | Gull-2F Gull-2R | ✗ | ND | ✗ | ND | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
Ruminants | RUM_CF128F RUM_Bac708R | ✗ | ND | ✗ | ✗ | ⚠ | ✓ | ✓ | ✓ | ✗ | ND | ND | ✗ | ND | ND |
Cows | CowM3F CowM3R | ✗ | ND | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ND | ND | ND | ✗ | ND |
Pigs | Bac41F Bac163R | ✗ | ND | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ND | ND | ✗ | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valério, E.; Santos, M.L.; Teixeira, P.; Matias, R.; Mendonça, J.; Ahmed, W.; Brandão, J. Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. Int. J. Environ. Res. Public Health 2022, 19, 7934. https://doi.org/10.3390/ijerph19137934
Valério E, Santos ML, Teixeira P, Matias R, Mendonça J, Ahmed W, Brandão J. Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. International Journal of Environmental Research and Public Health. 2022; 19(13):7934. https://doi.org/10.3390/ijerph19137934
Chicago/Turabian StyleValério, Elisabete, Maria Leonor Santos, Pedro Teixeira, Ricardo Matias, João Mendonça, Warish Ahmed, and João Brandão. 2022. "Microbial Source Tracking as a Method of Determination of Beach Sand Contamination" International Journal of Environmental Research and Public Health 19, no. 13: 7934. https://doi.org/10.3390/ijerph19137934
APA StyleValério, E., Santos, M. L., Teixeira, P., Matias, R., Mendonça, J., Ahmed, W., & Brandão, J. (2022). Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. International Journal of Environmental Research and Public Health, 19(13), 7934. https://doi.org/10.3390/ijerph19137934