Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Supplementation
2.3. Testing Procedures
2.3.1. Running Anaerobic Sprint Test (RAST)
2.3.2. One-Repetition Maximum Test
2.3.3. Vertical Jump Test
2.3.4. Simulated Casualty Evacuation Test (SCET)
2.3.5. Mathematical Processing
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Physical and Cognitive Tests
3.2.1. Repeated Anaerobic Sprint Test (RAST)
3.2.2. Chest Press
3.2.3. Leg Press
3.2.4. Vertical Jump
3.2.5. Simulated Casualty Evacuation Test (SCET)
3.2.6. 7-Mathematical Processing
3.3. Blood Analyses
3.3.1. Testosterone
3.3.2. Cortisol
3.3.3. IGF-1
3.3.4. Post-Exercise Lactate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knapik, J.J.; Trone, D.W.; Austin, K.G.; Steelman, R.A.; Farina, E.K.; Lieberman, H.R. Prevalence, adverse events, and factors associated with dietary supplement and nutritional supplement use by US Navy and Marine Corps personnel. J. Acad. Nutr. Diet. 2016, 116, 1423–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.L.; Russo, M.B. Neurocognitive monitors: Toward the prevention of cognitive performance decrements and catastrophic failures in the operational environment. Aviat. Space Environ. Med. 2007, 78, B144–B152. [Google Scholar] [PubMed]
- Goh, V.H.-H.; Tong, T.Y.-Y.; Lim, C.-L.; Low, E.C.-T.; Lee, L.K.-H. Effects of one night of sleep deprivation on hormone profiles and performance efficiency. Mil. Med. 2001, 166, 427–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varanoske, A.N.; Wells, A.J.; Kozlowski, G.J.; Gepner, Y.; Frosti, C.L.; Boffey, D.; Coker, N.A.; Harat, I.; Hoffman, J.R. Effects of β-alanine supplementation on physical performance, cognition, endocrine function, and inflammation during a 24 h simulated military operation. Physiol. Rep. 2018, 6, e13938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxvanderweyden, M.; Willoughby, D.S. Creatine and Beta-Alanine Supplementation for Increased Anaerobic Performance in Sprinting, Jumping, and Throwing Track and Field Athletes. J. Exerc. Nutr. 2018, 1, 1–8. [Google Scholar]
- Ostojic, S.M.; Forbes, S.C. Perspective: Creatine, a conditionally essential nutrient: Building the case. Adv. Nutr. 2022, 13, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Cordingley, D.M.; Cornish, S.M.; Gualano, B.; Roschel, H.; Ostojic, S.M.; Rawson, E.S.; Roy, B.D.; Prokopidis, K.; Giannos, P. Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022, 14, 921. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 1–18. [Google Scholar] [CrossRef]
- Impson-Davey, G. Effects of supplementation with creatine monohydrate and beta-alanine, alone or combined, on repeated sprint performance and physiological parameters in amateur team and racket sport players. Kinesiology 2020, 52, 115–123. [Google Scholar]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Spriet, L.; Lindinger, M.; McKelvie, R.; Heigenhauser, G.; Jones, N. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J. Appl. Physiol. 1989, 66, 8–13. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Smith-Ryan, A.E.; Hirsch, K.R.; Roberts, M.D.; VanDusseldorp, T.A.; Stratton, M.T.; Kaviani, M.; Little, J.P. Supplements and nutritional interventions to augment high-intensity interval training physiological and performance adaptations—A narrative review. Nutrients 2020, 12, 390. [Google Scholar] [CrossRef] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Baguet, A.; Reyngoudt, H.; Pottier, A.; Everaert, I.; Callens, S.; Achten, E.; Derave, W. Carnosine loading and washout in human skeletal muscles. J. Appl. Physiol. 2009, 106, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Baguet, A.; Bourgois, J.; Vanhee, L.; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. J. Appl. Physiol. 2010, 109, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.C.; Tallon, M.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H.J.; Fallowfield, J.L.; Hill, C.; Sale, C.; Wise, J.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006, 30, 279–289. [Google Scholar] [CrossRef]
- Hill, C.; Harris, R.C.; Kim, H.; Harris, B.; Sale, C.; Boobis, L.; Kim, C.; Wise, J.A. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2007, 32, 225–233. [Google Scholar] [CrossRef]
- Murakami, T.; Furuse, M. The impact of taurine-and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: Antidepressant versus anxiolytic-like effects. Amino Acids 2010, 39, 427–434. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Landau, G.; Stout, J.R.; Hoffman, M.W.; Shavit, N.; Rosen, P.; Moran, D.S.; Fukuda, D.H.; Shelef, I.; Carmom, E. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 2015, 47, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.; Ratamess, N.; Kang, J.; Mangine, G.; Faigenbaum, A.; Stout, J. Effect of creatine and ß-alanine supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 430–446. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.; Ratamess, N.; Ross, R.; Kang, J.; Magrelli, J.; Neese, K.; Faigenbaum, A.; Wise, J. β-Alanine and the hormonal response to exercise. Int. J. Sports Med. 2008, 29, 952–958. [Google Scholar] [CrossRef]
- Jones, A.; Atter, T.; George, K. Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players. Med. Sci. Sports Exerc. 1998, 30, 140. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Stavinoha, T.B.; McGraw, S.M.; White, A.; Hadden, L.S.; Marriott, B.P. Use of dietary supplements among active-duty US Army soldiers. Am. J. Clin. Nutr. 2010, 92, 985–995. [Google Scholar] [CrossRef]
- Zoeller, R.; Stout, J.; O’kroy, J.; Torok, D.; Mielke, M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids 2007, 33, 505–510. [Google Scholar] [CrossRef]
- Okudan, N.; Belviranli, M.; Pepe, H.; Gökbel, H. The effects of beta alanine plus creatine administration on performance during repeated bouts of supramaximal exercise in sedentary men. J. Sports Med. Phys. Fit. 2014, 55, 1322–1328. [Google Scholar]
- Kresta, J.Y.; Oliver, J.M.; Jagim, A.R.; Fluckey, J.; Riechman, S.; Kelly, K.; Meininger, C.; Mertens-Talcott, S.U.; Rasmussen, C.; Kreider, R.B. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J. Int. Soc. Sports Nutr. 2014, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.G.; Candow, D.G.; Chilibeck, P.D.; MacNeil, L.G.; Roy, B.D.; Tarnopolsky, M.A.; Ziegenfuss, T. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Zagatto, A.M.; Beck, W.R.; Gobatto, C.A. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.-I.; Kim, E.; Fahs, C.A.; Rossow, L.; Young, K.; Ferguson, S.L.; Thiebaud, R.; Sherk, V.D.; Loenneke, J.P.; Kim, D. Reliability of the one-repetition maximum test based on muscle group and gender. J. Sports Sci. Med. 2012, 11, 221. [Google Scholar]
- Aragón, L.F. Evaluation of four vertical jump tests: Methodology, reliability, validity, and accuracy. Meas. Phys. Educ. Exerc. Sci. 2000, 4, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Stout, J.R.; Harris, R.C.; Moran, D.S. β-Alanine supplementation and military performance. Amino Acids 2015, 47, 2463–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avgerinos, K.I.; Spyrou, N.; Bougioukas, K.I.; Kapogiannis, D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp. Gerontol. 2018, 108, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.R.; Cramer, J.T.; Mielke, M.; O’Kroy, J. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J. Strength Cond. Res. 2006, 20, 928. [Google Scholar] [PubMed]
- Stout, J.; Cramer, J.; Zoeller, R.; Torok, D.; Costa, P.; Hoffman, J.; Harris, R.; O’kroy, J. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 2007, 32, 381–386. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Faigenbaum, A.D.; Ross, R.; Kang, J.; Stout, J.R.; Wise, J.A. Short-duration β-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr. Res. 2008, 28, 31–35. [Google Scholar] [CrossRef]
- Kendrick, I.P.; Harris, R.C.; Kim, H.J.; Kim, C.K.; Dang, V.H.; Lam, T.Q.; Bui, T.T.; Smith, M.; Wise, J.A. The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 2008, 34, 547–554. [Google Scholar] [CrossRef]
- Jones, R.L.; Barnett, C.T.; Davidson, J.; Maritza, B.; Fraser, W.D.; Harris, R.; Sale, C. β-alanine supplementation improves in-vivo fresh and fatigued skeletal muscle relaxation speed. Eur. J. Appl. Physiol. 2017, 117, 867. [Google Scholar] [CrossRef] [Green Version]
- Forbes, S.C.; Candow, D.G.; Ostojic, S.M.; Roberts, M.D.; Chilibeck, P.D. Meta-analysis examining the importance of creatine ingestion strategies on lean tissue mass and strength in older adults. Nutrients 2021, 13, 1912. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.-X.; Dutheil, F. Creatine supplementation and lower limb strength performance: A systematic review and meta-analyses. Sports Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.-X.; Dutheil, F. Creatine supplementation and upper limb strength performance: A systematic review and meta-analysis. Sports Med. 2017, 47, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Chilibeck, P.D.; Kaviani, M.; Candow, D.G.; Zello, G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Open Access J. Sports Med. 2017, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, T.; Miyatani, M.; Tachi, M.; Kouzaki, M.; Kawakami, Y.; Kanehisa, H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol. Scand. 2001, 172, 249–255. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, A.; Onetti-Onetti, W.; Sousa Mendes, R.; Luis Chinchilla-Minguet, J. Relationship between leg strength and balance and lean body mass. Benefits for active aging. Sustainability 2020, 12, 2380. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.; Jones, T. Testosterone and obesity. Obes. Rev. 2015, 16, 581–606. [Google Scholar] [CrossRef]
- Arazi, H.; Rahmaninia, F.; Hosseini, K.; Asadi, A. Effects of short term creatine supplementation and resistance exercises on resting hormonal and cardiovascular responses. Sci. Sports 2015, 30, 105–109. [Google Scholar] [CrossRef]
- Rahman Rahimi, H.F.; Vatani, D.S.; Qaderi, M. Creatine supplementation alters the hormonal response to resistance exercise. Kinesiology 2010, 42, 28–35. [Google Scholar]
- Van der Merwe, J.; Brooks, N.E.; Myburgh, K.H. Three weeks of creatine monohydrate supplementation affects dihydrotestosterone to testosterone ratio in college-aged rugby players. Clin. J. Sport Med. 2009, 19, 399–404. [Google Scholar] [CrossRef]
- Volek, J.S.; Boetes, M.; Bush, J.A.; Putukian, M.; Sebastianelli, W.J.; Kraemer, W.J. Response of testosterone and cortisol concentrations to high-intensity resistance exercise following creatine supplementation. J. Strength Cond. Res. 1997, 11, 182–187. [Google Scholar]
- Morton, R.W.; Oikawa, S.Y.; Wavell, C.G.; Mazara, N.; McGlory, C.; Quadrilatero, J.; Baechler, B.L.; Baker, S.K.; Phillips, S.M. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J. Appl. Physiol. 2016, 121, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Bathalon, G.P.; Falco, C.M.; Kramer, F.M.; Morgan III, C.A.; Niro, P. Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat. Biol. Psychiatry 2005, 57, 422–429. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Bathalon, G.P.; Falco, C.M.; Morgan, C.A.; Niro, P.J.; Tharion, W.J. The fog of war: Decrements in cognitive performance and mood associated with combat-like stress. Aviat. Space Environ. Med. 2005, 76, C7–C14. [Google Scholar]
- Nindl, B.C.; Leone, C.D.; Tharion, W.J.; Johnson, R.F.; Castellani, J.W.; Patton, J.F.; Montain, S.J. Physical performance responses during 72 h of military operational stress. Med. Sci. Sports Exerc. 2002, 34, 1814–1822. [Google Scholar] [CrossRef]
Variables | BA + Cr | BA + PL | ||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Age (year) | 21.4 ± 2.05 | 21.6 ± 2.01 | ||
Body mass (kg) | 77.2 ± 6.47 | 77.2 ± 6.71 | 74.5 ± 7.6 | 74.6 ± 6.8 |
Height (m) | 1.79 ± 0.06 | -------- | 1.77 ± 0.04 | -------- |
BMI (kg/m2) | 23.88 ± 1.22 | 23.88 ± 1.29 | 23.52 ± 2.04 | 23.55 ± 1.80 |
Variables | BA + Cr | BA + PL | p-Value | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
RAST PP (W) | 539.48 ± 100.46 | 5.65.54 ± 104.28 | 522.43 ± 102.57 | 542.73 ± 113.64 | 0.722 |
RAST AP (W) | 486.81 ± 87.03 | 499.26 ± 80.03 | 472.7 ± 90.38 | 475.89 ± 95.76 | 0.140 |
RAST MP (W) | 423.2 ± 72.20 | 441.93 ± 66.9 | 408.90 ± 90.18 | 414 ± 88.66 | 0.145 |
RAST FI (W/s) | 3.31 ± 1.19 | 3.55 ± 1.30 | 3.24 ± 1.66 | 3.68 ± 1.60 | 0.533 |
Chest Press (kg) | 69.16 ± 8.15 | 71.06 ± 8.75 | 67.6 ± 9.54 | 68.4 ± 9.48 | 0.224 |
Leg Press (kg) | 202 ± 16.4 | 205 ±17.71 | 201.5 ± 20.4 | 204.16 ± 19.47 | 0.600 |
Vertical Jump (cm) | 53 ± 5.68 | 55.03 ± 8.29 | 55.86 ± 6.04 | 55.7 ± 6.03 | 0.005 * |
SCET (min) | 10.98 ± 0.53 | 10.32 ± 0.46 | 11.04 ± 0.62 | 10.37 ± 0.49 | 0.600 |
7-Subtraction Test (arbitrary unit) | 9.30 ± 1.49 | 9.8 ± 1.22 | 9.5 ± 1.58 | 10 ± 1.24 | 0.835 |
Variables | BA + Cr | BA + PL | p-Value | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
Testosterone (ng/L) | 5.46 ± 0.66 | 5.92 ± 0.65 | 5.61 ± 0.59 | 5.64 ± 0.64 | 0.006 * |
Cortisol (ng/L) | 127 ± 7.7 | 126.4 ± 5.8 | 127.9 ± 8.5 | 127.8 ± 7.8 | 0.551 |
IGF-1 (pg/L) | 280.5 ± 37.02 | 285.5 ± 32.35 | 281 ± 36.34 | 279 ± 28.46 | 0.116 |
Lactate (mmol/L) | 12.98 ± 0.81 | 11.86 ± 0.73 | 12.84 ± 1.07 | 12.28 ± 0.65 | 0.090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, M.; Askarian, A.; Shirvani, H.; Shamsoddini, A.; Shakibaee, A.; Forbes, S.C.; Kaviani, M. Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel. Int. J. Environ. Res. Public Health 2022, 19, 7992. https://doi.org/10.3390/ijerph19137992
Samadi M, Askarian A, Shirvani H, Shamsoddini A, Shakibaee A, Forbes SC, Kaviani M. Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel. International Journal of Environmental Research and Public Health. 2022; 19(13):7992. https://doi.org/10.3390/ijerph19137992
Chicago/Turabian StyleSamadi, Mohammad, Ali Askarian, Hossein Shirvani, Alireza Shamsoddini, Abolfazl Shakibaee, Scott C. Forbes, and Mojtaba Kaviani. 2022. "Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel" International Journal of Environmental Research and Public Health 19, no. 13: 7992. https://doi.org/10.3390/ijerph19137992
APA StyleSamadi, M., Askarian, A., Shirvani, H., Shamsoddini, A., Shakibaee, A., Forbes, S. C., & Kaviani, M. (2022). Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel. International Journal of Environmental Research and Public Health, 19(13), 7992. https://doi.org/10.3390/ijerph19137992