Next Article in Journal
The Impact of Online Environmental Platform Services on Users’ Green Consumption Behaviors
Previous Article in Journal
Resilience and Regulation of Emotions in Adolescents: Serial Mediation Analysis through Self-Esteem and the Perceived Social Support
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect

1
Department of Health Sciences, University of Florence, Via di San Salvi 12, Pad. 26, 50135 Firenze, Italy
2
Integrated Psychodynamic Psychotherapy Institute (IPPI), Via Ricasoli 32, 50122 Firenze, Italy
3
Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 171 Ashley Ave Suite 419, # 403, Charleston, SC 29425, USA
4
Department of Human Sciences, LUMSA University of Rome, Via della Traspontina 21, 00193 Rome, Italy
5
Department of Psychology, The University of Montana, 32 Campus Dr, Missoula, MT 59812, USA
*
Author to whom correspondence should be addressed.
Int. J. Environ. Res. Public Health 2022, 19(13), 8008; https://doi.org/10.3390/ijerph19138008
Submission received: 24 May 2022 / Revised: 3 June 2022 / Accepted: 20 June 2022 / Published: 29 June 2022

Abstract

:
A pair of quantitative case studies is presented to demonstrate how different approaches to quantifying temporal variability in ratings of traits and affect can provide rich information for personality researchers. Data are presented and analyzed from two college students who completed an Ecological Momentary Assessment protocol sampling ratings of affect and traits up to 24 times daily for one week. Both classical and nonlinear data analytic techniques were applied to the data to summarize and examine the temporal dynamics of both traits and affect. For the purposes of exposition, one Big Five trait rating, extraversion, and the PANAS positive and negative affects, are discussed. The results support previous research demonstrating a high degree of variability in ratings of both traits and affect over time. Analyses using nonlinear and complexity expand on these findings and suggest temporal patterning as well as disorder; implications of phase portraits for understanding variability are discussed. The findings are discussed in light of a processing dynamics approach to resolving the role of variability in understanding personality.

1. Introduction

The study of personality traits and individual differences has captured the attention of personality researchers for many years [1,2,3,4,5]. A fundamental assumption underlying a trait perspective on personality has been that humans behave in a relatively consistent manner over time, and that the presence of specific traits can be determined through patterns of those consistent behaviors [6]; the five-factor model provides a widely used contemporary framework for this perspective [7]. However, despite widespread acceptance of the notion of consistency of traits, researchers have continuously struggled with the concept of traits themselves based on persistent evidence that behavior is not always consistent [8,9].
Research has indicated two clear findings regarding the stability and variability of traits: traits have been found to be moderately consistent over long periods of time, and trait consistency increases as participants grow older [10]. This relative consistency co-exists with a great deal of variability in the short term across different situations [8,11] or over time [12,13,14]. Mischel and Shoda [15] attempt to account for variability in personality by contrasting “behavioral dispositions” and “processing dynamics” approaches. The behavioral dispositions approach, termed “’dispositional’ or ‘trait theory’ … posits broad stable traits, factors, or behavioral dispositions as its basic units… stable dispositions that remain invariant across situations… determining a wide range of important behaviors” (p. 231). In contrast, the processing dynamics perspective emphasizes “how the person functions psychologically in terms of the mediating processes that underlie stable individual differences … that can make sense of intra-individual variability across situations” and “the interaction of the specific situation with the social–cognitive–emotional processing system of the individual” (pp. 230–231).
Fleeson and colleagues [12,16,17,18,19,20] argued for a broad resolution of the trait-situation debate that includes a wider notion of what constitutes consistency, acknowledges within-person variability in traits and related behaviors (including over time periods of less than one week), and accepts that variability itself provides useful information. Personality involves both time, as well as, paraphrasing Sullivan [21] (pp. 103–104), enduring patterning.
Variability in emotions has been treated somewhat differently. In contrast to the popularity of dispositional approaches in personality, instability and temporal change have generally been taken as defining components of mood or affect. Larson and Csikszentmihalyi [22] referred to this (in the context of adolescence) as “moodiness.” Affect has been studied using real-time and other self-report techniques that highlight intra-individual variability (e.g., [23,24,25,26,27]); more recently, interest has developed in affect variation in mood disorders (e.g., [28,29,30,31,32,33,34,35]), delinquency symptoms [36], and more broadly, in mental health problems [37]. Because of this tradition, affect can serve as a benchmark for considering the degree of variability in traits.

1.1. Ecological Momentary Assessment (EMA) and the Experience Sampling Method (ESM)

A data collection methodology that enables researchers to examine temporal psychological dynamics empirically in the real world is the experience sampling method (ESM) [38] or ecological momentary assessment (EMA) [39,40,41]. These two terms refer to roughly the same techniques, with ESM applied first to earlier methodologies with diary techniques, generally with prompts from a timer carried by the participant; EMA, a newer term, tends to use automated recording techniques instead of paper and pencil. Stone and Shiffman [29] described that both ESM and EMA are characterized by a data collection that takes place outside the researchers’ laboratory (i.e., it happens in the real world of the participants), where multiple evaluations were repeated according to different factors (e.g., events, time, randomly, etc.) to capture states or behaviors in a way that is as simultaneous as possible with their occurrence [39].
The primary advantage of both EMA and ESM is that they offer ways to reduce the effect of recall bias and offer up-to-date information on participants’ cognitive, behavioral, and emotional experiences in their natural environments [42]. Therefore, this allows one to reduce the risk of some biases that are typical of many traditional assessment techniques. Finally, the ESM/EMA methods also allow for the detection of some intervening environmental factors (such as place, time, and interpersonal dynamics), which may be momentary and may be part of an ecological consideration in the analysis of the examined outcomes (e.g., behaviors, symptoms, etc.) [43].

1.2. Studying Variability in Traits

Fleeson and Gallagher [12] used ESM to study variations in behaviors related to specific personality traits. Across a number of studies, the researchers measured trait levels by means of traditional self-report, as well as assessing the temporal variability in repeated measurements of behavioral manifestations in terms of traits, assessed by adjectives referring to behavior during the previous half hour. Measures of central tendency (mean, median, mode, a corrected mean) were used as measures of central or overall tendency of these behavior ratings, related to the notion of an act–frequency approach to traits [44]; they use the standard deviation of behaviors across time as a measure of variability [12]. Not surprisingly, they found an individual’s level of a trait (“standing”) generally predicts overall levels of the corresponding behavioral manifestations. Random point measurements of the behavior were also well predicted by trait standing.
Individuals were also generally highly variable, as indexed by the standard deviation, particularly on behaviors related to extraversion and conscientiousness; within-subject variation was greater than the variation between participants; “the typical individual routinely and regularly expressed most levels of most states” [12] (p. 1104). The standard deviation for each trait also served as an individual difference variable; it was negatively correlated with the levels of the trait itself for emotional stability and positively correlated with behaviors related to intellect. This variability has been a subject of continued interest and has found further confirmation and enrichment in recent studies, which have, for example, considered the associations between trait dynamics and daily hassles [45], as well as the person—environment transactions [46]. Therefore, the field related to the study of personality fluctuations appears extremely fertile, also in the light of the different fields of practical application (e.g., [46]).

1.3. Studying Variability in Affect

EMA and ESM have also been used in studying variations in affect, both non-clinical and pathological (e.g., [47,48]). As an example of the former, Larson, Csikszentmihalyi, and Graef [49] used an older Experience Sampling methodology to study variability in adolescents’ mood and examined their results by visual inspection, by “degree of variation” (indexed by standard deviation), “changeability” tapped by low autocorrelations, and also “situational independence,” indexed by a lack of correlation with the person’s contemporaneous activities, also assessed by the ESM method. The indices of variability all behaved somewhat differently. Adolescents were more variable and more changeable than adults in affects, and recovered from extreme moods more quickly, with their moods about equally related to situations. Interestingly, variability, while correlated with stress, intellectual disengagement, and social alienation, was also positively correlated with a measure of creativity. In more recent research, the use of the EMA has also found increasing confirmation in the study of psychopathology, offering important insights for treatment, allowing us to observe the variations in affect associated with problematic behavioral manifestations, such as non-suicidal self-injury (NSSI) [50], loss-of-control eating [51], and substance use [52], to name a few.

1.4. Indices of Variability

Across data-collection methodologies and time periods, the mathematical indices of variability studied as parameters for understanding psychological processes and their individual differences have differed extensively in studies of many different psychological characteristics [53,54,55], including both affect and personality-related variables. Many rely on the moment-based standard deviation [24]. Time series methods supply indices of autocorrelations, cross correlations, and trends, as well as analyses of frequency and spectra. Beyond these methods, there are also methods for characterizing the dynamics of trajectories or time series in terms of their patterning and irregularity [53]. Recent research on mood disorders has been interested in approaches to dynamics of affect disorders that utilize concepts from nonlinear dynamics and chaos theory [28,29,30,31,32,33,34,56].

1.5. The Present Study

In previous work, we asserted that nonlinear methods can be very useful in the assessment of personality and its temporal dynamics because they allow for the study of patterns that are ambiguous, such as those often encountered in the measurement of psychological features, and they can be used to assess behavioral changes, including therapeutic change [57,58,59]. Parallelly, the analysis of emotional variability requires studying the fluctuations in affective experience over brief timescales, also considering the speed and extent of these changes [60]. In this regard, the analysis of these fluctuations both in contexts and ecologically relevant and valid methods through the momentary ecological assessment (EMA) has proved to be particularly functional, because it allows us to ascertain and observe these dynamics as they take place [61]. Indeed, ecological monetary assessment can be extremely useful in assessing the temporal fluctuations in the variables of interest, thanks to its short and repeated observations [62]. The theoretical background of this study relies on specifically dynamic approaches to self-awareness and self-evaluation [63].
Based on this, the present article aimed at presenting a pair of quantitative case studies and applying both classical and nonlinear data analytic techniques to EMA data to summarize and then examine the temporal dynamics of both traits and affect over brief periods of time. It extends previous methods for studying personality dynamics to provide an illustration of the potential utility of nonlinear data analysis techniques to describe within-person variability.

2. Materials and Methods

2.1. Participants

Data are reported here for two American participants fluent in English. They were social science students and were recruited from an introductory psychology undergraduate participant pool and offered experimental credit, as well as additional financial compensation due to the relatively long duration (up to one week) of the study. Participant 1 (anonymously named Bob) is a 19-year-old white male, and participant 2 (Alice) a 20-year-old white female.

2.2. Measures

Measures were used in their English version and were administered in paper and pencil format at the beginning and end of the study, and also using EMA techniques.

2.2.1. Ten-Item Personality Inventory (TIPI)

The ten-Item personality inventory (TIPI) is a ten-item measure of the Big Five (or five-factor model) dimensions [64]. The items are presented with a stem of “I see myself as…” and paired descriptors (e.g., “Extraverted) rated on a seven-point Likert scale, from 1 (disagree strongly) to 7 (agree strongly). Gosling and colleagues [64] reported good convergence between the scales and the Big Five inventory and the revised NEO personality inventory. Test–retest reliability of the TIPI after 6 weeks testifies to the stability of the measure (ranging from Extraversion = 0.77 to Openness to Experience = 0.62). In the current study the TIPI was given in paper and pencil form at the beginning and end of the study, as well as being administered regularly by the Palm Pilot Personal Digital Assistant (PDA).
In the PDA format participants used a “slider widget” with no numerical anchor points to respond to a prompt and a stem that said, “Right now I would describe myself as….” The bottom of the scale was labeled with “Disagree” and the top with “Agree,” different from the “Disagree Strongly” to “Agree strongly” paper and pencil anchors. This method solicited instantaneous trait ratings not tied to trait-related behaviors by the instructions, as reported by Fleeson and Gallagher [12]. For the TIPI items, the position of the widget from bottom to top was converted to a number (from 1 to 100) by the PDA EMA software. To maintain comparability in the variability of each scale, the original PDA 1 through 100 units was used for all scales (including the paper and pencil versions) in the tables and figures presented here.

2.2.2. Positive and Negative Affect Schedule (PANAS)

The Positive and Negative Affect Schedule [65] consists of 20 affect terms to which participants respond on a 5-point Likert-type scale. On the paper and pencil version, participants were instructed to rate their affect “during the past few weeks.” The PANAS Pleasant (or Positive) affect scale is computed as the sum of ratings (prorated for missing items) on nine adjectives such as “Strong” and “Enthusiastic”; the Unpleasant (or Negative) affect scale is computed as the sum of 10 adjectives including “Distressed” and “Nervous”; the adjective “Interested” was omitted from the Positive scale per the developers of the instrument. The PDAs 1 through 100 units are used in this paper.
The PANAS has shown good psychometric properties and respectable test–retest correlations [65] (p. 1066). Stability coefficients depend on the time-frame for the PANAS rating, from “Moment” to “Year” or “General,” and these have ranged from a low of 0.39 for Negative Affect today to highs of 0.68 and 0.71 for Positive and Negative Affect “in general.” Notably the test–retest coefficients over 8 weeks for “moment” ratings (which most closely correspond to the PDA ratings used in this study) were 0.54 and 0.55, low but not unusually so and suggestive of some degree of temporal stability. The 20-item PANAS (with “during the past few weeks” instructions) was given in paper and pencil format at the beginning and end of study as well as being administered regularly in PDA form (with “right now” instructions). The screen provided a prompt of “Right now I am feeling….” and then the PANAS adjective. The bottom of the slider widget scale was again labeled with “Disagree” and the top with “Agree,” somewhat different from the “Very slightly or not at all” to “Extremely” anchors of the paper and pencil version.

2.3. Procedures

The Ecological Momentary Assessment portion of this study was conducted using Palm Pilot Personal Digital Assistants (PDAs) using the free iESP software [66], which was adapted from ESP, an earlier program. The original ESP software was developed by Dr. Lisa Feldman Barrett and programmed by Daniel J. Barrett [67]. This software was freely available, although it is no longer maintained and has now been supplanted in the rapid rise of cell-phone-based assessment software (e.g., [68]).
Bob and Alice were each given a Palm Pilot, charger, and instructions at the beginning of the study after filling out demographic information and paper and pencil versions of the TIPI, PANAS. The PDA was active for a 12 h period each day, a period chosen by the participant (different on weekends). Prompts occurred randomly over the active periods, approximately twice an hour. Prompts could be both visual and auditory. Bob and Alice were able to skip prompts and silence the PDA, for example when they were in class or otherwise occupied. The data collection lasted approximately one week (with some interruptions for software problems).
At each prompt, participants responded to 30 items, the 10 items from the TIPI and 20 from the PANAS. Their responses, as well as date and time information, were recorded on the PDA; in the current study no information was gathered about the context or situation surrounding the response. At the end of the study (and sometimes at points during the week of the study if there were problems with the software) participants returned the PDA, filled out the paper and pencil questionnaires, and were debriefed. The data were then downloaded for analysis by “syncing” the PDAs. The number of useable data points for each participant was 74–76 (depending on the scale) for Bob, and 102 for Alice. At the end of the EMA period, participants returned to the lab, filled out paper and pencil post-test instruments, and were thanked and provided with the incentives for their participation (see Figure 1).

2.4. Data Analyses and Presentation

Since we were interested in comparing the variability of different scales, the PANAS scores (potentially ranging from 1 to 5) and the TIPI (potentially ranging from 1 to 7) were converted for comparison purposes and to have the same scale for the two measures: The original 1 to 100 scores from the PDA software were used in order to allow visual comparison and comparable summary statistics of central tendency and variability (scores of 1 on the TIPI and 1 on the PANAS correspond to scores of 1 on the 100-point PDA scale. scores of 7 on the TIPI and 5 on the PANAS correspond to 100 on the PDA scale; scores of 4 on the TIPI and 3 on the PANAS, the midpoints of the scales, both correspond to 50.5 on the PDA scale). The paper and pencil TIPI and PANAS scales are also presented in this 1-to-100 format.
Time series plots were produced for the 10 TIPI items and the two PANAS scales, Positive and Negative Affect. In addition, the standard deviation was computed as an index of variability and is reported along with minimum, maximum, and mean. In order to characterize the possible patterning in the data and to demonstrate the application of nonlinear data analyses techniques, phase plots are presented for sample scales and attractor reconstruction [58] was conducted using the Chaos Data Analyzer (Professional Edition software; American Institute of Physics, New York, NY, USA).

3. Results

3.1. Classical Variability Indices

Time series plots for each participant’s ratings of Extraversion on the TIPI and PANAS Negative affect scales are presented in Figure 2a,b and Figure 3a,b. Summary statistics are presented for all scales, presented in Table 1 and Table 2 (time series and phase portrait plots for all scales and for both participants are available from the first author).
Degree of variability was assessed both visually and quantitatively. On the basis of visual inspection, Bob and Alice showed striking fluctuations across time in both their affect and trait ratings. For Bob, ratings of affect were somewhat less variable (for PANAS, Mean SD = 9.3; Mean Range = 46.1) than his ratings of personality (for TIPI, Mean SD = 12.8; Mean Range = 57.5). Alice’s ratings of affect were also somewhat less variable (PANAS, Mean SD = 13.2; Mean Range = 58.8) than her TIPI personality ratings (TIPI, Mean SD = 14.4; Mean Range = 64.4). Overall, Alice showed comparatively more variability than Bob.
In order to have a different idea of the magnitude of these variations, participants’ ratings were converted to z scores based on their own means and standard deviations. Bob’s ratings fell in a range between −3.5 and +3.9. For Alice, the variation assessed in this way was similar, with all scores between −0.8 and +3.0. In general, the means of the PDA scores fell close to the paper and pencil values at the beginning and end of the study.
Based on both visual inspection and examination of SD as a variability indicator [12], it is striking that the degree of variability of the trait indicators, contrary to what would be expected from traditional trait theory (and the known fluctuations of emotions), is approximately as substantial as that of the PANAS scales. Despite their general reputation as trait and as state properties, respectively, the personality and affect ratings show very similar variability across time, consistent with the work of Fleeson and Gallagher [12].

3.2. Attractor Reconstruction and Evidence for Patterning and Possible Chaos

An attractor refers to a region in the space of a system’s possible conditions where the system tends to go and tends to linger. In a strange attractor, a sign of chaos in behavior, the system’s behavior is bounded yet ever novel, never both being in the same place and going the same direction twice. As a demonstration of promising techniques for looking at possible attractors in the dynamic data produced by the participants, a demonstration of “attractor reconstruction” [69] was conducted with the Extraversion and Positive and Negative affect ratings from Bob and Alice using the Chaos Data Analyzer Professional Version software [70]. Note that the data points are assumed (wrongly in this case) by the Chaos Data Analyzer to be equally spaced. Figure 4a,b depict phase plots of these data, with trait rating on the x-axis and velocity (rate of change to the next point) on the y-axis. This allows us to visualize the changing states of the person, as trait ratings substantially fluctuated yet remained bounded.
The shapes of these phase space plots are consistent with attractors and with the presence of low dimensional chaos in these data. In addition, the values of two parameters computed by the software, the largest Lyapunov exponent and the correlation dimension (an index of “degree” of chaos), are also compatible with chaotic fluctuations in this participant’s ratings of mood and five-factor model personality characteristics. However, as Sprott [71] reminds us, reports such as this one are “littered with false claims of chaos”, and this information is only as illustrative. It should also be noted that in Alice’s case, an estimate of the correlation dimension could not be computed. A more nuanced approach to setting parameters at the beginning of the computation of such an index is recommended by some investigators; this paper used the software’s pre-set parameters to do a “batch” computation across the subjects, referred to elsewhere as a “meat grinder” approach to this sort of data analysis [59]; more subtle approaches are recommended. Issues of stability, interpretability, computation and computability, parameter settings, sources of error, and length of the time series for such dynamic statistics and the Lyapunov exponent, in particular, are not addressed in the illustrations presented here. There is divergent opinion over the number of data points needed for state space analysis, and the numbers of points used here are low.

4. Discussion

The present study aimed to propose two quantitative case studies for exploring the temporal dynamics of both traits and affect by using both classical and nonlinear data analytic techniques with ecological momentary assessment (EMA) data.
Concerning affect, the EMA method allowed for observing relevant variability in the measurements over the week. This supports the efficacy and usefulness of EMA in monitoring fluctuations in momentary affect during the daily life of subjects [63], appears in line with previous evidence, both in clinical [72] and non-clinical samples [48], and may have important practical implications in the development of tailored interventions. Indeed, recent studies highlighted how emotions may serve as a source of information about one’s life satisfaction [73], and, although in healthy adolescents it may be associated with higher levels of creativity [22], in clinical subjects, affect fluctuation has been associated with stress, sleep problems [74], and higher levels of mental illness [75]. These preliminary results also explore and provide data in favor of assumptions concerning within-person variability in trait ratings, contrasted with a strict behavioral disposition or trait view of personality, according to which dispositions remain invariant across situations. This is in line with the recent evidence of Wilson and colleagues [76], who use the EMA to explore variability in both affects and traits, also analyzing their association and noting that fluctuations in personality states cannot be reduced to simple consequences of fluctuations in state affects. Furthermore, these findings are also consistent with Fleeson’s research, indicating how individuals can manifest different behavioral content related to traits in fluctuating levels of trait-related behavior across different moments [12,16,20]. In principle, such variability of traits can be interpreted in the light of the processes that underlie stable individual differences in such behavior [15]; other authors also suggested the within-person variability is itself a normal and important personal characteristic, perhaps also related to positive characteristics [49,77]. This variability itself may be recognizably patterned, another meaning of consistency in personality and the way that we are recognizable to ourselves and to others across time. There are also mathematical tools for understanding this patterning; at this point, the study of personality turns to the study of dynamics.
Once fluctuation is accepted, the next questions concern the possible meanings of this fluctuation, beyond noise in one’s data. The phase space point of view, in which one looks for regularities (in the form of attractors) in this variability, points at the “mediating processes” of Mischel and Shoda [15]. We can start to understand these processes by examining the time dependence and patterning of behavior. From the point of view of data analysis, detection and reconstruction of attractors represent techniques different from a more traditional and static “behavioral dispositions” approaches for describing personality.
A “strange attractor” is a region in phase space representing the bounded but unpredictable behavior of a system in chaos; while generally staying within a bounded range, the chaotic system is never both in the same place and going in the same direction twice. This is related to the notion of fractals, generally beautiful patterns that represent a sort of cross section of a strange attractor, in which patterns repeat themselves at different scales and levels of magnification [78]. Fractal patterns are self-similar and recognizable at many time scales. In fact, individuals’ personality styles are detectable by observers across time intervals from the near microscopic to over a lifetime, evidencing consistencies in pattern both across and within periods of fluctuation. As McArthur [79] asked in a 1989 Society for Personality Assessment meeting, “Are we fractals”?
Examining the patterning of personality and how temporal dynamics underlie both stability and change is, thus, related to defining a person’s recognizable style. This points toward reconceptualizing what we mean by consistency, stability, boundedness, and regulation, and will allow us to bridge traits and dynamic processes [18].

4.1. Pitfalls

With regard to data analysis, the uncertain status of attractor reconstruction techniques was mentioned earlier. Visual inspection of time series plots can produce inaccurate assessment of variability and inspection of phase space plots to erroneous claims of chaos. For the computation of parameters indexing complexity in data (as well as measuring information and disorder), large numbers of measurements are generally assumed; the data acquisition procedures used here (EMA) resulted in a relatively small number of data points, which in the past, would have been considered too few for confident application of these nonlinear data analysis techniques. A number of workers are now putting forward techniques for analyzing small data sets (e.g., [80]). In addition, the uneven time intervals that are inherent in most EMA methods (unless data are gathered regularly over 24 h) cause difficulty for many data analysis techniques; a number of approaches are now developing for how to deal with missing data and interpolation when modeling dynamic systems [81,82].

4.2. Limitations and Future Directions

This study has several limitations that need to be kept in mind when interpreting the results. First, the involvement of only two subjects implies the need to be cautious in generalizing the results. Although this study offers useful preliminary outcomes and conceptual input, these results should be confirmed in future research through the application of the EMA method in larger samples. Moreover, participants’ age may have contributed to the obtained results. Future research might involve older participants or may recruit a sample with age diversity to explore this aspect. Furthermore, our results may have been influenced by variables not included in the assessment of this study, such as self-awareness [63] and positive emotional granularity [83]. Future research could include these and other factors as covariates to overcome this issue. In addition, these analyses were conducted on data kept in the archive and collected in the year in which the ethical approval was provided. Although instruments and methods that can still be considered innovative and current have been used, this aspect must be considered for a correct reading of the results. Finally, the use of short self-report measures is another limitation that should be highlighted. On the one hand, these questionnaires have advantages, because they allow the researchers a quick method in preliminary studies for finding questions to deepen in future research. Furthermore, previous evidence has shown the possibility of measuring some relevant constructs, even with a single item (e.g., [84]). On the other hand, the use of self-report tools could expose well-known biases (e.g., social desirability) and might not be fully effective to identify variations in self-descriptions of personality. Therefore, an important challenge for future research could be the use of more in-depth questionnaires integrated with other instruments (e.g., detection of physiological parameters, interviews, etc.) in a multi-method perspective.

5. Conclusions

5.1. The Opportunity to Consider Temporal Fluctuation as an Informative Variable

The traditional approach to variability in data has been to view it as “error” [54]; a criticism that can be made of the current approach is that the very information we are studying represents meaningless temporal noise or instability rather than interesting and meaningful personal vicissitudes. Current approaches that treat time as an important variable in psychological research not only suggest taking temporal fluctuation as representing information rather than error [77,85], but suggest viewing regularities and irregularities in temporal patterning and the “shape” of dynamics; phase space plots represent a helpful way to study within-subjects data in this way.
Until recently, research that studies variability tended to rely on classical summary statistics, such as the standard deviation, to capture variability. Time series approaches that examine correlations and trends, as well as frequencies, represented a step forward. Newer techniques of nonlinear dynamical system analysis allow progress to be made in investigating whether, in some cases, human behavior may be chaotic; characteristics of chaotic systems have been suggested as applicable to both everyday and extraordinary, healthy and unhealthy human functioning [31,59,86].

5.2. Temporal Fluctuations and Psychological Variables

Even psychological phenomena that we have historically considered as stable “trait-like” have the potential to exhibit fluctuations that are interesting and perhaps complex or chaotic. This is likely a consequence of the fact that behavior derives from linked nonlinear systems [58,59], implying that well-being must rely on changeable, self-regulative heuristics and ongoing “satisficing” [87], rather than algorithms guaranteeing solution. These heuristics are self-regulative but not classically homeostatic, and their life-enhancing irregularity, unpredictability, and boundedness may best be considered in general terms of mathematical stationary states [57], rather as balance, equilibrium, stability, or homeostasis, expanding the notion of what behavioral consistency means [18]. Elsewhere, we refer to such models as “Somewhat-complicated” because they do not require intricate construction; complex behavior can emerge from systems that are quite simple [59]. Future research in personality and other aspects of psychology will benefit from focusing on the modeling of such systems [57] and fitting empirical data to them.

Author Contributions

Conceptualization, A.G. and D.S.; methodology, A.G. and D.S.; formal analysis, D.S.; investigation, D.S. and D.D.; data curation, D.S. and D.D.; writing—original draft preparation, A.G., D.D., E.T., M.G. and D.S.; writing—review and editing, A.G., D.S., M.G. and E.T.; supervision, D.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of the University of Montana (protocol code 225-05/1 February 2006).

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Block, J. Studying personality the long way. In Studying Lives through Time: Personality and Development; Funder, D.C., Parke, R.D., Tomlinson-Keasey, C., Widaman, K., Eds.; American Psychological Association: Washington, DC, USA, 1993; pp. 9–41. [Google Scholar]
  2. Cattell, R.B. The description of personality: Basic traits resolved into clusters. J. Abnorm. Psychol. 1943, 38, 476–506. [Google Scholar] [CrossRef]
  3. Eysenck, H.J.; Eysenck, M.W. Personality and Individual Differences; Plenum: New York, NY, USA, 1987. [Google Scholar]
  4. Wiggins, J.S. In defense of traits. In Handbook of Personality Psychology; Hogan, R., Johnson, J.A., Briggs, S.R., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 95–141. [Google Scholar]
  5. Ashton, M.C. Individual Differences and Personality; Academic Press: London, UK, 2022. [Google Scholar]
  6. Beck, E.D.; Jackson, J.J. Consistency and change in idiographic personality: A longitudinal ESM network study. J. Pers. Soc. Psychol. 2020, 118, 1080–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. McCrae, R.R.; Costa, P.T. The five-factor theory of personality. In Handbook of Personality: Theory and Research, 3rd ed.; John, O.P., Robins, R.W., Pervin, L.A., Eds.; Guilford Press: New York, NY, USA, 2008; pp. 159–181. [Google Scholar]
  8. Mischel, W. Personality and Assessment; John Wiley & Sons Inc: Hoboken, NJ, USA, 1968. [Google Scholar]
  9. Bleidorn, W.; Hopwood, C.J. Stability and change in personality traits over the lifespan. In Handbook of Personality Development; McAdams, I.D.P., Shiner, R.L., Eds.; Guilford Publications: New York, NY, USA, 2019; pp. 237–252. [Google Scholar]
  10. Roberts, B.W.; DelVecchio, W.F. The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychol. Bull. 2000, 126, 3–25. [Google Scholar] [CrossRef]
  11. Bleidorn, W.; Hopwood, C.J.; Lucas, R.E. Life events and personality trait change. J. Pers. 2018, 86, 83–96. [Google Scholar] [CrossRef] [PubMed]
  12. Fleeson, W.; Gallagher, P. The implications of Big Five standing for the distribution of trait manifestation in behavior: Fifteen experience-sampling studies and a meta-analysis. J. Pers. Soc. Psychol. 2009, 97, 1097–1114. [Google Scholar] [CrossRef] [PubMed]
  13. Damian, R.I.; Spengler, M.; Sutu, A.; Roberts, B.W. Sixteen going on sixty-six: A longitudinal study of personality stability and change across 50 years. J. Pers. Soc. Psychol. 2019, 117, 674. [Google Scholar] [CrossRef] [Green Version]
  14. Schwaba, T.; Bleidorn, W. Personality trait development across the transition to retirement. J. Pers. Soc. Psychol. 2019, 116, 651. [Google Scholar] [CrossRef] [Green Version]
  15. Mischel, W.; Shoda, Y. Reconciling processing dynamics and personality dispositions. Annu. Rev. Psychol. 1998, 49, 229–258. [Google Scholar] [CrossRef] [Green Version]
  16. Fleeson, W. Toward a structure- and process-integrated view of personality: Traits as density distributions of states. J. Pers. Soc. Psychol. 2001, 80, 1011–1027. [Google Scholar] [CrossRef]
  17. Fleeson, W. 2004 Moving personality beyond the person-situation debate: The challenge and the opportunity of within-person variability. Curr. Dir. Psychol. Sci. 2004, 13, 83–87. [Google Scholar] [CrossRef]
  18. Fleeson, W.; Noftle, E.E. Where does personality have its influence? A supermatrix of consistency concepts. J. Pers. 2008, 76, 1355–1386. [Google Scholar] [CrossRef] [PubMed]
  19. Fleeson, W.; Noftle, E.E. In favor of the synthetic resolution to the person-situation debate. J. Res. Pers. 2009, 43, 150–154. [Google Scholar] [CrossRef]
  20. Fleeson, W.; Jayawickreme, E. Whole trait theory puts dynamics at the core of structure. In The Handbook of Personality Dynamics and Processes; Rauthmann, J.F., Ed.; Academic Press: London, UK, 2021; pp. 579–599. [Google Scholar]
  21. Sullivan, H.S. The Interpersonal Theory of Psychiatry; Norton: New York, NY, USA, 1953. [Google Scholar]
  22. Larson, R.; Csikszentmihalyi, M. Experiential correlates of time alone in adolescence. J. Pers. 1978, 46, 677–693. [Google Scholar] [CrossRef]
  23. DeLongis, A.; Folkman, S.; Lazarus, R.S. The impact of daily stress on health and mood: Psychological and social resources as mediators. J. Pers. Soc. Psychol. 1988, 54, 486–495. [Google Scholar] [CrossRef] [PubMed]
  24. Eid, M.; Diener, E. Intraindividual variability in affect: Reliability, validity, and personality correlates. J. Pers. Soc. Psychol. 1999, 76, 662–676. [Google Scholar] [CrossRef]
  25. Taylor, C.B.; Fried, L.; Kenardy, J. The use of a real-time computer diary for data acquisition and processing. Behav. Res. Ther. 1990, 28, 93–97. [Google Scholar] [CrossRef]
  26. Totterdell, P.; Fokkard, S. In situ repeated measures of affect and cognitive performance facilitated by use of a hand-held computer. Behav. Res. Methods 1992, 24, 545–553. [Google Scholar] [CrossRef]
  27. Liu, H.; Xie, Q.W.; Lou, V.W. Everyday social interactions and intra-individual variability in affect: A systematic review and meta-analysis of ecological momentary assessment studies. Motiv. Emot. 2019, 43, 339–353. [Google Scholar] [CrossRef]
  28. Bonsall, M.; Wallace-Hadrill, S.; Geddes, J.; Goodwin, G.; Holmes, E. Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder. Proc. R. Soc. B: Biol. Sci. 2012, 279, 916–924. [Google Scholar] [CrossRef]
  29. Glenn, T.; Whybrow, P.C.; Rasgon, N.; Grof, P.; Alda, M.; Baethge, C.; Bauer, M. Approximate entropy of self-reported mood prior to episodes in bipolar disorder. Bipolar. Disord. 2006, 8, 424–429. [Google Scholar] [CrossRef]
  30. Goldberg, J.F.; Bowden, C.L.; Calabrese, J.R.; Ketter, T.A.; Dann, R.S.; Frye, M.A.; Suppes, T.; Post, R.M. Six-month prospective life charting of mood symptoms with lamotrigine monotherapy versus placebo in rapid cycling bipolar disorder. Biol. Psychiatry 2008, 63, 125–130. [Google Scholar] [CrossRef] [PubMed]
  31. Gottschalk, A.; Bauer, M.S.; Whybrow, P.C. Evidence of chaotic mood variation in bipolar disorder. Arch. Gen. Psychiatry 1995, 52, 947–959. [Google Scholar] [CrossRef] [PubMed]
  32. Heath, R.A. Detecting Nonlinearity and Edge-of-Chaos Phenomena in Ordinal Data. Nonlinear Dyn. Psychol. Life Sci. 2015, 19, 229–248. [Google Scholar]
  33. Heath, R.A.; Heiby, E.M.; Pagano, I.S. Complex Dynamics in Depression: An Application to Long-Term, Mood-Rating Time Series. In Advances in Clinical Cognitive Science: Formal Modeling of Processes and Symptoms; Neufeld, R.W.J., Ed.; American Psychological Association: Washington, DC, USA, 2007; pp. 263–291. [Google Scholar]
  34. Johnson, S.L.; Nowak, A. Dynamic pattermns in bipolar depression. Pers. Soc. Psychol. Rev. 2002, 6, 380–387. [Google Scholar] [CrossRef]
  35. Sperry, S.H.; Walsh, M.A.; Kwapil, T.R. Emotion dynamics concurrently and prospectively predict mood psychopathology. J. Affect. Disord. 2020, 261, 67–75. [Google Scholar] [CrossRef]
  36. Maciejewski, D.F.; Keijsers, L.; van Lier, P.A.C.; Branje, S.J.T.; Meeus, W.H.J.; Koot, H.M. Most fare well—But some do not: Distinct profiles of mood variability development and their association with adjustment during adolescence. Dev. Psychol. 2019, 55, 434–448. [Google Scholar] [CrossRef]
  37. Reitsema, A.M.; Jeronimus, B.F.; van Dijk, M.; de Jonge, P. Emotion dynamics in children and adolescents: A meta-analytic and descriptive review. Emotion 2020, 22, 374–396. [Google Scholar] [CrossRef]
  38. Csikszentmihalyi, M.; Larson, R. Validity and reliability of the experience-sampling method. J. Nerv. Ment. Dis. 1987, 175, 526–536. [Google Scholar] [CrossRef]
  39. Stone, A.A.; Shiffman, S. Ecological momentary assessment (EMA) in behavorial medicine. Ann. Behav. Med. 1994, 16, 199–202. [Google Scholar] [CrossRef]
  40. Stone, A.A.; Turkkan, J.S.; Bachrach, C.A.; Jobe, J.B.; Kurtzman, H.S.; Cain, V.S. The Science of Self-Report: Implications for Research and Practice; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2000. [Google Scholar]
  41. Roche, M.J.; Pincus, A.L.; Rebar, A.L.; Conroy, D.E.; Ram, N. Enriching psychological assessment using a person-specific analysis of interpersonal processes in daily life. Assessment 2014, 21, 515–528. [Google Scholar] [CrossRef]
  42. Specht, J.; Egloff, B.; Schmukle, S.C. The benefits of believing in chance or fate: External locus of control as a protective factor for coping with the death of a spouse. Soc. Psychol. Pers. Sci. 2011, 2, 132–137. [Google Scholar] [CrossRef]
  43. Trull, T.J.; Ebner-Priemer, U.W. Using experience sampling methods/ecological momentary assessment (ESM/EMA) in clinical assessment and clinical research: Introduction to the special section. Psychol. Assess. 2009, 21, 457–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Buss, D.M.; Craik, K.H. The act frequency approach to personality. Psychol. Rev. 1983, 90, 105–126. [Google Scholar] [CrossRef]
  45. Wrzus, C.; Luong, G.; Wagner, G.G.; Riediger, M. Longitudinal coupling of momentary stress reactivity and trait neuroticism: Specificity of states, traits, and age period. J. Pers. Soc. Psychol. 2021, 121, 691–706. [Google Scholar] [CrossRef] [PubMed]
  46. Matz, S.C.; Harari, G.M. Personality–place transactions: Mapping the relationships between Big Five personality traits, states, and daily places. J. Pers. Soc. Psychol. 2020, 120, 1367–1385. [Google Scholar] [CrossRef]
  47. Smith, K.E.; Mason, T.B.; Schaefer, L.M.; Juarascio, A.; Dvorak, R.; Weinbach, N.; Crosby, R.D.; Wonderlich, S.A. Examining intra-individual variability in food-related inhibitory control and negative affect as predictors of binge eating using ecological momentary assessment. J. Psychiatr. Res. 2020, 120, 137–143. [Google Scholar] [CrossRef]
  48. Määttänen, I.; Henttonen, P.; Väliaho, J.; Palomäki, J.; Thibault, M.; Kallio, J.; Mäntyjärvi, J.; Harviainen, T.; Jokela, M. Positive affect state is a good predictor of movement and stress: Combining data from ESM/EMA, mobile HRV measurements and trait questionnaires. Heliyon 2021, 7, e06243. [Google Scholar] [CrossRef]
  49. Larson, R.; Csikszentmihalyi, M.; Graef, R. Mood variability and the psychosocial adjustment of adolescents. J. Youth Adolesc. 1980, 9, 469–490. [Google Scholar] [CrossRef]
  50. Gee, B.L.; Han, J.; Benassi, H.; Batterham, P.J. Suicidal thoughts, suicidal behaviours and self-harm in daily life: A systematic review of ecological momentary assessment studies. Digit. Health 2020, 6, 2055207620963958. [Google Scholar] [CrossRef]
  51. Parker, M.N.; Michael, M.; Murray, H.B.; Juarascio, A.S.; Manasse, S.M. State emotion modulation and loss-of-control eating in individuals with obesity: A preliminary ecological momentary assessment study. Eat. Behav. 2021, 41, 101478. [Google Scholar] [CrossRef]
  52. Mackesy-Amiti, M.E.; Donenberg, G. Negative affect and emotion dysregulation among people who inject drugs: An ecological momentary assessment study. Psychol. Addict. Behav. 2020, 34, 650–659. [Google Scholar] [CrossRef]
  53. Nowak, A.; Lewenstein, M. Dynamical systems: A tool for social psychology? In Dynamical Systems in Social Psychology; Vallacher, R.R., Nowak, A., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 17–53. [Google Scholar]
  54. Schuldberg, D. What is optimum variability? Nonlinear Dyn. Psychol. Life Sci. 2015, 19, 553–568. [Google Scholar]
  55. Gromatsky, M.; Sullivan, S.R.; Spears, A.P.; Mitchell, E.; Walsh, S.; Kimbrel, N.A.; Goodman, M. Ecological momentary assessment (EMA) of mental health outcomes in veterans and servicemembers: A scoping review. Psychiatry Res. 2020, 292, 113359. [Google Scholar] [CrossRef] [PubMed]
  56. Boker, S.M.; Leibenluft, E.; Deboeck, P.R.; Virk, G.; Postolache, T.T. Mood oscillations and coupling between mood and weather in patients with rapid cycling bipolar disorder. Int. J. Child. Health Hum. Dev. 2008, 1, 181–203. [Google Scholar] [PubMed]
  57. Field, R.J.; Schuldberg, D. Social-support moderated stress: A nonlinear dynamical model and the stress-buffering hypothesis. Nonlinear Dyn. Psychol. Life Sci. 2011, 15, 53–85. [Google Scholar]
  58. Gori, A.; Lauro-Grotto, R.; Giannini, M.; Schuldberg, D. Predicting treatment outcome by combining different assessment tools: Toward an integrative model of decision support in psychotherapy. J. Psychother. Integr. 2010, 20, 251–269. [Google Scholar] [CrossRef]
  59. Schuldberg, D. Theoretical contributions of complex systems to Positive Psychology and health: A Somewhat Complicated affair. Nonlinear Dyn. Psychol. Life Sci. 2002, 6, 335–350. [Google Scholar] [CrossRef]
  60. Kuppens, P.; Verduyn, P. Emotion dynamics. Curr. Opin. Psychol. 2017, 17, 22–26. [Google Scholar] [CrossRef]
  61. McKone, K.M.P.; Silk, J.S. The Emotion Dynamics Conundrum in Developmental Psychopathology: Similarities, Distinctions, and Adaptiveness of Affective Variability and Socioaffective Flexibility. Clin. Child. Fam. Psychol. Rev. 2022, 25, 44–74. [Google Scholar] [CrossRef]
  62. Aan het Rot, M.; Hogenelst, K.; Schoevers, R.A. Mood disorders in everyday life: A systematic review of experience sampling and ecological momentary assessment studies. Clin. Psychol. Rev. 2012, 32, 510–523. [Google Scholar] [CrossRef] [Green Version]
  63. Alicke, M.; Zhang, Y.; Stephenson, N. Self-Awareness and Self-Knowledge. In Oxford Research Encyclopedia of Psychology; Oxford University Press (OUP): Oxford, UK, 2020. [Google Scholar]
  64. Gosling, S.D.; Rentfrow, P.J.; Swann, W.B. A very brief measure of the Big-Five personality domains. J. Res. Pers. 2003, 37, 504–528. [Google Scholar] [CrossRef]
  65. Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
  66. Consolvo, S.; Walker, M. Using the Experience Sampling Method to evaluate Ubicomp applications. IEEE Pervasive Comput. 2003, 2, 24–31. [Google Scholar] [CrossRef] [Green Version]
  67. Barrett, L.F.; Barrett, D.J. An introduction to computerized experience sampling in psychology. Soc. Sci. Comput. Rev. 2001, 19, 175–185. [Google Scholar] [CrossRef] [Green Version]
  68. Dewey, D.; McDonald, M.K.; Brown, W.J.; Boyd, S.J.; Bunnell, B.E.; Schuldberg, D. The impact of ecological momentary assessment on PTSD symptom trajectory. Psychiatry Res. 2015, 230, 300–303. [Google Scholar] [CrossRef]
  69. Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
  70. Sprott, J.C.; Rowlands, G. Chaos Data Analyzer: The Professional Version Computer Program and PC User s Manual; Physics Academic Software, American Institute of Physics: New York, NY, USA, 1995. [Google Scholar]
  71. Sprott, J.C. Chaos and Time Series Analysis; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
  72. Schoevers, R.A.; Van Borkulo, C.D.; Lamers, F.; Servaas, M.N.; Bastiaansen, J.A.; Beekman, A.T.F.; van Hemert, A.M.; Smit, J.H.; Penninx, B.W.J.H.; Riese, H. Affect fluctuations examined with ecological momentary assessment in patients with current or remitted depression and anxiety disorders. Psychol. Med. 2021, 51, 1906–1915. [Google Scholar] [CrossRef] [Green Version]
  73. Willroth, E.C.; John, O.P.; Biesanz, J.C.; Mauss, I.B. Understanding short-term variability in life satisfaction: The Individual Differences in Evaluating Life Satisfaction (IDELS) model. J. Pers. Soc. Psychol. 2020, 119, 229–248. [Google Scholar] [CrossRef]
  74. Li, H.; Mukherjee, D.; Krishnamurthy, V.B.; Millett, C.; Ryan, K.A.; Zhang, L.; Saunders, E.F.H.; Wang, M. Use of ecological momentary assessment to detect variability in mood, sleep and stress in bipolar disorder. BMC Res. Notes 2019, 12, 1–7. [Google Scholar] [CrossRef]
  75. Brick, L.; Nugent, N.; Armey, M. Affective variability and childhood abuse increase the risk for nonsuicidal self-injury following psychiatric hospitalization. J. Trauma Stress 2021, 34, 1118–1131. [Google Scholar] [CrossRef]
  76. Wilson, R.E.; Thompson, R.J.; Vazire, S. Are fluctuations in personality states more than fluctuations in affect? J. Res. Pers. 2017, 69, 110–123. [Google Scholar] [CrossRef] [Green Version]
  77. West, B.J. Where Medicine Went Wrong: Rediscovering the Path to Complexity; World Scientific: Hackensack, NJ, USA, 2006. [Google Scholar]
  78. Sprott, J.C. Strange Attractors: Creating Patterns in Chaos; M & T Books: New York, NY, USA, 1993; Volume 9. [Google Scholar]
  79. McArthur, C.C. Are we fractals. In Proceedings of the 50th Annual Meeting of the Society for Personality Assessment, New York, NY, USA, 13–15 April 1989. [Google Scholar]
  80. Hollenstein, T.; Lewis, M.D. A state space analysis of emotion and flexibility in parent-child interactions. Emotion 2006, 6, 656–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Kreindler, D.; Lumsden, C. The effects of the irregular sample and missing data in time series analysis. Nonlinear Dyn. Psychol. Life Sci. 2006, 10, 187–214. [Google Scholar]
  82. Kreindler, D.; Lumsden, C. The effects of irregular sampling and missing data on largest Lyapunov exponents. Nonlinear Dyn. Psychol. Life Sci. 2007, 11, 401–412. [Google Scholar]
  83. Tugade, M.M.; Fredrickson, B.L.; Feldman Barrett, L. Psychological resilience and positive emotional granularity: Examining the benefits of positive emotions on coping and health. J. Pers. 2004, 72, 1161–1190. [Google Scholar] [CrossRef]
  84. Jovanović, V.; Lazić, M. Is longer always better? A comparison of the validity of single-item versus multiple-item measures of life satisfaction. Appl. Res. Qual. Life 2020, 15, 675–692. [Google Scholar] [CrossRef]
  85. Guastello, S.J. Chaos, Catastrophe, and Human Affairs: Applications of Nonlinear Dynamics to Work, Organizations, and Social Evolution; Erlbaum: Mahwah, NJ, USA, 1995. [Google Scholar]
  86. Goldberger, A.L. Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 1991, 2, 87–91. [Google Scholar] [CrossRef] [Green Version]
  87. Simon, H.A. Models of Thought; Yale University Press: New Haven, CT, USA, 1979. [Google Scholar]
Figure 1. Flowchart illustrating the research technique.
Figure 1. Flowchart illustrating the research technique.
Ijerph 19 08008 g001
Figure 2. (ac). Variability in Extraversion and PANAS Positive Affect, Bob. Notes: Straight line connects pre and post paper and pencil measurements. All measures expressed on 1-to-100 scales.
Figure 2. (ac). Variability in Extraversion and PANAS Positive Affect, Bob. Notes: Straight line connects pre and post paper and pencil measurements. All measures expressed on 1-to-100 scales.
Ijerph 19 08008 g002
Figure 3. (ac). Variability in Extraversion and Positive PANAS Affect, Alice. Notes: Straight line connects pre and post paper and pencil measurements. All PANAS and TIPI scales expressed on 1-to-100 scales.
Figure 3. (ac). Variability in Extraversion and Positive PANAS Affect, Alice. Notes: Straight line connects pre and post paper and pencil measurements. All PANAS and TIPI scales expressed on 1-to-100 scales.
Ijerph 19 08008 g003
Figure 4. (a) Example of attractor reconstruction: Extraversion ratings a. Bob (Data correspond to Figure 2a). Notes: n = 76 valid points; estimated largest Lyapunov exponent: 0.585 ± 0.183; estimated correlation dimension: not computable. (b) Example of attractor reconstruction: Extraversion ratings a. Alice (data correspond to Figure 3a). Notes: n = 102 valid points; estimated largest Lyapunov exponent: 0.82 ± 0.16; estimated correlation dimension: 3.78 ± 1.25.
Figure 4. (a) Example of attractor reconstruction: Extraversion ratings a. Bob (Data correspond to Figure 2a). Notes: n = 76 valid points; estimated largest Lyapunov exponent: 0.585 ± 0.183; estimated correlation dimension: not computable. (b) Example of attractor reconstruction: Extraversion ratings a. Alice (data correspond to Figure 3a). Notes: n = 102 valid points; estimated largest Lyapunov exponent: 0.82 ± 0.16; estimated correlation dimension: 3.78 ± 1.25.
Ijerph 19 08008 g004
Table 1. Personality and affect variability: Bob (n = 74–76 observations).
Table 1. Personality and affect variability: Bob (n = 74–76 observations).
ScaleEMA ValuesPaper and Pencil
MinMaxMeanRangeSDPrePost
Extraversion15.082.551.167.518.09.39.3
Agreeableness43.0100.076.757.09.691.883.5
Conscientiousness39.090.570.351.511.058.850.5
Emotional Stability34.5100.082.065.514.325.842.3
Openness30.076.058.546.011.191.875.3
PANAS Positive17.474.35.456.911.550.531.2
PANAS Negative1.036.38.935.37.143.140.6
Note: Bold indicate significant values. All scales converted to 1-to-100 scales for this table. Time series plots for the scales in bold type are shown in Figure 2.
Table 2. Personality and affect variability: Alice (n = 102 observations).
Table 2. Personality and affect variability: Alice (n = 102 observations).
ScaleEMA ValuesPaper and Pencil
MinMaxMeanRangeSDPrePost
Extraversion1.057.022.856.013.417.558.8
Agreeableness53.5100.085.446.512.650.550.5
Conscientiousness11.087.557.176.515.091.883.5
Emotional Stability16.593.063.076.519.650.558.8
Openness28.094.572.266.511.667.075.3
PANAS Positive12.169.139.557.013.261.553.2
PANAS Negative1.762.323.660.613.123.318.3
Note: Bold indicate significant values. All scales expressed on 1-to-100 scales for this table. Time series plots for the scales in bold type are shown in Figure 3.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gori, A.; Dewey, D.; Topino, E.; Giannini, M.; Schuldberg, D. How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect. Int. J. Environ. Res. Public Health 2022, 19, 8008. https://doi.org/10.3390/ijerph19138008

AMA Style

Gori A, Dewey D, Topino E, Giannini M, Schuldberg D. How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect. International Journal of Environmental Research and Public Health. 2022; 19(13):8008. https://doi.org/10.3390/ijerph19138008

Chicago/Turabian Style

Gori, Alessio, Daniel Dewey, Eleonora Topino, Marco Giannini, and David Schuldberg. 2022. "How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect" International Journal of Environmental Research and Public Health 19, no. 13: 8008. https://doi.org/10.3390/ijerph19138008

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop