How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect
Abstract
:1. Introduction
1.1. Ecological Momentary Assessment (EMA) and the Experience Sampling Method (ESM)
1.2. Studying Variability in Traits
1.3. Studying Variability in Affect
1.4. Indices of Variability
1.5. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Ten-Item Personality Inventory (TIPI)
2.2.2. Positive and Negative Affect Schedule (PANAS)
2.3. Procedures
2.4. Data Analyses and Presentation
3. Results
3.1. Classical Variability Indices
3.2. Attractor Reconstruction and Evidence for Patterning and Possible Chaos
4. Discussion
4.1. Pitfalls
4.2. Limitations and Future Directions
5. Conclusions
5.1. The Opportunity to Consider Temporal Fluctuation as an Informative Variable
5.2. Temporal Fluctuations and Psychological Variables
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Block, J. Studying personality the long way. In Studying Lives through Time: Personality and Development; Funder, D.C., Parke, R.D., Tomlinson-Keasey, C., Widaman, K., Eds.; American Psychological Association: Washington, DC, USA, 1993; pp. 9–41. [Google Scholar]
- Cattell, R.B. The description of personality: Basic traits resolved into clusters. J. Abnorm. Psychol. 1943, 38, 476–506. [Google Scholar] [CrossRef]
- Eysenck, H.J.; Eysenck, M.W. Personality and Individual Differences; Plenum: New York, NY, USA, 1987. [Google Scholar]
- Wiggins, J.S. In defense of traits. In Handbook of Personality Psychology; Hogan, R., Johnson, J.A., Briggs, S.R., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 95–141. [Google Scholar]
- Ashton, M.C. Individual Differences and Personality; Academic Press: London, UK, 2022. [Google Scholar]
- Beck, E.D.; Jackson, J.J. Consistency and change in idiographic personality: A longitudinal ESM network study. J. Pers. Soc. Psychol. 2020, 118, 1080–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrae, R.R.; Costa, P.T. The five-factor theory of personality. In Handbook of Personality: Theory and Research, 3rd ed.; John, O.P., Robins, R.W., Pervin, L.A., Eds.; Guilford Press: New York, NY, USA, 2008; pp. 159–181. [Google Scholar]
- Mischel, W. Personality and Assessment; John Wiley & Sons Inc: Hoboken, NJ, USA, 1968. [Google Scholar]
- Bleidorn, W.; Hopwood, C.J. Stability and change in personality traits over the lifespan. In Handbook of Personality Development; McAdams, I.D.P., Shiner, R.L., Eds.; Guilford Publications: New York, NY, USA, 2019; pp. 237–252. [Google Scholar]
- Roberts, B.W.; DelVecchio, W.F. The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychol. Bull. 2000, 126, 3–25. [Google Scholar] [CrossRef]
- Bleidorn, W.; Hopwood, C.J.; Lucas, R.E. Life events and personality trait change. J. Pers. 2018, 86, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Fleeson, W.; Gallagher, P. The implications of Big Five standing for the distribution of trait manifestation in behavior: Fifteen experience-sampling studies and a meta-analysis. J. Pers. Soc. Psychol. 2009, 97, 1097–1114. [Google Scholar] [CrossRef] [PubMed]
- Damian, R.I.; Spengler, M.; Sutu, A.; Roberts, B.W. Sixteen going on sixty-six: A longitudinal study of personality stability and change across 50 years. J. Pers. Soc. Psychol. 2019, 117, 674. [Google Scholar] [CrossRef] [Green Version]
- Schwaba, T.; Bleidorn, W. Personality trait development across the transition to retirement. J. Pers. Soc. Psychol. 2019, 116, 651. [Google Scholar] [CrossRef] [Green Version]
- Mischel, W.; Shoda, Y. Reconciling processing dynamics and personality dispositions. Annu. Rev. Psychol. 1998, 49, 229–258. [Google Scholar] [CrossRef] [Green Version]
- Fleeson, W. Toward a structure- and process-integrated view of personality: Traits as density distributions of states. J. Pers. Soc. Psychol. 2001, 80, 1011–1027. [Google Scholar] [CrossRef]
- Fleeson, W. 2004 Moving personality beyond the person-situation debate: The challenge and the opportunity of within-person variability. Curr. Dir. Psychol. Sci. 2004, 13, 83–87. [Google Scholar] [CrossRef]
- Fleeson, W.; Noftle, E.E. Where does personality have its influence? A supermatrix of consistency concepts. J. Pers. 2008, 76, 1355–1386. [Google Scholar] [CrossRef] [PubMed]
- Fleeson, W.; Noftle, E.E. In favor of the synthetic resolution to the person-situation debate. J. Res. Pers. 2009, 43, 150–154. [Google Scholar] [CrossRef]
- Fleeson, W.; Jayawickreme, E. Whole trait theory puts dynamics at the core of structure. In The Handbook of Personality Dynamics and Processes; Rauthmann, J.F., Ed.; Academic Press: London, UK, 2021; pp. 579–599. [Google Scholar]
- Sullivan, H.S. The Interpersonal Theory of Psychiatry; Norton: New York, NY, USA, 1953. [Google Scholar]
- Larson, R.; Csikszentmihalyi, M. Experiential correlates of time alone in adolescence. J. Pers. 1978, 46, 677–693. [Google Scholar] [CrossRef]
- DeLongis, A.; Folkman, S.; Lazarus, R.S. The impact of daily stress on health and mood: Psychological and social resources as mediators. J. Pers. Soc. Psychol. 1988, 54, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.; Diener, E. Intraindividual variability in affect: Reliability, validity, and personality correlates. J. Pers. Soc. Psychol. 1999, 76, 662–676. [Google Scholar] [CrossRef]
- Taylor, C.B.; Fried, L.; Kenardy, J. The use of a real-time computer diary for data acquisition and processing. Behav. Res. Ther. 1990, 28, 93–97. [Google Scholar] [CrossRef]
- Totterdell, P.; Fokkard, S. In situ repeated measures of affect and cognitive performance facilitated by use of a hand-held computer. Behav. Res. Methods 1992, 24, 545–553. [Google Scholar] [CrossRef]
- Liu, H.; Xie, Q.W.; Lou, V.W. Everyday social interactions and intra-individual variability in affect: A systematic review and meta-analysis of ecological momentary assessment studies. Motiv. Emot. 2019, 43, 339–353. [Google Scholar] [CrossRef]
- Bonsall, M.; Wallace-Hadrill, S.; Geddes, J.; Goodwin, G.; Holmes, E. Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder. Proc. R. Soc. B: Biol. Sci. 2012, 279, 916–924. [Google Scholar] [CrossRef]
- Glenn, T.; Whybrow, P.C.; Rasgon, N.; Grof, P.; Alda, M.; Baethge, C.; Bauer, M. Approximate entropy of self-reported mood prior to episodes in bipolar disorder. Bipolar. Disord. 2006, 8, 424–429. [Google Scholar] [CrossRef]
- Goldberg, J.F.; Bowden, C.L.; Calabrese, J.R.; Ketter, T.A.; Dann, R.S.; Frye, M.A.; Suppes, T.; Post, R.M. Six-month prospective life charting of mood symptoms with lamotrigine monotherapy versus placebo in rapid cycling bipolar disorder. Biol. Psychiatry 2008, 63, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, A.; Bauer, M.S.; Whybrow, P.C. Evidence of chaotic mood variation in bipolar disorder. Arch. Gen. Psychiatry 1995, 52, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.A. Detecting Nonlinearity and Edge-of-Chaos Phenomena in Ordinal Data. Nonlinear Dyn. Psychol. Life Sci. 2015, 19, 229–248. [Google Scholar]
- Heath, R.A.; Heiby, E.M.; Pagano, I.S. Complex Dynamics in Depression: An Application to Long-Term, Mood-Rating Time Series. In Advances in Clinical Cognitive Science: Formal Modeling of Processes and Symptoms; Neufeld, R.W.J., Ed.; American Psychological Association: Washington, DC, USA, 2007; pp. 263–291. [Google Scholar]
- Johnson, S.L.; Nowak, A. Dynamic pattermns in bipolar depression. Pers. Soc. Psychol. Rev. 2002, 6, 380–387. [Google Scholar] [CrossRef]
- Sperry, S.H.; Walsh, M.A.; Kwapil, T.R. Emotion dynamics concurrently and prospectively predict mood psychopathology. J. Affect. Disord. 2020, 261, 67–75. [Google Scholar] [CrossRef]
- Maciejewski, D.F.; Keijsers, L.; van Lier, P.A.C.; Branje, S.J.T.; Meeus, W.H.J.; Koot, H.M. Most fare well—But some do not: Distinct profiles of mood variability development and their association with adjustment during adolescence. Dev. Psychol. 2019, 55, 434–448. [Google Scholar] [CrossRef]
- Reitsema, A.M.; Jeronimus, B.F.; van Dijk, M.; de Jonge, P. Emotion dynamics in children and adolescents: A meta-analytic and descriptive review. Emotion 2020, 22, 374–396. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M.; Larson, R. Validity and reliability of the experience-sampling method. J. Nerv. Ment. Dis. 1987, 175, 526–536. [Google Scholar] [CrossRef]
- Stone, A.A.; Shiffman, S. Ecological momentary assessment (EMA) in behavorial medicine. Ann. Behav. Med. 1994, 16, 199–202. [Google Scholar] [CrossRef]
- Stone, A.A.; Turkkan, J.S.; Bachrach, C.A.; Jobe, J.B.; Kurtzman, H.S.; Cain, V.S. The Science of Self-Report: Implications for Research and Practice; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2000. [Google Scholar]
- Roche, M.J.; Pincus, A.L.; Rebar, A.L.; Conroy, D.E.; Ram, N. Enriching psychological assessment using a person-specific analysis of interpersonal processes in daily life. Assessment 2014, 21, 515–528. [Google Scholar] [CrossRef]
- Specht, J.; Egloff, B.; Schmukle, S.C. The benefits of believing in chance or fate: External locus of control as a protective factor for coping with the death of a spouse. Soc. Psychol. Pers. Sci. 2011, 2, 132–137. [Google Scholar] [CrossRef]
- Trull, T.J.; Ebner-Priemer, U.W. Using experience sampling methods/ecological momentary assessment (ESM/EMA) in clinical assessment and clinical research: Introduction to the special section. Psychol. Assess. 2009, 21, 457–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buss, D.M.; Craik, K.H. The act frequency approach to personality. Psychol. Rev. 1983, 90, 105–126. [Google Scholar] [CrossRef]
- Wrzus, C.; Luong, G.; Wagner, G.G.; Riediger, M. Longitudinal coupling of momentary stress reactivity and trait neuroticism: Specificity of states, traits, and age period. J. Pers. Soc. Psychol. 2021, 121, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Matz, S.C.; Harari, G.M. Personality–place transactions: Mapping the relationships between Big Five personality traits, states, and daily places. J. Pers. Soc. Psychol. 2020, 120, 1367–1385. [Google Scholar] [CrossRef]
- Smith, K.E.; Mason, T.B.; Schaefer, L.M.; Juarascio, A.; Dvorak, R.; Weinbach, N.; Crosby, R.D.; Wonderlich, S.A. Examining intra-individual variability in food-related inhibitory control and negative affect as predictors of binge eating using ecological momentary assessment. J. Psychiatr. Res. 2020, 120, 137–143. [Google Scholar] [CrossRef]
- Määttänen, I.; Henttonen, P.; Väliaho, J.; Palomäki, J.; Thibault, M.; Kallio, J.; Mäntyjärvi, J.; Harviainen, T.; Jokela, M. Positive affect state is a good predictor of movement and stress: Combining data from ESM/EMA, mobile HRV measurements and trait questionnaires. Heliyon 2021, 7, e06243. [Google Scholar] [CrossRef]
- Larson, R.; Csikszentmihalyi, M.; Graef, R. Mood variability and the psychosocial adjustment of adolescents. J. Youth Adolesc. 1980, 9, 469–490. [Google Scholar] [CrossRef]
- Gee, B.L.; Han, J.; Benassi, H.; Batterham, P.J. Suicidal thoughts, suicidal behaviours and self-harm in daily life: A systematic review of ecological momentary assessment studies. Digit. Health 2020, 6, 2055207620963958. [Google Scholar] [CrossRef]
- Parker, M.N.; Michael, M.; Murray, H.B.; Juarascio, A.S.; Manasse, S.M. State emotion modulation and loss-of-control eating in individuals with obesity: A preliminary ecological momentary assessment study. Eat. Behav. 2021, 41, 101478. [Google Scholar] [CrossRef]
- Mackesy-Amiti, M.E.; Donenberg, G. Negative affect and emotion dysregulation among people who inject drugs: An ecological momentary assessment study. Psychol. Addict. Behav. 2020, 34, 650–659. [Google Scholar] [CrossRef]
- Nowak, A.; Lewenstein, M. Dynamical systems: A tool for social psychology? In Dynamical Systems in Social Psychology; Vallacher, R.R., Nowak, A., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 17–53. [Google Scholar]
- Schuldberg, D. What is optimum variability? Nonlinear Dyn. Psychol. Life Sci. 2015, 19, 553–568. [Google Scholar]
- Gromatsky, M.; Sullivan, S.R.; Spears, A.P.; Mitchell, E.; Walsh, S.; Kimbrel, N.A.; Goodman, M. Ecological momentary assessment (EMA) of mental health outcomes in veterans and servicemembers: A scoping review. Psychiatry Res. 2020, 292, 113359. [Google Scholar] [CrossRef] [PubMed]
- Boker, S.M.; Leibenluft, E.; Deboeck, P.R.; Virk, G.; Postolache, T.T. Mood oscillations and coupling between mood and weather in patients with rapid cycling bipolar disorder. Int. J. Child. Health Hum. Dev. 2008, 1, 181–203. [Google Scholar] [PubMed]
- Field, R.J.; Schuldberg, D. Social-support moderated stress: A nonlinear dynamical model and the stress-buffering hypothesis. Nonlinear Dyn. Psychol. Life Sci. 2011, 15, 53–85. [Google Scholar]
- Gori, A.; Lauro-Grotto, R.; Giannini, M.; Schuldberg, D. Predicting treatment outcome by combining different assessment tools: Toward an integrative model of decision support in psychotherapy. J. Psychother. Integr. 2010, 20, 251–269. [Google Scholar] [CrossRef]
- Schuldberg, D. Theoretical contributions of complex systems to Positive Psychology and health: A Somewhat Complicated affair. Nonlinear Dyn. Psychol. Life Sci. 2002, 6, 335–350. [Google Scholar] [CrossRef]
- Kuppens, P.; Verduyn, P. Emotion dynamics. Curr. Opin. Psychol. 2017, 17, 22–26. [Google Scholar] [CrossRef]
- McKone, K.M.P.; Silk, J.S. The Emotion Dynamics Conundrum in Developmental Psychopathology: Similarities, Distinctions, and Adaptiveness of Affective Variability and Socioaffective Flexibility. Clin. Child. Fam. Psychol. Rev. 2022, 25, 44–74. [Google Scholar] [CrossRef]
- Aan het Rot, M.; Hogenelst, K.; Schoevers, R.A. Mood disorders in everyday life: A systematic review of experience sampling and ecological momentary assessment studies. Clin. Psychol. Rev. 2012, 32, 510–523. [Google Scholar] [CrossRef] [Green Version]
- Alicke, M.; Zhang, Y.; Stephenson, N. Self-Awareness and Self-Knowledge. In Oxford Research Encyclopedia of Psychology; Oxford University Press (OUP): Oxford, UK, 2020. [Google Scholar]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B. A very brief measure of the Big-Five personality domains. J. Res. Pers. 2003, 37, 504–528. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Consolvo, S.; Walker, M. Using the Experience Sampling Method to evaluate Ubicomp applications. IEEE Pervasive Comput. 2003, 2, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.F.; Barrett, D.J. An introduction to computerized experience sampling in psychology. Soc. Sci. Comput. Rev. 2001, 19, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Dewey, D.; McDonald, M.K.; Brown, W.J.; Boyd, S.J.; Bunnell, B.E.; Schuldberg, D. The impact of ecological momentary assessment on PTSD symptom trajectory. Psychiatry Res. 2015, 230, 300–303. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sprott, J.C.; Rowlands, G. Chaos Data Analyzer: The Professional Version Computer Program and PC User s Manual; Physics Academic Software, American Institute of Physics: New York, NY, USA, 1995. [Google Scholar]
- Sprott, J.C. Chaos and Time Series Analysis; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Schoevers, R.A.; Van Borkulo, C.D.; Lamers, F.; Servaas, M.N.; Bastiaansen, J.A.; Beekman, A.T.F.; van Hemert, A.M.; Smit, J.H.; Penninx, B.W.J.H.; Riese, H. Affect fluctuations examined with ecological momentary assessment in patients with current or remitted depression and anxiety disorders. Psychol. Med. 2021, 51, 1906–1915. [Google Scholar] [CrossRef] [Green Version]
- Willroth, E.C.; John, O.P.; Biesanz, J.C.; Mauss, I.B. Understanding short-term variability in life satisfaction: The Individual Differences in Evaluating Life Satisfaction (IDELS) model. J. Pers. Soc. Psychol. 2020, 119, 229–248. [Google Scholar] [CrossRef]
- Li, H.; Mukherjee, D.; Krishnamurthy, V.B.; Millett, C.; Ryan, K.A.; Zhang, L.; Saunders, E.F.H.; Wang, M. Use of ecological momentary assessment to detect variability in mood, sleep and stress in bipolar disorder. BMC Res. Notes 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Brick, L.; Nugent, N.; Armey, M. Affective variability and childhood abuse increase the risk for nonsuicidal self-injury following psychiatric hospitalization. J. Trauma Stress 2021, 34, 1118–1131. [Google Scholar] [CrossRef]
- Wilson, R.E.; Thompson, R.J.; Vazire, S. Are fluctuations in personality states more than fluctuations in affect? J. Res. Pers. 2017, 69, 110–123. [Google Scholar] [CrossRef] [Green Version]
- West, B.J. Where Medicine Went Wrong: Rediscovering the Path to Complexity; World Scientific: Hackensack, NJ, USA, 2006. [Google Scholar]
- Sprott, J.C. Strange Attractors: Creating Patterns in Chaos; M & T Books: New York, NY, USA, 1993; Volume 9. [Google Scholar]
- McArthur, C.C. Are we fractals. In Proceedings of the 50th Annual Meeting of the Society for Personality Assessment, New York, NY, USA, 13–15 April 1989. [Google Scholar]
- Hollenstein, T.; Lewis, M.D. A state space analysis of emotion and flexibility in parent-child interactions. Emotion 2006, 6, 656–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreindler, D.; Lumsden, C. The effects of the irregular sample and missing data in time series analysis. Nonlinear Dyn. Psychol. Life Sci. 2006, 10, 187–214. [Google Scholar]
- Kreindler, D.; Lumsden, C. The effects of irregular sampling and missing data on largest Lyapunov exponents. Nonlinear Dyn. Psychol. Life Sci. 2007, 11, 401–412. [Google Scholar]
- Tugade, M.M.; Fredrickson, B.L.; Feldman Barrett, L. Psychological resilience and positive emotional granularity: Examining the benefits of positive emotions on coping and health. J. Pers. 2004, 72, 1161–1190. [Google Scholar] [CrossRef]
- Jovanović, V.; Lazić, M. Is longer always better? A comparison of the validity of single-item versus multiple-item measures of life satisfaction. Appl. Res. Qual. Life 2020, 15, 675–692. [Google Scholar] [CrossRef]
- Guastello, S.J. Chaos, Catastrophe, and Human Affairs: Applications of Nonlinear Dynamics to Work, Organizations, and Social Evolution; Erlbaum: Mahwah, NJ, USA, 1995. [Google Scholar]
- Goldberger, A.L. Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 1991, 2, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.A. Models of Thought; Yale University Press: New Haven, CT, USA, 1979. [Google Scholar]
Scale | EMA Values | Paper and Pencil | |||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Range | SD | Pre | Post | |
Extraversion | 15.0 | 82.5 | 51.1 | 67.5 | 18.0 | 9.3 | 9.3 |
Agreeableness | 43.0 | 100.0 | 76.7 | 57.0 | 9.6 | 91.8 | 83.5 |
Conscientiousness | 39.0 | 90.5 | 70.3 | 51.5 | 11.0 | 58.8 | 50.5 |
Emotional Stability | 34.5 | 100.0 | 82.0 | 65.5 | 14.3 | 25.8 | 42.3 |
Openness | 30.0 | 76.0 | 58.5 | 46.0 | 11.1 | 91.8 | 75.3 |
PANAS Positive | 17.4 | 74.3 | 5.4 | 56.9 | 11.5 | 50.5 | 31.2 |
PANAS Negative | 1.0 | 36.3 | 8.9 | 35.3 | 7.1 | 43.1 | 40.6 |
Scale | EMA Values | Paper and Pencil | |||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Range | SD | Pre | Post | |
Extraversion | 1.0 | 57.0 | 22.8 | 56.0 | 13.4 | 17.5 | 58.8 |
Agreeableness | 53.5 | 100.0 | 85.4 | 46.5 | 12.6 | 50.5 | 50.5 |
Conscientiousness | 11.0 | 87.5 | 57.1 | 76.5 | 15.0 | 91.8 | 83.5 |
Emotional Stability | 16.5 | 93.0 | 63.0 | 76.5 | 19.6 | 50.5 | 58.8 |
Openness | 28.0 | 94.5 | 72.2 | 66.5 | 11.6 | 67.0 | 75.3 |
PANAS Positive | 12.1 | 69.1 | 39.5 | 57.0 | 13.2 | 61.5 | 53.2 |
PANAS Negative | 1.7 | 62.3 | 23.6 | 60.6 | 13.1 | 23.3 | 18.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gori, A.; Dewey, D.; Topino, E.; Giannini, M.; Schuldberg, D. How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect. Int. J. Environ. Res. Public Health 2022, 19, 8008. https://doi.org/10.3390/ijerph19138008
Gori A, Dewey D, Topino E, Giannini M, Schuldberg D. How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect. International Journal of Environmental Research and Public Health. 2022; 19(13):8008. https://doi.org/10.3390/ijerph19138008
Chicago/Turabian StyleGori, Alessio, Daniel Dewey, Eleonora Topino, Marco Giannini, and David Schuldberg. 2022. "How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect" International Journal of Environmental Research and Public Health 19, no. 13: 8008. https://doi.org/10.3390/ijerph19138008
APA StyleGori, A., Dewey, D., Topino, E., Giannini, M., & Schuldberg, D. (2022). How Stable, Really? Traditional and Nonlinear Dynamics Approaches to Studying Temporal Fluctuations in Personality and Affect. International Journal of Environmental Research and Public Health, 19(13), 8008. https://doi.org/10.3390/ijerph19138008