Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children’s Exposure Assessments
Abstract
:1. Introduction
2. Materials and methods
2.1. Chemicals
2.2. Test Materials
2.3. Identification of Phthalates from Test Materials
2.4. Measurement of Emission Characteristics of Phthalates from the Materials
2.5. Estimation of Phthalate Concentrations in Kindergarten Classrooms
2.6. Children’s Exposure Assessments in Kindergarten Classrooms
3. Results
3.1. Mass Fractions and Emissions of Phthalates in Test Materials
3.2. Modeled DEHP Concentratiosn in Kindergarten Classrooms
3.3. Children’s Exposure to DEHP in Kindergarten Classrooms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Plasticizers; ChemTec Publishing: Toronto, ON, Canada, 2017. [Google Scholar]
- Sioen, I.; Fierens, T.; Van Holderbeke, M.; Geerts, L.; Bellemans, M.; De Maeyer, M.; Servaes, K.; Vanermen, G.; Boon, P.; De Henauw, S. Phthalates dietary exposure and food sources for Belgian preschool children and adults. Environ. Int. 2012, 48, 102–108. [Google Scholar] [CrossRef]
- Fromme, H.; Lahrz, T.; Piloty, M.; Gebhart, H.; Oddoy, A.; Ruden, H. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 2004, 14, 188–195. [Google Scholar] [CrossRef]
- Yao, J.; Hu, M.; Yuan, F.; Ye, H.; Xu, Z.; Zhang, X.; Qiu, G.; Dong, C.; Mmereki, D.; Xu, Y.; et al. Exposure to phthalates in the sleeping microenvironment of university dormitories: A preliminary estimate based on skin wipe and dust sampling. Build. Environ. 2022, 218, 109135. [Google Scholar] [CrossRef]
- Gevao, B.; Al-Ghadban, A.N.; Bahloul, M.; Uddin, S.; Zafar, J. Phthalates in indoor dust in Kuwait: Implications for non-dietary human exposure. Indoor Air 2013, 23, 126–133. [Google Scholar] [CrossRef]
- Salthammer, T.; Zhang, Y.; Mo, J.; Koch, H.M.; Weschler, C.J. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew. Chem. Int. Edit. 2018, 57, 12228–12263. [Google Scholar] [CrossRef]
- Callesen, M.; Beko, G.; Weschler, C.J.; Langer, S.; Brive, L.; Clausen, G.; Toftum, J.; Sigsgaard, T.; Host, A.; Jensen, T.K. Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. Int. J. Hyg. Environ. Health 2014, 217, 645–652. [Google Scholar] [CrossRef]
- Gong, M.; Weschler, C.J.; Liu, L.; Shen, H.; Huang, L.; Sundell, J.; Zhang, Y. Phthalate metabolites in urine samples from Beijing children and correlations with phthalate levels in their handwipes. Indoor Air 2015, 25, 572–581. [Google Scholar] [CrossRef]
- Langer, S.; Beko, G.; Weschler, C.J.; Brive, L.M.; Toftum, J.; Callesen, M.; Clausen, G. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers. Int. J. Hyg. Environ. Health 2014, 217, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, J.; Tang, C.; Mao, I. The internal exposure of Taiwanese to phthalate--an evidence of intensive use of plastic materials. Environ. Int. 2008, 34, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Araki, A.; Mitsui, T.; Goudarzi, H.; Nakajima, T.; Miyashita, C.; Itoh, S.; Sasaki, S.; Cho, K.; Moriya, K.; Shinohara, N.; et al. Prenatal di(2-ethylhexyl) phthalate exposure and disruption of adrenal androgens and glucocorticoids levels in cord blood: The Hokkaido Study. Sci. Total Environ. 2017, 581–582, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbuckle, T.E.; Agarwal, A.; MacPherson, S.H.; Fraser, W.D.; Sathyanarayana, S.; Ramsay, T.; Dodds, L.; Muckle, G.; Fisher, M.; Foster, W.; et al. Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: The MIREC study. Environ. Int. 2018, 120, 572–583. [Google Scholar] [CrossRef]
- Yu, Z.; Han, Y.; Shen, R.; Huang, K.; Xu, Y.Y.; Wang, Q.N.; Zhou, S.S.; Xu, D.X.; Tao, F.B. Gestational di-(2-ethylhexyl) phthalate exposure causes fetal intrauterine growth restriction through disturbing placental thyroid hormone receptor signaling. Toxicol. Lett. 2018, 294, 1–10. [Google Scholar] [CrossRef]
- Chin, H.B.; Jukic, A.M.; Wilcox, A.J.; Weinberg, C.R.; Ferguson, K.K.; Calafat, A.M.; McConnaughey, D.R.; Baird, D.D. Association of urinary concentrations of phthalate metabolites and bisphenol A with early pregnancy endpoints. Environ. Res. 2018, 168, 254–260. [Google Scholar] [CrossRef]
- Radke, E.G.; Braun, J.M.; Meeker, J.D.; Cooper, G.S. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environ. Int. 2018, 121, 764–793. [Google Scholar] [CrossRef]
- Smarr, M.M.; Kannan, K.; Sun, L.; Honda, M.; Wang, W.; Karthikraj, R.; Chen, Z.; Weck, J.; Buck Louis, G.M. Preconception seminal plasma concentrations of endocrine disrupting chemicals in relation to semen quality parameters among male partners planning for pregnancy. Environ. Res. 2018, 167, 78–86. [Google Scholar] [CrossRef]
- Bornehag, C.-G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hägerhed-Engman, L. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case-control study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef] [Green Version]
- Li, M.C.; Chen, C.H.; Guo, Y.L. Phthalate esters and childhood asthma: A systematic review and congener-specific meta-analysis. Environ. Pollut. 2017, 229, 655–660. [Google Scholar] [CrossRef]
- Shi, W.; Lin, Z.; Liao, C.; Zhang, J.; Liu, W.; Wang, X.; Cai, J.; Zou, Z.; Wang, H.; Norback, D.; et al. Urinary phthalate metabolites in relation to childhood asthmatic and allergic symptoms in Shanghai. Environ. Int. 2018, 121 Pt 1, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.W.; Kim, M.S.; Lim, Y.H.; Lee, N.; Hong, Y.C. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and neurodevelopmental outcomes: A systematic review and meta-analysis. Environ. Res. 2018, 167, 558–566. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Di(2-ethylhexyl)phthalate (DEHP) (CASRN 117-81-7). Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0014_summary.pdf (accessed on 30 March 2022).
- U.S. EPA. Phthalates Action Plan. Available online: http://www.epa.gov/sites/production/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf (accessed on 30 March 2022).
- EU. Commission Decision of 7 December 1999 adopting measures prohibiting the placing on the market of toys and childcare articles intended to be placed in the mouth by children under three years of age made of soft PVC containing one or more of the substances di-iso-nonyl phthalate (DINP), di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), di-iso-decyl phthalate (DIDP), di-n-octyl phthalate (DNOP), and butylbenzyl phthalate (BBP). Off. J. Eur. Communities 1999, L315, 46–49. [Google Scholar]
- EU. Commission Directive 2007/19/EC of 30 March 2007 amending Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with food and Council Direvtive 85/572/EEC laying down the list of simulants to be used for testing migration of constituents of plastic materials and articles intended to come into contact with foodstuffs. Off. J. Eur. Union 2007, L91, 17–36. [Google Scholar]
- Wei, Z.H. Development background and trend of plasticizer industry in China. Econ. Anal. China Pet. Chem. Ind. 2014, 11, 53–57. (In Chinese) [Google Scholar]
- Bu, Z.; Hu, M.; Yuan, F.; Xu, Y.; Dong, C.; Zhang, N.; Mmereki, D.; Cao, J.; Zheng, Y. Phthalates in Chinese vehicular environments: Source emissions, concentrations, and human exposure. Indoor Air 2021, 31, 2118–2129. [Google Scholar] [CrossRef]
- Shi, S.; Cao, J.; Zhang, Y.; Zhao, B. Emissions of Phthalates from Indoor Flat Materials in Chinese Residences. Environ. Sci. Technol. 2018, 52, 13166–13173. [Google Scholar] [CrossRef]
- Bu, Z.; Mmereki, D.; Wang, J.; Dong, C. Exposure to commonly-used phthalates and the associated health risks in indoor environment of urban China. Sci. Total Environ. 2019, 658, 843–853. [Google Scholar] [CrossRef]
- Wang, X.; Tao, W.; Xu, Y.; Feng, J.; Wang, F. Indoor phthalate concentration and exposure in residential and office buildings in Xi’an, China. Atmos. Environ. 2014, 87, 146–152. [Google Scholar] [CrossRef]
- Cohen Hubal, E.A.; Sheldon, L.S.; Burke, J.M.; McCurdy, T.R.; Berry, M.R.; Rigas, M.L.; Zartarian, V.G.; Freeman, N.C. Children’s exposure assessment: A review of factors influencing children’s exposure, and the data available to characterize and assess that exposure. Environ. Health Perspect. 2000, 108, 475–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selevan, S.G.; Kimmel, C.A.; Mendola, P. Identifying critical windows of exposure for children’s health. Environ. Health Perspect. 2000, 108 (Suppl. 3), 451–455. [Google Scholar] [PubMed]
- Bu, Z.; Zhang, Y.; Mmereki, D.; Yu, W.; Li, B. Indoor phthalate concentration in residential apartments in Chongqing, China: Implications for preschool children’s exposure and risk assessment. Atmos. Environ. 2016, 127, 34–45. [Google Scholar] [CrossRef]
- Fan, G.; Xie, J.; Yoshino, H.; Zhang, H.; Li, Z.; Li, N.; Liu, J.; Lv, Y.; Zhu, S.; Yanagi, U.; et al. Common SVOCs in house dust from urban dwellings with schoolchildren in six typical cities of China and associated non-dietary exposure and health risk assessment. Environ. Int. 2018, 120, 431–442. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, X.M.; Zhang, X.L.; Sun, Y.G.; Zhu, D.M.; Wang, B.L.; Zhao, R.Z.; Zhang, Z.D. Levels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, China. Atmos. Environ. 2013, 69, 258–264. [Google Scholar] [CrossRef]
- Tulve, N.S.; Jones, P.A.; Nishioka, M.G.; Fortmann, R.C.; Croghan, C.W.; Zhou, J.Y.; Fraser, A.; Cavel, C.; Friedman, W. Pesticide measurements from the First National Environmental Health Survey of Child Care Centers using a multi-residue GC/MS analysis method. Environ. Sci. Technol. 2006, 40, 6269–6274. [Google Scholar] [CrossRef]
- Wang, L.; Gong, M.; Xu, Y.; Zhang, Y. Phthalates in dust collected from various indoor environments in Beijing, China and resulting non-dietary human exposure. Build. Environ. 2017, 124, 315–322. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.; Gong, M.; Xu, Y.; Zhang, Y. Non-dietary exposure to phthalates for pre-school children in kindergarten in Beijing, China. Build. Environ. 2020, 167, 106438. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, F.; Zhang, L.; Shan, C.; Bai, Z.; Sun, Z.; Liu, L.; Shen, B. A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China. J. Hazard. Mater. 2014, 279, 133–140. [Google Scholar] [CrossRef]
- Clausen, P.A.; Liu, Z.; Kofoed-Sorensen, V.; Little, J.C.; Wolkoff, P. Infuence of temperature on the emission of di-(2-ethylhexyl)-phthalate (DEHP) from PVC fooring in the emission cell FLEC. Environ. Sci. Technol. 2012, 46, 909–915. [Google Scholar] [CrossRef]
- Xu, Y.; Little, J.C. Predicting emissioins of SVOCs from polymeric materials and their interaction with airborne particles. Environ. Sci. Technol. 2006, 40, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, X.; Little, J.C.; Zhang, Y. A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. Indoor Air 2017, 27, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.; Dong, C.; Mmereki, D.; Ye, Y.; Cheng, Z. Modeled exposure to phthalates via inhalation and dermal pathway in children’s sleeping environment: A preliminary study and its implications. Build. Simulation. 2021, 14, 1785–1794. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. SVOC partitioning between the gas phase and settled dust indoors. Atmos. Environ. 2010, 44, 3609–3620. [Google Scholar] [CrossRef]
- Kawanaka, Y.; Tsuchiya, Y.; Yun, S.; Sakamoto, K. Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition. Environ. Sci. Technol. 2009, 43, 6851–6856. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, B.; Zhang, Y. The influence of aerosol dynamics on indoor exposure to airborne DEHP. Atmos. Environ. 2010, 44, 1952–1959. [Google Scholar] [CrossRef]
- JGJ39-2016; Code for Design of Nursey and Kindergarten Buildings. China Architecture & Building Press: Beijing, China, 2016. (In Chinese)
- GB/T18883-2002; Indoor Air Quality Standard. National Standard Press: Beijing, China, 2002. (In Chinese)
- GB24613-2009; Limit of Harmful Substances of Coatings for Toys. National Standard Press: Beijing, China, 2009. (In Chinese)
- GB6675-2014; Toys Safety. National Standard Press: Beijing, China, 2014. (In Chinese)
- Pei, X.; Song, M.; Guo, M.; Mo, F.; Shen, X. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmos. Environ. 2013, 68, 17–23. [Google Scholar] [CrossRef]
- Song, M.; Chi, C.; Guo, M.; Wang, X.; Cheng, L.; Shen, X. Pollution levels and characteristics of phthalate esters in indoor air of offices. J. Environ. Sci. 2015, 28, 157–162. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Weschler, C.J. Exposure to SVOCs from Inhaled Particles: Impact of Desorption. Environ. Sci. Technol. 2017, 51, 6220–6228. [Google Scholar] [CrossRef]
- Liu, C.; Shi, S.; Weschler, C.; Zhao, B.; Zhang, Y. Analysis of the Dynamic Interaction Between SVOCs and Airborne Particles. Aerosol Sci. Tech. 2013, 47, 125–136. [Google Scholar] [CrossRef]
- Cao, J.; Mo, J.; Sun, Z.; Zhang, Y. Indoor particle age, a new concept for improving the accuracy of estimating indoor airborne SVOC concentrations, and applications. Build. Environ. 2018, 136, 88–97. [Google Scholar] [CrossRef]
- Bi, C.Y.; Wang, X.K.; Li, H.; Li, X.; Xu, Y. Direct transfer of phthalate and alternative plasticizers from indoor source products to dust: Laboratory measurements and predictive modeling. Environ. Sci. Technol. 2021, 55, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Sukiene, V.; von Goetz, N.; Gerecke, A.C.; Bakker, M.I.; Delmaar, C.J.; Hungerbuhler, K. Direct and Air-Mediated Transfer of Labeled SVOCs from Indoor Sources to Dust. Environ. Sci. Technol. 2017, 51, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Kim, K.; Choi, K. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature. Sci. Total Environ. 2016, 547, 441–446. [Google Scholar] [CrossRef]
- Li, L.; Arnot, J.A.; Wania, F. Revisiting the Contributions of Far- and Near-Field Routes to Aggregate Human Exposure to Polychlorinated Biphenyls (PCBs). Environ. Sci. Technol. 2018, 52, 6974–6984. [Google Scholar] [CrossRef]
- Li, L.; Hughes, L.; Arnot, J.A. Addressing uncertainty in mouthing-mediated ingestion of chemicals on indoor surfaces, objects, and dust. Environ. Int. 2021, 146, 106266. [Google Scholar] [CrossRef]
- Yang, C.; Harris, S.A.; Jantunen, L.M.; Kvasnicka, J.; Nguyen, L.V.; Diamond, M.L. Phthalates: Relationships between Air, Dust, Electronic Devices, and Hands with Implications for Exposure. Environ. Sci. Technol. 2020, 54, 8186–8197. [Google Scholar] [CrossRef]
- Bu, Z.; Wang, J.; Yu, W.; Li, B. Dermal exposure to phthalates in home environment: Handwipes, influencing factors and implications. Build. Environ. 2018, 133, 1–7. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, Y.; Weschler, C.J. Measurement of phthalates in skin wipes: Estimating exposure from dermal absorption. Environ. Sci. Technol. 2014, 48, 7428–7435. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. SVOC exposure indoors: Fresh look at dermal pathways. Indoor Air 2012, 22, 356–377. [Google Scholar] [CrossRef]
- Cao, J.; Liu, N.; Zhang, Y. SPME-Based Ca-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material. Environ Sci Technol. 2017, 51, 9137–9145. [Google Scholar] [CrossRef] [PubMed]
- Licina, D.; Morrison, G.C.; Beko, G.; Weschler, C.J.; Nazaroff, W.W. Clothing-Mediated Exposures to Chemicals and Particles. Environ. Sci. Technol. 2019, 53, 5559–5575. [Google Scholar] [CrossRef] [PubMed]
- Licina, D.; Bekö, G.; Cao, J. Role of Clothing in Exposure to Indoor Pollutants. In Handbook of Indoor Air Quality; Zhang, Y., Hopke, P.K., Mandin, C., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Liu, N.; Cao, J.; Huang, J.; Zhang, Y. Role of Clothing in Skin Exposure to Di(n-butyl) Phthalate and Tris(1-chloro-2-propyl) Phosphate: Experimental Observations via Skin Wipes. Environ. Sci. Technol. Lett. 2021, 8, 270–275. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Zhang, Y. Predicting Dermal Exposure to Gas-Phase Semivolatile Organic Compounds (SVOCs): A Further Study of SVOC Mass Transfer between Clothing and Skin Surface Lipids. Environ. Sci. Technol. 2018, 52, 4676–4683. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Pawliszyn, J. A critical review in calibration methods for solid-phase microextraction. Anal. Chim. Acta. 2008, 627, 184–197. [Google Scholar] [CrossRef]
- Lugg, G.A. Diffusion coefficients of some organic and other vapors in air. Anal. Chem. 1968, 40, 1072–1077. [Google Scholar] [CrossRef]
- Wei, W.; Mandin, C.; Blanchard, O.; Mercier, F.; Pelletier, M.; Le Bot, B.; Glorennec, P.; Ramalho, O. Distributions of the particle/gas and dust/gas partition coefficients for seventy-two semi-volatile organic compounds in indoor environment. Chemosphere 2016, 153, 212–219. [Google Scholar] [CrossRef]
- Axley, J.W. Adsorption modelling for building contaminant dispersal analysis. Indoor Air. 1991, 2, 147–171. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, B. Estimating indoor semi-volatile organic compounds (SVOCs) associated with settled dust by an integrated kinetic model accounting for aerosol dynamics. Atmos. Environ. 2015, 107, 52–61. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Benning, J.L.; Little, J.C. The effect of ventilation on indoor exposure to semivolatile organic compounds. Indoor Air 2015, 25, 285–296. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Weschler, C.J. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. Sci. Total Environ. 2014, 497–498, 401–411. [Google Scholar] [CrossRef] [PubMed]
DMP | DEP | DnBP | BBzP | DEHP | DOP | |
---|---|---|---|---|---|---|
Flat materials | ||||||
Floor mat 1 | / | nd | / | / | / | / |
Floor mat 2 | / | nd | / | / | / | / |
Floor mat 3 | / | nd | / | / | / | / |
Floor mat 4 | / | nd | / | / | / | / |
Floor mat 5 | / | nd | / | / | 0.44% | / |
PVC flooring 1 | / | nd | / | nd | 0.14% | 0.08% |
PVC flooring 2 | / | nd | 0.03% | / | 0.22% | 0.02% |
PVC flooring 3 | / | nd | 0.08% | / | 0.37% | / |
PVC flooring 4 | / | / | / | / | 0.60% | / |
Mattress | / | nd | / | / | / | / |
Mattress cover 1 | / | nd | / | / | / | / |
Mattress cover 2 | / | nd | / | / | 0.74% | / |
Wall sticker 1 | / | nd | / | nd | 0.03% | / |
Wall sticker 2 | / | nd | / | / | 0.02% | / |
Wall paper | / | nd | / | / | 0.26% | 0.02% |
Plastic toys | ||||||
Animal 1 | / | nd | / | nd | 0.02% | / |
Animal 2 | / | nd | nd | nd | 0.01% | / |
Animal 3 | / | nd | / | nd | / | nd |
Animal 4 | / | nd | / | nd | / | nd |
Ball 1 | nd | nd | 0.95% | nd | / | / |
Ball 2 | / | nd | nd | nd | / | 0.01% |
Banana | nd | nd | / | nd | / | / |
IG 1 | / | nd | / | nd | 0.09% | / |
IG 2 | / | nd | 0.04% | nd | 0.22% | nd |
IG 3 | nd | nd | / | nd | / | nd |
IG 4 | / | nd | / | nd | / | / |
Mass Fraction | y0 (μg/m3) | |
---|---|---|
Floor mat 5 | 0.44% | 0.21 ± 0.03 |
PVC flooring 3 | 0.37% | 0.24 ± 0.01 |
PVC flooring 4 | 0.60% | 0.29 ± 0.01 |
Mattress 3 | 0.74% | 0.30 ± 0.02 |
Wall paper | 0.26% | 0.14 ± 0.01 |
Gas Phase (μg/m3) | Particle Phase (μg/m3) | Dust Phase (μg/g) | |
---|---|---|---|
Baseline | 0.014 | 0.098 | 840 |
Outdoor particles | |||
Cp_out = 50 μg/m3 | 0.020 | 0.089 | 1227 |
Cp_out = 120 μg/m3 | 0.010 | 0.103 | 592 |
Air exchange rate | |||
ACH = 0.5 h−1 | 0.015 | 0.161 | 900 |
ACH = 4 h−1 | 0.012 | 0.027 | 735 |
Room temperature | |||
T = 16 °C | 0.004 | 0.027 | 216 |
T = 28 °C | 0.021 | 0.147 | 1322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, Z.; Yao, J.; Hu, M.; Sun, Y.; Dong, C.; Bu, Z. Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children’s Exposure Assessments. Int. J. Environ. Res. Public Health 2022, 19, 8011. https://doi.org/10.3390/ijerph19138011
Wang J, Xu Z, Yao J, Hu M, Sun Y, Dong C, Bu Z. Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children’s Exposure Assessments. International Journal of Environmental Research and Public Health. 2022; 19(13):8011. https://doi.org/10.3390/ijerph19138011
Chicago/Turabian StyleWang, Jiahui, Zefei Xu, Jingyu Yao, Maochao Hu, Yuewen Sun, Cong Dong, and Zhongming Bu. 2022. "Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children’s Exposure Assessments" International Journal of Environmental Research and Public Health 19, no. 13: 8011. https://doi.org/10.3390/ijerph19138011