IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Training Procedure
2.3. Blood Sampling and Biochemical Analyses
2.4. Genotyping
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gomez-Cabrera, M.-C.; Domenech, E.; Viña, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vilela, A.L.; Ribeiro, I.F.; Grisolia, C.K. Association between interleukin 6 -174 G/C promoter gene polymorphism and runners’ responses to the dietary ingestion of antioxidant supplementation based on pequi (Caryocar brasiliense Camb.) oil: A before-after study. Genet. Mol. Biol. 2016, 39, 554–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.C.; Chiarello, M.D.; Garcia, K.R.; Silva, A.O.; Santos, P.H.F.D.; Funghetto, S.S.; Prestes, J.; Karnikowski, M.G.d.O. The effect of muscle damage and the IL-6-174C/G polymorphism on the serum IL-6 levels of older men. Rev. Bras. Med. Esporte 2019, 25, 480–484. [Google Scholar] [CrossRef]
- Cenikli, A.; Nursal, A.F.; Tural, E.; Polat, Y.; Yalcin, M. The Correlation between rs1800795 variant of IL-6 and sports performance among Turkish elite athletes. Int. J. Humanit. Soc. Sci. 2016, 3, 1–5. [Google Scholar]
- Rai, H.; Colleran, R.; Cassese, S.; Joner, M.; Kastrati, A.; Byrne, R.A. Association of interleukin 6 -174 G/C polymorphism with coronary artery disease and circulating IL-6 levels: A systematic review and meta-analysis. Inflamm. Res. 2021, 70, 1075–1087. [Google Scholar] [CrossRef]
- Salari, N.; Mansouri, K.; Hosseinian-Far, A.; Ghasemi, H.; Mohammadi, M.; Jalali, R.; Vaisi-Raygani, A. The effect of polymorphisms (174G> C and 572C> G) on the Interleukin-6 gene in coronary artery disease: A systematic review and meta-analysis. Genes Environ. 2021, 43, 1. [Google Scholar] [CrossRef]
- Sie, M.P.; Mattace-Raso, F.U.; Uitterlinden, A.G.; Arp, P.P.; Hofman, A.; Pols, H.A.; Hoeks, A.P.G.; Reneman, R.S.; Asmar, R.; van Dujin, C.M.; et al. The interleukin-6-174 G/C promoter polymorphism and arterial stiffness; the Rotterdam Study. Vasc. Health Risk Manag. 2008, 4, 863–869. [Google Scholar]
- Kadhim, M.M.; Salman, I.A. Interleukin-6 (174G/C) Gene Polymorphism and Serum Levels of IL-6, Their Association with Risk of Obesity in Iraqi Childhood Populations. Med. Leg. Update 2020, 20, 1864–1870. [Google Scholar]
- Shen, J.; Arnett, D.K.; Perez-Martinez, P.; Parnell, L.D.; Lai, C.Q.; Peacock, J.M.; Hixon, J.E.; Tsai, M.Y.; Straka, R.J.; Hopkins, P.N.; et al. The effect of IL6-174C/G polymorphism on postprandial triglyceride metabolism in the GOLDN studyboxs. J. Lipid Res. 2008, 49, 1839–1845. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.R.; Buxens, A.; Artied, M.; Arteta, D.; Santiago, C.; Rodríguez-Romo, G.; Lao, J.L.; Gomez-Gallego, F.; Lucia, A. The −174 G/C polymorphism of the IL6 gene is associated with elite power performance. J. Sci. Med. Sport 2010, 13, 549–553. [Google Scholar] [CrossRef]
- Eider, J.; Cieszczyk, P.; Leońska-Duniec, A.; Maciejewska, A.; Sawczuk, M.; Ficek, K.; Kotarska, K. Association of the 174 G/C polymorphism of the IL6 gene in Polish power-orientated athletes. J. Sports Med. Phys. Fitness 2013, 53, 88–92. [Google Scholar]
- Eynon, N.; Ruiz, J.R.; Meckel, Y.; Santiago, C.; Fiuza-Luces, C.; Gomez-Gallego, F.; Oliveira, J.; Lucia, A. Is the −174 C/G polymorphism of the IL6 gene associated with elite power performance? A replication study with two different Caucasian cohorts. Exp. Physiol. 2011, 96, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funghetto, S.S.; Prestes, J.; Silva Ade, O.; Farias, D.L.; Teixeira, T.G.; Vieira, D.C.; Souza, V.C.; Sousa, N.M.; Navalta, J.W.; Melo, G.F.; et al. Interleukin-6 −174G/C Gene Polymorphism Affects Muscle Damage Response to Acute Eccentric Resistance Exercise in Elderly Obese Women. Exp. Gerontol. 2013, 48, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Yamin, C.; Duarte, J.A.; Oliveira, J.M.; Amir, O.; Sagiv, M.; Eynon, N.; Sagiv, M.; Amir, R.E. IL6 (−174) and TNFA (−308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise. Eur. J. Appl. Physiol. 2008, 104, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Dhamodharan, U.; Ezhilarasi, K.; Ponjayanthi, B.; Sireesh, D.; Ramkumar, K.M.; Viswanathan, V. Association of A1538G and C2437T single nucleotide polymorphisms in heat shock protein-70 genes with diabetic nephropathy among South Indian population. Biosci. Rep. 2017, 37, BSR20160605. [Google Scholar] [CrossRef] [Green Version]
- Heck, T.G.; Schöler, C.M.; de Bittencourt, P.I. HSP70 expression: Does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem. Funct. 2011, 29, 215–226. [Google Scholar] [CrossRef]
- Zubair, M.; Ahmad, J. Heat Shock Protein 70 Gene Single Nucleotide Polymorphism and Diabetic Foot Ulcer. Is There Any Relationship? J. Clin. Med. 2018, 7, 187. [Google Scholar] [CrossRef] [Green Version]
- Bekos, C.; Zimmermann, M.; Unger, L.; Janik, S.; Mitterbauer, A.; Koller, M.; Fritz, R.; Gabler, C.; Didcock, J.; Kliman, J.; et al. Exercise-induced bronchoconstriction, temperature regulation and the role of heat shock proteins in non-asthmatic recreational marathon and half-marathon runners. Sci. Rep. 2019, 9, 4168. [Google Scholar] [CrossRef]
- Al-Sayed, M.T.; Ali, S.; Mohammed, A.H.; Mohammed, A.; Ibrahim, A.M.; Moshrif, A. Diagnostic and prognostic values of serum HSP70 and YKL-40 in patients with rheumatoid arthritis. Int. J. Clin. Rheumtol. 2017, 12, 059–066. [Google Scholar]
- Gunaldi, M.; Afsar, C.U.; Okuturlar, Y.; Gedikbasi, A.; Kocoglu, H.; Kural, A.; Akarsu, C.; Gunduz, U.; Tiken, E.E. Elevated serum levels of heat shock protein 70 are associated with breast cancer. Tohoku J. Exp. Med. 2015, 236, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Nakhjavani, M.; Morteza, A.; Khajeali, L.; Esteghamati, A.; Khalilzadeh, O.; Asgarani, F.; Outeiro, T.F. Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 2010, 15, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, P.; Buck, D.; Sick, L.; Hemmer, B.; Multhoff, G. Serum heat shock protein 70 levels as a biomarker for inflammatory processes in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2018, 4, 2055217318767192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tanguay, R.M.; He, M.; Deng, Q.; Miao, X.; Zhou, L.; Wu, T. Variants of HSPA1A in Combination with Plasma Hsp70 and Anti-Hsp70 Antibody Levels Associated with Higher Risk of Acute Coronary Syndrome. Cardiology 2011, 119, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, F.; Wu, Y.; Xu, D.; Li, W.; Liang, S. The relationship between three heat shock protein 70 gene polymorphisms and susceptibility to lung cancer. Clin. Chem. Lab. Med. 2010, 48, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Guo, H.; Yang, X.; Zhang, X.; Zhou, L.; Cheng, L.; Zeng, H.; Hu, F.B.; Tanguay, R.M.; Wu, T. Functional SNPs in HSPA1A gene predict risk of coronary heart disease. PLoS ONE 2009, 4, e4851. [Google Scholar] [CrossRef] [PubMed]
- Krüger, K.; Reichel, T.; Zeilinger, C. Role of heat shock proteins 70/90 in exercise physiology and exercise immunology and their diagnostic potential in sports. J. Appl. Physiol. 2019, 126, 916–927. [Google Scholar] [CrossRef]
- Jówko, E.; Gromisz, W.; Sadowski, J.; Cieśliński, I.; Kotowska, J. SOD2 gene polymorphism may modulate biochemical responses to a 12-week swimming training. Free Radic. Biol. Med. 2017, 113, 571–579. [Google Scholar] [CrossRef]
- Kotowska, J.; Jówko, E. Effect of Gene Polymorphisms in Antioxidant Enzymes on Oxidative-Antioxidative Status in Young Men. Polish J. Sport Tour. 2020, 27, 7–13. [Google Scholar] [CrossRef]
- Graffelman, J. Exploring Diallelic Genetic Markers: The Hardy Weinberg Package. J. Stat. Softw. 2015, 4, 1–23. [Google Scholar]
- Colombini, A.; Lombardo, G.; Banfi, G.; Arpesella, M.; Pelissero, G. Athleticogenomics and elite athletes: A review of the state of the art and a possible relationship with inflammatory response. Ital. J. Public Health 2011, 8, 275–285. [Google Scholar]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, A.M.W.; Pedersen, B.K. The Anti-Inflammatory Effect of Exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehsaz, F.; Farhangi, N.; Monfaredan, A. Interleukin-6 G-174C gene polymorphism and susceptibility to upper respiratory tract infection among endurance athletes. J. Exerc. Sci. Fit. 2014, 12, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Hamed, R.M.R.; Mohamed, S.A.; Dwedar, R.A.; Elkholy, Y.S.; Elgengehy, F.T. Association of interleukin-6 and its −174G/C promoter polymorphism with clinical and laboratory characteristics of non hepatitis C virus rheumatoid arthritis patients. Egypt. J. Medical Hum. Genet. 2018, 19, 235–240. [Google Scholar] [CrossRef]
- Wielińska, J.; Dratwa, M.; Świerkot, J.; Korman, L.; Iwaszko, M.; Wysoczańska, B.; Bogunia-Kubik, K. Interleukin 6 gene polymorphism is associated with protein serum level and disease activity in Polish patients with rheumatoid arthritis. HLA 2018, 92 (Suppl. S2), 38–41. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Dolci, A.; Verna, R.; Corsi, M.M. Exercise raises serum heat-shock protein 70 (Hsp70) levels. Clin. Chem. Lab. Med. 2004, 42, 1445–1446. [Google Scholar] [CrossRef]
- Henstridge, D.C.; Febbraio, M.A.; Hargreaves, M. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J. Appl. Physiol. 2016, 120, 683–691. [Google Scholar] [CrossRef]
- Fazzi Gómez, C.; Espigares, E.; Bahamonde, C. Incidence of physical activity habits in plasma levels of heat shock proteins in a healthy population sample. Rev. Bras. Med. Esporte 2013, 19, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Lovas, A.; Szilágyi, B.; Bosnyák, E.; Ács, P.; Oláh, A.; Komka, Z.; Toth, M.; Merkeley, B.; Nemeth, E.; Gilanyi, B.; et al. Reaction Kinetics Modeling of eHsp70 Induced by Norepinephrine in Response to Exercise Stress. Int. J. Sports Med. 2021, 42, 506–512. [Google Scholar] [CrossRef]
- Ziemann, E.; Zembroñ-Lacny, A.; Kasperska, A.; Antosiewicz, J.; Grzywacz, T.; Garsztka, T.; Laskowksi, R. Exercise training-induced changes in inflammatory mediators and heat shock proteins in young tennis players. J. Sci. Med. Sport 2013, 12, 282–289. [Google Scholar]
- Sallam, N.; Laher, I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid. Med. Cell. Longev. 2016, 2016, 7239639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margaritis, I.; Palazzetti, S.; Rousseau, A.S.; Richard, M.J.; Favier, A. Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J. Am. Coll. Nutr. 2003, 22, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L. Antioxidant signaling in skeletal muscle: A brief review. Exp. Gerontol. 2007, 42, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Jówko, E.; Gierczuk, D.; Cieśliński, I.; Kotowska, J. SOD2 gene polymorphism and response of oxidative stress parameters in young wrestlers to a three-month training. Free Radic. Res. 2017, 51, 506–516. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [Green Version]
- Huuskonen, A.; Tanskanesn, M.; Lappalainen, J.; Oksala, N.; Kyrolainen, H.; Atalay, M. A common variation in the promoter region of interleukin-6 gene shows association with exercise performance. J. Sports Sci. Med. 2009, 8, 271–277. [Google Scholar]
- Kresfelder, T.L.; Claassen, N.; Cronjé, M.J. Hsp70 Induction and hsp70 gene polymorphisms as Indicators of acclimatization under hyperthermic conditions. J. Therm. Biol. 2006, 31, 406–415. [Google Scholar] [CrossRef] [Green Version]
CON (n = 25) | ST (n = 38) | |
---|---|---|
Age (years) | 21.3 ± 1.3 | 21.1 ± 1.2 |
Height (cm) | 179 ± 5.0 | 180 ± 6.0 |
Body mass (kg) | 78.0 ± 6.6 | 79.3 ± 7.2 |
Blood Parameter | Time | CON Group (n = 25) | ST Group (n = 38) | Main Effects: p-Values; η2 (Effect Size) after Logarithmic Transformation | ||
---|---|---|---|---|---|---|
Time | Group | Time × Group | ||||
TNFα [pg/mL] | Pre | 25.52 ± 0.42 | 25.41 ± 0.40 | p = 0.005 | p = 0.16 | p = 0.39 |
Post | 25.37 ± 0.57 | 25.13 ± 0.26 * | η2 = 0.12 | η2 = 0.02 | η2 = 0.01 | |
HSP70 [pg/mL] | Pre | 570.23 ± 236.22 | 523.23 ± 314.16 | p = 0.07 | p = 0.06 | p = 0.001 |
Post | 602.89 ± 256.31 | 375.01 ± 268.51 *,a | η2 = 0.05 | η2 = 0.08 | η2 = 0.17 | |
SOD [U/g Hb] | Pre | 1638.63 ± 147.58 | 1509.25 ± 180.72 | p = 0.75 | p = 0.04 | p = 0.32 |
Post | 1563.46 ± 98.79 | 1523.20 ± 168.79 | η2 = 0.002 | η2 = 0.08 | η2 = 0.02 | |
GPx [U/g Hb] | Pre | 29.36 ± 16.83 | 46.98 ± 25.85 | p = 0.11 | p = 0.71 | p = 0.03 |
Post | 34.46 ± 24.55 | 33.38 ± 25.51 * | η2 = 0.04 | η2 = 0.002 | η2 = 0.08 | |
LHs [mmol/L] | Pre | 3.39 ± 1.45 | 3.63 ± 1.62 | p = 0.44 | p = 0.54 | p = 0.31 |
Post | 3.35 ± 1.20 | 3.37 ± 1.75 | η2 = 0.009 | η2 = 0.006 | η2 = 0.02 |
Gene Polymorphism | CON (n = 25) | ST (n = 38) | ST vs. CON |
---|---|---|---|
IL-6 | χ2 = 0.89 p = 0.22 | ||
GG | 8 (32) | 14 (37) | |
GC | 12 (48) | 16 (42) | |
CC | 5 (20) | 8 (21) | |
HWE | p = 0.90 | p = 0.70 | |
HSPA1A | χ2 = 0.003 p = 0.99 | ||
GG | 12 (48) | 18 (47) | |
GC | 11(44) | 17 (45) | |
CC | 2 (8) | 3 (8) | |
HWE | p = 0.81 | p = 0.71 | |
HSPA1B | χ2 = 0.025 p = 0.98 | ||
GG | 12 (48) | 19 (50) | |
AG | 11 (44) | 16 (42) | |
AA | 2 (8) | 3 (8) | |
HWE | p = 0.81 | p = 0.88 |
Biochemical Parameter | Time Point | CON (n = 25) | ST (n = 38) | ||||
---|---|---|---|---|---|---|---|
GG (n = 8) | GC (n = 12) | CC (n = 5) | GG (n = 14) | GC (n = 16) | CC (n = 8) | ||
TNFα [pg/mL] | pre | 25.4 ± 0.3 | 25.4 ± 0.3 | 26.1 ± 0.7 a | 25.4 ± 0.5 | 25.3 ± 0.2 | 25.7 ± 0.4 |
post | 25.2 ± 0.4 | 25.1 ± 0.2 | 26.2 ± 1.1 b | 25.1 ± 0.2 ** | 25.2 ± 0.4 | 25.2 ± 0.2 ** | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.01; η2 = 0.11 p = 0.04; η2 = 0.17 p = 0.47; η2 = 0.07 | ||||||
HSP70 [pg/mL] | pre | 646 ± 200 | 553 ± 149 | 601 ± 323 | 578 ± 329 | 571 ± 377 | 411 ± 232 |
post | 626 ± 134 | 608 ± 287 | 606 ± 334 | 307 ± 124 c,** | 471 ± 389 | 348 ± 294 | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.09; η2 = 0.05 p = 0.14; η2 = 0.13 p = 0.045; η2 = 0.18 | ||||||
SOD [U/g Hb] | pre | 1563 ± 46 | 1595 ± 150 | 1755 ± 104 | 1537 ± 195 | 1474 ± 200 | 1522 ± 110 |
post | 1503 ± 25 | 1587 ± 123 | 1580 ± 111 | 1521 ± 219 | 1510 ± 121 | 1552 ± 153 | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.70; η2 = 0.003 p = 0.08; η2 = 0.15 p = 0.81; η2 = 0.04 | ||||||
GPx [U/g Hb] | pre | 26 ± 19 | 27 ± 15 | 35 ± 17 | 49 ± 28 | 44 ± 23 | 50 ± 29 |
post | 33 ± 29 | 34 ± 22 | 37 ± 23 | 22 ± 14 | 40 ± 30 | 41 ± 27 | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.10; η2 = 0.05 p = 0.73; η2 = 0.05 p = 0.17; η2 = 0.12 | ||||||
† LHs [mmol/L] | pre | 3.6 ± 1.4 | 3.6 ± 1.5 | 3.0 ± 1.4 | 4.1± 1.6 | 3.5 ± 1.4 | 3.3 ± 1.8 |
post | 3.7 ± 1.1 | 3.6 ± 1.0 | 2.8 ± 1.5 | 3.3 ± 2.2 | 3.5 ± 1.6 | 3.2 ± 1.4 | |
Main effects (p values; η2): Time Genotype Time × genotype | p = 0.52; η2 = 0.007 p = 0.83; η2 = 0.04 p = 0.43; η2 = 0.08 |
Biochemical Parameter | Time Point | CON (n = 25) | ST (n = 38) | ||
---|---|---|---|---|---|
GG (n = 12) | GC/CC (n = 13) | GG (n = 18) | GC/CC (n = 20) | ||
TNFα [pg/mL] | pre | 25.4 ± 0.4 | 25.7 ± 0.5 | 25.4 ± 0.3 | 25.4 ± 0.5 |
post | 25.2 ± 0.4 | 25.6 ± 0.8 | 25.2 ± 0.3 | 25.1 ± 0.2 * | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.005; η2 = 0.13 p = 0.49; η2 = 0.04 p = 0.67; η2 = 0.03 | ||||
HSP70 [pg/mL] | pre | 469 ± 177 | 671 ± 262 | 539 ± 333 | 509 ± 287 |
post | 608 ± 278 a | 598 ± 257 | 410 ± 354 * | 344 ± 161 * | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.07; η2 = 0.05 p = 0.16; η2 = 0.08 p = 0.01; η2 = 0.18 | ||||
SOD [U/g Hb] | pre | 1630 ± 92 | 1647 ± 205 | 1497 ± 138 | 1520 ± 216 |
post | 1599 ± 102 | 1528 ± 95 | 1476 ± 123 | 1566 ± 195 | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.72; η2 = 0.002 p = 0.09; η2 = 0.11 p = 0.50; η2 = 0.04 | ||||
GPx [U/g Hb] | pre | 29 ± 15 | 30 ± 19 | 43 ± 21 | 50 ± 30 |
post | 39 ± 31 | 30 ± 20 | 34 ± 27 | 33 ± 25 | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.12; η2 = 0.04 p = 0.91; η2 = 0.01 p = 0.15; η2 = 0.09 | ||||
LHs [mmol/L] | pre | 3.1 ± 0.7 | 3.7 ± 2.2 | 3.0 ± 1.5 b | 4.2 ± 1.7 |
post | 3.2 ± 1.5 | 3.5 ± 0.9 | 2.9 ± 1.8 b | 3.9 ± 1.7 | |
† Main effects (p values; η2): Time Genotype Time × genotype | p = 0.44; η2 = 0.01 p = 0.04; η2 = 0.13 p = 0.71; η2 = 0.02 |
TNFα | HSP70 | SOD | GPx | LHs | |
---|---|---|---|---|---|
TNFα | — | — | r = 0.30 p = 0.045 | — | — |
HSP70 | — | — | r = 0.60 p = 0.00001 | — | — |
SOD | r = 0.30 p = 0.045 | r = 0.60 p = 0.00001 | — | — | — |
GPx | — | — | — | — | — |
LHs | — | — | — | — | — |
TNFα | HSP70 | SOD | GPx | LHs | |
---|---|---|---|---|---|
TNFα | — | r = 0.36 p = 0.012 | — | r = 0.56 p = 0.0004 | — |
HSP70 | r = 0.36 p = 0.012 | — | r = 0.31 p = 0.07 | r = 0.42 p = 0.01 | — |
SOD | — | r = 0.31 p = 0.07 | — | — | r = 0.36 p = 0.034 |
GPx | r = 0.56 p = 0.0004 | r = 0.42 p = 0.01 | — | — | — |
LHs | — | — | r = 0.36 p = 0.034 | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotowska, J.; Jówko, E.; Cieśliński, I.; Gromisz, W.; Sadowski, J. IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training. Int. J. Environ. Res. Public Health 2022, 19, 8127. https://doi.org/10.3390/ijerph19138127
Kotowska J, Jówko E, Cieśliński I, Gromisz W, Sadowski J. IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training. International Journal of Environmental Research and Public Health. 2022; 19(13):8127. https://doi.org/10.3390/ijerph19138127
Chicago/Turabian StyleKotowska, Jadwiga, Ewa Jówko, Igor Cieśliński, Wilhelm Gromisz, and Jerzy Sadowski. 2022. "IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training" International Journal of Environmental Research and Public Health 19, no. 13: 8127. https://doi.org/10.3390/ijerph19138127
APA StyleKotowska, J., Jówko, E., Cieśliński, I., Gromisz, W., & Sadowski, J. (2022). IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training. International Journal of Environmental Research and Public Health, 19(13), 8127. https://doi.org/10.3390/ijerph19138127