Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Guideline
2.2. Literature Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection and Data Extraction
2.5. Assessment of Methodological Quality
3. Results
3.1. Characteristics of the Eligible Studies
3.2. Study Quality and Risk of Bias
3.3. Classification of Evidence
3.3.1. IL-6
3.3.2. TNF-α
3.3.3. IFN-γ
3.3.4. IL-12 and IL-12p70
3.3.5. IL-10
3.3.6. IL-4
3.3.7. Adipokines
3.3.8. BDNF
3.4. Physical and Mental as a Secondary Outcome
4. Discussion
4.1. Proinflammatory Cytokines
4.2. Anti-Inflammatory Cytokines
4.3. Adipokines
4.4. BDNF
4.5. Physical and Mental Health as a Secondary Outcome
4.6. Future Study
4.7. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Rodríguez Murúa, S.; Farez, M.F.; Quintana, F.J. The immune response in multiple sclerosis. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Najafi, P.; Moghadasi, M. The effect of yoga training on enhancement of Adrenocorticotropic hormone (ACTH) and cortisol levels in female patients with multiple sclerosis. Complement. Ther. Clin. Pract. 2017, 26, 21–25. [Google Scholar] [CrossRef]
- Valadkeviciene, D.; Kavaliunas, A.; Kizlaitiene, R.; Jocys, M.; Jatuzis, D. Incidence rate and sex ratio in multiple sclerosis in Lithuania. Brain Behav. 2019, 9, e01150. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, B.; Becher, B. Perspectives on cytokine-directed therapies in multiple sclerosis. Swiss Med. Wkly. 2015, 145, w14199. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, L.; Olsson, T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, a028944. [Google Scholar] [CrossRef]
- Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.; Tzoulaki, I. Environmental risk factors and multiple sclerosis: An umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015, 14, 263–273. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, D.; Wang, L.; Zhao, Y.; Liu, T.; Yu, Y.; Yan, T.; Cheng, Y. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: A systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front. Neurosci. 2019, 13, 1026. [Google Scholar] [CrossRef]
- ‘t Hart, B.A.; Luchicchi, A.; Schenk, G.J.; Stys, P.K.; Geurts, J.J. Mechanistic underpinning of an inside–out concept for autoimmunity in multiple sclerosis. Ann. Clin. Transl. Neurol. 2021, 8, 1709–1719. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014, 10, 225. [Google Scholar] [CrossRef]
- Wong, V.L.; Holahan, M.R. A systematic review of aerobic and resistance exercise and inflammatory markers in people with multiple sclerosis. Behav. Pharmacol. 2019, 30, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.I.; White, L.J. Effect of 10-day forced treadmill training on neurotrophic factors in experimental autoimmune encephalomyelitis. Appl. Physiol. Nutr. Metab. 2013, 38, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Bettcher, B.M.; Johnson, S.C.; Fitch, R.; Casaletto, K.; Heffernan, K.S.; Asthana, S.; Zetterberg, H.; Blennow, K.; Carlsson, C.M.; Neuhaus, J. CSF and plasma levels of inflammation differentially relate to cns markers of alzheimer’s disease pathology and neuronal damage. Alzheimer’s Dement. 2017, 13, P689. [Google Scholar] [CrossRef]
- Alexander, W.S. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2002, 2, 410–416. [Google Scholar] [CrossRef]
- Döring, A.; Pfueller, C.F.; Paul, F.; Dörr, J. Exercise in multiple sclerosis--an integral component of disease management. Epma J. 2012, 3, 2. [Google Scholar] [CrossRef]
- Mokhtarzade, M.; Ranjbar, R.; Majdinasab, N.; Patel, D.; Molanouri Shamsi, M. Effect of aerobic interval training on serum IL-10, TNFα, and adipokines levels in women with multiple sclerosis: Possible relations with fatigue and quality of life. Endocrine 2017, 57, 262–271. [Google Scholar] [CrossRef]
- Negaresh, R.; Motl, R.W.; Mokhtarzade, M.; Dalgas, U.; Patel, D.; Shamsi, M.M.; Majdinasab, N.; Ranjbar, R.; Zimmer, P.; Baker, J.S. Effects of exercise training on cytokines and adipokines in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2018, 24, 91–100. [Google Scholar] [CrossRef]
- Alvarenga, H.; Sacramento, P.M.; Ferreira, T.B.; Hygino, J.; Abreu, J.E.C.; Carvalho, S.R.; Wing, A.C.; Alvarenga, R.M.P.; Bento, C.A.M. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. J. Neuroimmunol. 2016, 293, 91–99. [Google Scholar] [CrossRef]
- Bansi, J.; Bloch, W.; Gamper, U.; Kesselring, J. Training in MS: Influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult. Scler. J. 2013, 19, 613–621. [Google Scholar] [CrossRef]
- Briken, S.; Rosenkranz, S.C.; Keminer, O.; Patra, S.; Ketels, G.; Heesen, C.; Hellweg, R.; Pless, O.; Schulz, K.H.; Gold, S.M. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J. Neuroimmunol. 2016, 299, 53–58. [Google Scholar] [CrossRef]
- Gjevestad, G.O.; Holven, K.B.; Ulven, S.M. Effects of exercise on gene expression of inflammatory markers in human peripheral blood cells: A systematic review. Curr. Cardiovasc. Risk Rep. 2015, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Gondim, O.S.; de Camargo, V.T.N.; Gutierrez, F.A.; de Oliveira Martins, P.F.; Passos, M.E.P.; Momesso, C.M.; Santos, V.C.; Gorjão, R.; Pithon-Curi, T.C.; Cury-Boaventura, M.F. Benefits of regular exercise on inflammatory and cardiovascular risk markers in normal weight, overweight and obese adults. PLoS ONE 2015, 10, e0140596. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Eftekhari, E.; Etemadifar, M. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis. Indian J. Med. Res. 2015, 142, 450. [Google Scholar]
- Devasahayam, A.J.J.; Kelly, L.P.P.; Williams, J.B.B.; Moore, C.S.; Ploughman, M. Fitness shifts the balance of BDNF and IL-6 from inflammation to repair among people with progressive multiple sclerosis. Biomolecules 2021, 11, 504. [Google Scholar] [CrossRef]
- Mee-Inta, O.; Zhao, Z.-W.; Kuo, Y.-M. Physical exercise inhibits inflammation and microglial activation. Cells 2019, 8, 691. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, N.; Motl, R.W.; Mokhtarzade, M.; Zimmer, P.; Ranjbar, R.; Keytsman, C.; Cullen, T.; Negaresh, R.; Baker, J.S. Acute responses of cytokines and adipokines to aerobic exercise in relapsing vs. remitting women with multiple sclerosis. Complement. Ther. Clin. Pract. 2018, 31, 295–301. [Google Scholar] [CrossRef]
- Berkowitz, S.; Achiron, A.; Gurevich, M.; Sonis, P.; Kalron, A. Acute effects of aerobic intensities on the cytokine response in women with mild multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 31, 82–86. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Aromataris, E.M.Z. JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2020; Available online: https://synthesismanual.jbi.global (accessed on 26 August 2021).
- Faramarzi, M.; Banitalebi, E.; Raisi, Z.; Samieyan, M.; Saberi, Z.; Ghahfarrokhi, M.M.; Negaresh, R.; Motl, R.W. Effect of combined exercise training on pentraxins and pro- inflammatory cytokines in people with multiple sclerosis as a function of disability status. Cytokine 2020, 134, 9. [Google Scholar] [CrossRef]
- Barry, A.; Cronin, O.; Ryan, A.M.; Sweeney, B.; O’Toole, O.; O’Halloran, K.D.; Downer, E.J. Cycle ergometer training enhances plasma interleukin-10 in multiple sclerosis. Neurol. Sci. 2019, 40, 1933–1936. [Google Scholar] [CrossRef]
- Kierkegaard, M.; Lundberg, I.E.; Olsson, T.; Johansson, S.; Ygberg, S.; Opava, C.; Holmqvist, L.W.; Piehl, F. High-intensity resistance training in multiple sclerosis—An exploratory study of effects on immune markers in blood and cerebrospinal fluid, and on mood, fatigue, health-related quality of life, muscle strength, walking and cognition. J. Neurol. Sci. 2016, 362, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Deckx, N.; Wens, I.; Nuyts, A.H.; Hens, N.; De Winter, B.Y.; Koppen, G.; Goossens, H.; Van Damme, P.; Berneman, Z.N.; Eijnde, B.O.; et al. 12 weeks of combined endurance and resistance training reduces innate markers of inflammation in a randomized controlled clinical trial in patients with multiple sclerosis. Mediat. Inflamm. 2016, 2016, 6789276. [Google Scholar] [CrossRef] [PubMed]
- Castellano, V.; Patel, D.I.; White, L.J. Cytokine responses to acute and chronic exercise in multiple sclerosis. J. Appl. Physiol. 2008, 104, 1697–1702. [Google Scholar] [CrossRef]
- White, L.J.; Castellano, V.; McCoy, S.C. Cytokine responses to resistance training in people with multiple sclerosis. J. Sports Sci. 2006, 24, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.-H.; Gold, S.M.; Witte, J.; Bartsch, K.; Lang, U.E.; Hellweg, R.; Reer, R.; Braumann, K.-M.; Heesen, C. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J. Neurol. Sci. 2004, 225, 11–18. [Google Scholar] [CrossRef]
- Zadeh, F.T.; Amini, H.; Habibi, S.; Shahedi, V.; Isanejad, A.; Akbarpour, M. The Effects of 8-Week Combined Exercise Training on Inflammatory Markers in Women with Multiple Sclerosis. Neurodegener. Dis. 2020, 20, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Kjølhede, T.; Dalgas, U.; Gade, A.; Bjerre, M.; Stenager, E.; Petersen, T.; Vissing, K. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis. Scand. J. Med. Sci. Sports 2016, 26, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Heesen, C.; Gold, S.M.; Hartmann, S.; Mladek, M.; Reer, R.; Braumann, K.M.; Wiedemann, K.; Schulz, K.H. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. Brain Behav. Immun. 2003, 17, 473–481. [Google Scholar] [CrossRef]
- Rezaee, S.; Kahrizi, S.; Nabavi, S.M.; Hedayati, M. Vegf and tnf-α responses to acute and chronic aerobic exercise in the patients with multiple sclerosis. Asian J. Sports Med. 2020, 11, 98312. [Google Scholar] [CrossRef]
- Golzari, Z.; Shabkhiz, F.; Soudi, S.; Kordi, M.R.; Hashemi, S.M. Combined exercise training reduces IFN-γ and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int. Immunopharmacol. 2010, 10, 1415–1419. [Google Scholar] [CrossRef]
- Nejatpour, S.; Fathei, M.; Yaghoubi, A. The effect of aqua-therapy on plasma and interleukin-12 and 17 in patients with multiple sclerosis. Sport Tk-Rev. Euroam. Cienc. Deport. 2019, 8, 89–93. [Google Scholar] [CrossRef]
- Eftekhari, E.; Etemadifar, M. Interleukin-10 and brain-derived neurotrophic factor responses to the Mat Pilates training in women with multiple sclerosis. Sci. Med. 2018, 28, 31668. [Google Scholar] [CrossRef]
- Bergmann, M.; Gornikiewicz, A.; Sautner, T.; Waldmann, E.; Weber, T.; Mittlböck, M.; Roth, E.; Függer, R. Attenuation of catecholamine-induced immunosuppression in whole blood from patients with sepsis. Shock 1999, 12, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Barbado, D.; Gomez-Illan, R.; Moreno-Navarro, P.; Mendoza, N.; Vaillo, R.R.; Sempere, A.P. Does exercise have a neuroprotective function in multiple sclerosis? A brief overview of the physical training potential effects on cytokines and brain-derived neurotrophic factor. Eur. J. Hum. Mov. 2018, 41, 124–148. [Google Scholar]
- Jensen, J.; Krakauer, M.; Sellebjerg, F. Cytokines and adhesion molecules in multiple sclerosis patients treated with interferon-β1b. Cytokine 2005, 29, 24–30. [Google Scholar]
- Sharief, M. Cytokines in multiple sclerosis: Pro-inflammation or pro-remyelination? Mult. Scler. J. 1998, 4, 169–173. [Google Scholar] [CrossRef]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Dulson, D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 2018, 104, 136–142. [Google Scholar] [CrossRef]
- Podbielska, M.; O’Keeffe, J.; Pokryszko-Dragan, A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 7319. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. Int. Sch. Res. Not. 2013, 2013, 139239. [Google Scholar] [CrossRef]
JBI Critical Appraisal Checklist for Randomized Controlled Trials | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Total |
Tadayon Zadeh F. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Devasahayam A. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Faramarzi M. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Rezaee S. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | N | 9 |
Nejatpour S. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Barry A. | Y | Y | Y | NA | NA | Y | Y | Y | Y | Y | Y | Y | N | 10 |
Berkowitz S. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | N | 9 |
Eftekhari E. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Majidnasab N. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Mokhtarzade M. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Alvarenga-Filho H. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Briken S. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Kierkegaard M. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Deckx N. | Y | Y | Y | NA | NA | Y | Y | Y | Y | Y | Y | Y | Y | 11 |
Ebrahimi A. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Kjølhede T. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Bansi J. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | N | 9 |
Golzari Z. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Castellano V. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
White L.J. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | N | 9 |
Schulz K. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
Heesen C. | Y | Y | Y | NA | NA | U | Y | Y | Y | Y | Y | Y | Y | 10 |
First Author | Gender | Sample Size | Mean Age | Disease Status | Mean EDSS | Type of Exercise | Duration and Frequency of Exercise | Evaluated Cytokines | Main Findings |
---|---|---|---|---|---|---|---|---|---|
Tadayon Zadeh F. | Female | MST:15 MSC:15 | Range (25–40) | - | ≤6 | Endurance, resistance, balance | 8 wks (t.i.w.), 40–70% HR max | IL-6, CRP, IL-10 | ↓: IL-6, CRP ↑: IL-10 |
Devasahayam A. | Both | MST:14 MSC:8 | 54.07 (8.46) | SPMS PPMS | 6–6.5 | Fitness | One session | BDNF, IL-6 | ↑: IL-6 |
Faramarzi M. | Female | MST:46 MSC:43 | Range (18–50) | RRMS | Not reported range (0–8) | Combined stretching, balance, pilates, resistance, endurance | 12 wks (t.i.w.) | IL-6, IFN-γ, CRP | ↓:IL-6, CRP ↑: IFN-γ |
Rezaee S. | Both | MST:10 MSC:10 | 28.9 ± 3.3 | RRMS | 2.2 ± 0.4 | Aerobic training | 6 wks (t.i.w.) 60% VO2 max | TNF- α | ↓: TNF- α |
Nejatpour S. | Male | MST:13 MSC:12 | - | - | Range (2.5 –5) | Aqua training | 8 wks (t.i.w.) 75% VO2 max | IL-12, Il-17 | ↓:IL-12, IL-17 |
Barry A. | Both | MST:9 HC:10 | 35.33 ± 2.12 | RRMS | 2.17 ± 0.40 | Cycle ergometer | 8 wks (b.i.w.), 65–75% VO2 max | IL-10, IL-12p70, IL-6 | ↑: IL-6, 12 p70 ↓: IL-10 |
Berkowitz S. | Female | MST:15 MSC:10 | 33.8 ± 7.8 | - | 1.5 | Aerobic (treadmill) 50–80 VO2 max | 3 sessions | IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF-α | ↓: IL-10 |
Eftekhari E. | Female | MST:15 MSC:15 | 34.46 ± 7.29 | RRMS | Range (2–6) | Pilates training | 8 wks (t.i.w.) | IL-10, BDNF | ↑: BDNF |
Majidnasab N. | Female | MST:30 HC:15 MSC:5 | 28.23 ± 3.65 | RRMS | 2.11 ± 0.76 | Arm, cycle ergometer | One session 60–70% VO2 max | IL-6, IL-10, TNF- α, leptin, adiponectin | ↓: TNF- α, IL-10, leptin |
Mokhtarzade M. | Female | MST:22 MSC:8 | 32.04 ± 2.81 | RRMS | 1.84 ± 0.35 | Aerobic | 8 wks (t.i.w.) 60% max watt | IL-10 TNF- α Leptin adiponectin | ↓: leptin, TNF- α ↑: adiponectin |
Alvarenga-Filho H. | Both | MST:8 MSC:10 HC:10 | 41.1 ± 12.9 | RRMS | 0–2.5 | Resistance training, cycle ergometer, pilates | 12 wks (t.i.w.) | IL-6, IL-10, IL-21, IL-22, IL-17, TNF-α, IFN-γ | ↓:IL-22 |
Briken S. | Both | MST:28 MSC:9 | 49.9 ± 7.6 | PPMS, SPMS | 4.9 ± 0.9 | Endurance, arm ergometer, cycle ergometer, rowing | 9 wks (b & t.i.w.) | BDNF, IL-6 | ↑: BDNF |
Kierkegaard M. | Both | MST:20 | 36.3 ± 7.6 | RRMS | 1.5 | Resistance training | 12 wks (b.i.w.) 80% 1 RM | IL-1ra, -4, -5, -6, -7, -8, -12p70, -13, -17 | ↓: all in blood |
Deckx N. | Both | MST:29 MSC:16 | 47 ± 2 | RRMS and CPMS | 3 ± 0.2 | Endurance, resistance | 12 wks (t.i.w.) | IL-6, IL-10, IL-12p70, TNF- α | |
Ebrahimi A. | Both | MST:16 MSC:14 | 38.76 ± 9.66 | RRMS | 3.11 ± 0.99 | WBV | 10 wks (t.iw.) | leptin | |
Kjølhede T. | Both | MST:16 MSC:16 | 44.6 ± 7 | RRMS | 2.9 ± 1 | Progressive resistance training | 24 wks (b.i.w.) | IL-1β, IL-4, IL-10, IL-17F, IL-23, TNF-α, IFN-γ | |
Bansi J. | Both | WT:24 LT:28 | 44.6–56.3 | - | 4.65 | Cycle ergometer, aquatic bike | 3 wks, 70% Hpeak | BDNF, TNF- α, IL-6, sIL-6r | ↑: BDNF |
Golzari Z. | Female | MST:10 MSC:10 | 32.15 ± 7.57 | - | 2.14 ± 1.06 | Stretch, aerobic, resistance, endurance | 8 wks (t.i.w.) | IFN-γ, IL-4, IL-17 | ↓: IFN-γ, IL-17 |
Castellano V. | Both | MST:11 MSC:11 | 40 ± 10 | - | 0–5.5 | Cycle ergometer | 8 wks (t.i.w.) 60% VO2 max | TNF- α, IL-6, IFN-γ | ↑: TNF- α, IFN-γ |
White L.J. | Female | MST:11 | 47 ± 12 | - | 3.8 ± 0.9 | Resistance training | 8 wks (b.i.w.) 50–70% MVC | IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, CRP | ↓:IL-4, IL-10, IFN-γ, IL-2, CRP |
Schulz K. | Both | MST:15 MSC:13 | 42 ± 9.5 | RRMS, SPMS | 2.5 ± 1.4 | Cycle ergometer | 8 wks (b.i.w.) 75% VO2 max | BDNF, NGF, IL-6, sIL-6r | |
Heesen C. | Both | MST:15 MSC:13 HC:20 | 39.8 | RRMS, SPMS, PPMS | 2.3 ± 0.2 | Cycle ergometer (resistance + endurance) | 8 wks (b.i.w.) 60% VO2 max | IFN-γ, TNF- α, IL-10 | ↓: IFN-γ |
Study | Sample Type | Functional and Mental Outcomes | Results |
---|---|---|---|
Tadayon Zadeh F. | Blood | - | - |
Devasahayam A. | Blood | - | |
Faramarzi M. | Blood | Walking function | Improvement in walking function |
Rezaee S. | Blood | - | - |
Nejatpour S. | Blood | - | - |
Barry A. | Blood | QoL Depression | Improvement in QoL and depression |
Berkowitz S. | Blood | - | - |
Eftekhari E. | Blood | - | - |
Majidnasab N. | Blood | - | - |
Mokhtarzade M. | Blood | Fatigue QoL | Improvement in fatigue and QoL |
Alvarenga-Filho H. | Blood | - | - |
Briken S. | Blood | - | - |
Kierkegaard M. | Blood and CSF | QoL Mood Muscle strength function Walking function Cognition Fatigue | Improvement in QoL, mood, muscle strength function, walking function, cognition, and fatigue |
Deckx N. | Blood | - | - |
Ebrahimi A. | Blood | Fatigue QoL Balance Walking function Muscle strength function | Improvement in balance and walking function No significant changes in QoL, muscle strength function, and fatigue |
Kjølhede T. | Blood | Muscle strength Walking function | Improvement in muscle strength function and walking function |
Bansi J. | Fatigue | No significant changes | |
Golzari Z. | Blood | Balance Muscle strength function | Improvement in balance and muscle strength function |
Castellano V. | Blood | - | - |
White L.J. | Blood | Muscle strength function Fatigue | Improvement in muscle strength function and fatigue |
Schulz K. | Blood | QoL Fatigue Muscle strength function Walking function | Improvement in QoL No significant changes in fatigue, muscle strength function, and walking function |
Heesen C. | Blood | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najafi, P.; Hadizadeh, M.; Cheong, J.P.G.; Mohafez, H.; Abdullah, S. Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials. Int. J. Environ. Res. Public Health 2022, 19, 8151. https://doi.org/10.3390/ijerph19138151
Najafi P, Hadizadeh M, Cheong JPG, Mohafez H, Abdullah S. Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials. International Journal of Environmental Research and Public Health. 2022; 19(13):8151. https://doi.org/10.3390/ijerph19138151
Chicago/Turabian StyleNajafi, Parisa, Maryam Hadizadeh, Jadeera Phaik Geok Cheong, Hamidreza Mohafez, and Suhailah Abdullah. 2022. "Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials" International Journal of Environmental Research and Public Health 19, no. 13: 8151. https://doi.org/10.3390/ijerph19138151
APA StyleNajafi, P., Hadizadeh, M., Cheong, J. P. G., Mohafez, H., & Abdullah, S. (2022). Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials. International Journal of Environmental Research and Public Health, 19(13), 8151. https://doi.org/10.3390/ijerph19138151