Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Co-nZVI/GAC
2.3. Comparative Analysis of Different Systems
2.4. Response Surface Optimization Experiment
2.5. Analytical Methods
3. Results and Discussion
3.1. Characterization of Materials
3.2. Comparative Analysis of Different Systems
3.3. Establishment of Model and Response Surface Analysis
3.3.1. Establishment of Model
3.3.2. Response Surface Analysis
3.3.3. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Lai, C.; Li, B.; Zhang, C.; Zhang, M.; Huang, D.; Chen, L. Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chem. Eng. J. 2020, 384, 123304. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Q.; Lai, L.; Yao, G.; Lai, B. Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system. Chin. Chem. Lett. 2019, 30, 1129–1132. [Google Scholar] [CrossRef]
- Albukhari, S.M.; Ismail, M.; Akhtar, K.; Danish, E.Y. Catalytic reduction of nitrophenols and dyes using silver nanoparticles@ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 548–561. [Google Scholar] [CrossRef]
- Din, M.I.; Khalid, R.; Hussain, Z.; Hussain, T.; Mujahid, A.; Najeeb, J.; Izhar, F. Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review. Crit. Rev. Anal. Chem. 2020, 50, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Cao, H.; Han, D.; Li, M.; Yao, S.; Xie, J.; He, M. Theoretical insight into the degradation of p-nitrophenol by OH radicals synergized with other active oxidants in aqueous solution. J. Hazard. Mater. 2020, 389, 121901. [Google Scholar] [CrossRef] [PubMed]
- Menazea, A.A.; Mostafa, A.M. Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. J. Environ. Chem. Eng. 2020, 8, 104104. [Google Scholar] [CrossRef]
- Fatima, R.; Afridi, M.N.; Kumar, V.; Lee, J.; Ali, I.; Kim, K.H.; Kim, J.O. Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J. Clean. Prod. 2019, 231, 899–912. [Google Scholar] [CrossRef]
- Hu, L.; Liu, X.; Guo, A.; Wu, J.; Wang, Y.; Long, Y.; Fan, G. Cobalt with porous carbon architecture: Towards of 4-nitrophenol degradation and reduction. Sep. Purif. Technol. 2022, 288, 120595. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Chen, R.; Cao, F.; Jin, B. Self-assembled BiOCl/Ti3C2Tx composites with efficient photo-induced charge separation activity for photocatalytic degradation of p-nitrophenol. Appl. Surf. Sci. 2020, 519, 146175. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, Y.; Gu, H.; Gu, S.; Xiong, M.; Zhang, D.; Chen, W. Novel Fe0-C/S (IV) system: Toward the interaction between Fe0-C internal electrolysis and sulfite for p-nitrophenol degradation. Sep. Purif. Technol. 2021, 268, 118615. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef] [Green Version]
- Hodges, B.C.; Cates, E.L.; Kim, J.H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.H.; Pei, D.S. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems. Chemosphere 2021, 277, 130256. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Xu, H.; Wang, L.; Jiang, J.; Zhang, T. Nonradical oxidation of pollutants with single-atom-Fe (III)-activated persulfate: Fe (V) being the possible intermediate oxidant. Environ. Sci. Technol. 2020, 54, 14057–14065. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Li, S.; Zhao, M.; Wangmu, Q.; Ding, R.; Xiao, C.; Guo, X. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process. J. Hazard. Mater. 2022, 424, 127461. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Yang, R.; Fu, X.; Zhou, Z.; Xu, Z.; Zhou, Z.; Lyu, S. Naphthalene degradation in aqueous solution by Fe (II) activated persulfate coupled with citric acid. Sep. Purif. Technol. 2021, 264, 118441. [Google Scholar] [CrossRef]
- Shao, F.; Wang, Y.; Mao, Y.; Shao, T.; Shang, J. Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate. Chemosphere 2020, 261, 127844. [Google Scholar] [CrossRef]
- Qiu, Q.; Li, G.; Dai, Y.; Xu, Y.; Bao, P. Removal of antibiotic resistant microbes by Fe (II)-activated persulfate oxidation. J. Hazard. Mater. 2020, 396, 122733. [Google Scholar] [CrossRef]
- Ge, M.; Hu, Z.; Wei, J.; He, Q.; He, Z. Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: Performances, mechanism and perspectives. J. Alloys Compd. 2021, 888, 161625. [Google Scholar] [CrossRef]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.; Liu, Y.; Yang, X.; Liang, Q. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar] [CrossRef]
- Wang, Q.; Rao, P.; Li, G.; Dong, L.; Zhang, X.; Shao, Y.; Deng, J. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: Kinetics, impact of key factors and degradation pathway. Ecotoxicol. Environ. Saf. 2020, 187, 109779. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, J.; Wang, Z.; Zhang, X. A mini review of activated methods to persulfate-based advanced oxidation process. Water Sci. Technol. 2019, 79, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, R.; Hossienzadeh, K.; Maleki, A.; Ghanbari, R.; Rezaee, R.; Safari, M.; Puttaiah, S.H. Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation. J. Environ. Health Sci. Eng. 2019, 17, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, D.; Gao, X. Optimization of mixture proportions by statistical experimental design using response surface method—A review. J. Build. Eng. 2021, 36, 102101. [Google Scholar] [CrossRef]
- Moradi, M.; Ghanbari, F.; Manshouri, M.; Angali, K.A. Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate: Response surface modeling and optimization. Korean J. Chem. Eng. 2016, 33, 539–546. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Zhang, X. Removal of P-Nitrophenol by Nano Zero Valent Iron-Cobalt and Activated Persulfate Supported onto Activated Carbon. Water 2022, 14, 1387. [Google Scholar] [CrossRef]
- Sabeti, Z.; Alimohammadi, M.; Yousefzadeh, S.; Aslani, H.; Ghani, M.; Nabizadeh, R. Application of response surface methodology for modeling and optimization of Bacillus subtilis spores inactivation by the UV/persulfate process. Water Sci. Technol. Water Supply 2017, 17, 342–351. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, C.; Duan, W.; Lang, D.; Pan, B. Coupling adsorption and degradation in p-nitrophenol removal by biochars. J. Clean. Prod. 2020, 271, 122550. [Google Scholar] [CrossRef]
- Zhang, J.K.; Zhang, X.Y.; Liu, J.Q.; Zhang, L.J.; Zheng, H.; Yang, C.F. Performance and mechanism of nitrophenol degradation by nano zero valent iron Supported on granular activated carbon. Desalin. Water Treat. 2021, 237, 121–126. [Google Scholar] [CrossRef]
- Xiang, M.; Huang, M.; Li, H.; Wang, W.; Huang, Y.; Lu, Z.; Cao, W. Nanoscale zero-valent iron/cobalt@ mesoporous hydrated silica core–shell particles as a highly active heterogeneous Fenton catalyst for the degradation of tetrabromobisphenol A. Chem. Eng. J. 2021, 417, 129208. [Google Scholar] [CrossRef]
- Rao, Y.F.; Qu, L.; Yang, H.; Chu, W. Degradation of carbamazepine by Fe (II)-activated persulfate process. J. Hazard. Mater. 2014, 268, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pasalari, H.; Esrafili, A.; Yegane Badi, M.; Farzadkia, M. Degradation of 2, 4-Dinitrophenol using persulfate activated by Cu2+ in photocatalytic system (UV/SPS/Cu2+) from aqueous solution: Optimisation and operational parameters. Int. J. Environ. Anal. Chem. 2022, 102, 804–819. [Google Scholar] [CrossRef]
- Guo, H.; Ke, T.; Gao, N.; Liu, Y.; Cheng, X. Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation. Chem. Eng. J. 2017, 316, 471–480. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Chen, J.; Gao, N.; Lu, X.; Xia, M.; Gu, Z.; Jiang, C.; Wang, Q. Degradation of 2, 4-dichlorophenol from aqueous using UV activated persulfate: Kinetic and toxicity investigation. RSC Adv. 2016, 6, 100056–100062. [Google Scholar] [CrossRef]
Factor | Unit | Code | Value of Each Level | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |||
Co-nZVI/GAC dosage | mol/L | X1 | 0.5 | 1 | 1.5 | 2 | 2.5 |
PS concentration | mol/L | X2 | 0 | 1 | 2 | 3 | 4 |
UV power | W | X3 | 15 | 30 | 45 | 60 | 75 |
pH | - | X4 | 2 | 4 | 6 | 8 | 10 |
Test No. | Coding Variable Level | PNP Removal Rate | |||
---|---|---|---|---|---|
X1 | X2 | X3 | X4 | ||
1 | 0 | 0 | 0 | 0 | 71.23% |
2 | 0 | 0 | 0 | 0 | 73.56% |
3 | −1 | 1 | −1 | −1 | 88.74% |
4 | −2 | 0 | 0 | 0 | 80.24% |
5 | 0 | 0 | 0 | −2 | 77.92% |
6 | 0 | 0 | −2 | 0 | 63.20% |
7 | 1 | −1 | −1 | −1 | 42.16% |
8 | 2 | 0 | 0 | 0 | 42.68% |
9 | −1 | −1 | 1 | −1 | 71.06% |
10 | 0 | 0 | 0 | 0 | 66.83% |
11 | −1 | −1 | 1 | 1 | 57.82% |
12 | 1 | 1 | −1 | −1 | 66.78% |
13 | −1 | −1 | −1 | −1 | 52.42% |
14 | −1 | 1 | 1 | 1 | 78.68% |
15 | 1 | 1 | −1 | 1 | 60.34% |
16 | −1 | 1 | 1 | −1 | 97.33% |
17 | 1 | −1 | −1 | 1 | 30.69% |
18 | 0 | 0 | 0 | 0 | 73.25% |
19 | 1 | −1 | 1 | −1 | 55.43% |
20 | 1 | 1 | 1 | −1 | 76.08% |
21 | 0 | 0 | 0 | 0 | 73.55% |
22 | 0 | 0 | 0 | 0 | 74.65% |
23 | 0 | 0 | 0 | 2 | 53.21% |
24 | 0 | −2 | 0 | 0 | 34.46% |
25 | 1 | 1 | 1 | 1 | 52.65% |
26 | −1 | 1 | −1 | 1 | 84.65% |
27 | 0 | 2 | 0 | 0 | 78.26% |
28 | 1 | −1 | 1 | 1 | 38.69% |
29 | 0 | 1 | 2 | 0 | 70.46% |
30 | −1 | −1 | −1 | 1 | 45.65% |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 7989.83 | 14 | 570.70 | 75.31 | <0.0001 |
X1 | 2178.37 | 1 | 2178.37 | 287.45 | <0.0001 |
X2 | 3723.30 | 1 | 3723.30 | 491.32 | <0.0001 |
X3 | 209.04 | 1 | 209.04 | 27.58 | <0.0001 |
X4 | 940.63 | 1 | 940.63 | 124.12 | <0.0001 |
X1X2 | 70.43 | 1 | 70.43 | 9.29 | 0.0081 |
X1X3 | 6.96 | 1 | 6.96 | 0.92 | 0.3532 |
X1X4 | 14.69 | 1 | 14.69 | 1.94 | 0.1842 |
X2X3 | 143.10 | 1 | 143.10 | 18.88 | 0.0006 |
X2X4 | 1.20 | 1 | 1.20 | 0.16 | 0.6957 |
X3X4 | 117.13 | 1 | 117.13 | 15.46 | 0.0013 |
X12 | 199.54 | 1 | 199.54 | 26.33 | 0.0001 |
X22 | 432.78 | 1 | 432.78 | 57.11 | <0.0001 |
X32 | 50.34 | 1 | 50.34 | 6.64 | 0.0210 |
X42 | 76.58 | 1 | 76.58 | 10.11 | 0.0062 |
Residuals | 113.67 | 15 | 7.58 | ||
Lack of fit | 73.12 | 10 | 7.31 | 0.90 | 0.5861 |
Pure error | 40.55 | 5 | 8.11 | ||
In total | 8103.51 | 29 | |||
R2 = 0.9860 | |||||
R2adj = 0.9729 | |||||
Signal-to-noise ratio = 32.924 | |||||
Coefficient of variation = 4.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, H.; Chen, L.; Fan, X.; Yang, Y. Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. Int. J. Environ. Res. Public Health 2022, 19, 8169. https://doi.org/10.3390/ijerph19138169
Zhang J, Zhang H, Chen L, Fan X, Yang Y. Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. International Journal of Environmental Research and Public Health. 2022; 19(13):8169. https://doi.org/10.3390/ijerph19138169
Chicago/Turabian StyleZhang, Jiankun, Huifang Zhang, Lei Chen, Xiulei Fan, and Yangyang Yang. 2022. "Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method" International Journal of Environmental Research and Public Health 19, no. 13: 8169. https://doi.org/10.3390/ijerph19138169
APA StyleZhang, J., Zhang, H., Chen, L., Fan, X., & Yang, Y. (2022). Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. International Journal of Environmental Research and Public Health, 19(13), 8169. https://doi.org/10.3390/ijerph19138169