A Multi-Criteria Framework for Identification of Gully Developmental Stages Based on UAV Data—A Case Study in Yuanmou County, Yunnan Province, SW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Research Methods
2.2.1. Data Sources
2.2.2. Information Entropy Analysis Method for Longitudinal Profile of Gully
2.2.3. Longitudinal Profile Fitting Function
2.2.4. Multi-Criteria Decision Analysis Technique
3. Results
3.1. Morphological Characteristics of Longitudinal Profile
3.2. Function Fitting of Gully Longitudinal Profile
3.3. Knickpoint
4. Discussion
4.1. The Indicating Effects of Longitudinal Profile Morphological Index and Longitudinal Profile Information Entropy
4.2. The Influence of Environmental Conditions on Gully Development
- (1)
- Soil properties
- (2)
- Vegetation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arar, A.; Chenchouni, H. A “simple” geomatics-based approach for assessing water erosion hazard at montane areas. Arab. J. Geosci. 2014, 7, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.G.; Sun, B.P.; Zhang, C.; Ji, Q.; Feng, L.; Shi, M.C. A study on scheme of soil and water conservation regionalization in China. J. Geogr. Sci. 2013, 23, 721–734. [Google Scholar] [CrossRef]
- Haleh, N.; Biswajeet, P.; Hossein, M.; Hyuck-Jin, P. Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and Revised Universal Soil Loss Equation model. Land Degrad. Dev. 2018, 29, 3440–3455. [Google Scholar]
- Zhuo, L.N.; Wang, J.Z. Gully Erosion: Regulaity and Development Potential; Yellow River Water Conservancy Press: Zhengzhou, China, 2008; pp. 4–15. [Google Scholar]
- Xiong, D.H.; Yang, D.; Zai, J.; Li, J.J.; Su, Z.A.; Dong, Y.F.; Shi, L.T. Preliminary Study on Hydrodynamic Characteristics of Overland Flow and Sediment Yield of Gully Heads in Yuanmou Hot-dry Valley. J. Soil Water Conserv. 2012, 26, 52–56+62. [Google Scholar]
- Ding, L.; Qin, F.C.; Fang, H.D.; Liu, H.; Zhang, B.; Shu, C.Q.; Deng, Q.C.; Liu, G.C.; Yang, Q.Q. Morphology and controlling factors of the longitudinal profile of gullies in the Yuanmou dry-hot valley. J. Mt. Sci. 2017, 14, 674–693. [Google Scholar] [CrossRef]
- Zhao, S.M. Quantitative effects of digital terrain features on land use spatial distribution. Sci. Technol. Rev. 2020, 38, 57–64. [Google Scholar]
- Capra, A.; Mazzara, L.M.; Scicolone, B. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy. Catena 2004, 59, 133–146. [Google Scholar] [CrossRef]
- Zhuo, N.N.; Jing, K. Calculation method for determining gully erosion. Geogr. Transl. 1982, 4, 40–44. [Google Scholar]
- Gang, H.; Wu, Y.; Liu, B.; Zhang, Y.; You, Z.; Yu, Z. The characteristics of gully erosion over rolling hilly black soil areas of Northeast China. J. Geogr. Sci. 2009, 19, 309–320. [Google Scholar]
- Hancock, G.R.; Evans, K.G. Gully position, characteristics and geomorphic thresholds in an undisturbed catchment in northern Australia. Hydrol. Processes 2006, 20, 2935–2951. [Google Scholar] [CrossRef]
- Yang, D.; Mu, K.; Yang, H.; Luo, M.; Lv, W.; Zhang, B.; Liu, H.; Wang, Z. A Study on Prediction Model of Gully Volume Based on Morphological Features in the JINSHA Dry-Hot Valley Region of Southwest China. Int. J. Geo-Inf. 2021, 10, 300. [Google Scholar] [CrossRef]
- Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Modelling channel incision and alpine hillslope development using laser altimetry data. Geomorphology 2009, 113, 35–46. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Deckers, J.; Haile, M.; Nyssen, J. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 2012, 173–174, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Pederson, J.L.; Petersen, P.A.; Dierket, J.L. Gullying and erosion control at archaeological sites in Grand Canyon, Arizona. Earth Surf. Processes Landf. 2006, 31, 507–525. [Google Scholar] [CrossRef]
- Wijdenes, D.J.O.; Bryan, R.B. Gully-head erosion processes on a semi-arid valley floor in Kenya: A case study into temporal variation and sediment budgeting. Earth Surf. Processes Landf. 2010, 26, 911–933. [Google Scholar] [CrossRef]
- Zhu, H.C.; Tang, G.A.; Zhang, Y.S.; Yi, H.W.; Li, W. Thalweg in Loess Hill Area Based on DEM. Bull. Soil Water Conserv. 2003, 23, 43–45+61. [Google Scholar]
- Casalí, J.; Loizu, J.; Campo, M.A.; Santisteban, L.M.D.; Álvarez-Mozos, J. Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena 2006, 67, 128–138. [Google Scholar] [CrossRef]
- Lin, Z.; Oguchi, T. Longitudinal and transverse profiles of hilly and mountainous watersheds in Japan. Geomorphology 2009, 111, 17–26. [Google Scholar] [CrossRef]
- Jiang, Z.X. Model of Development and Rule of Evolution of the Longitudinal Profiles of the Valley of Three River’ in the Northwestern Part of Yunnan Province. Acta Geogr. Sin. 1987, 42, 16–27+97–98. [Google Scholar]
- Wu, C.L.; Li, B.C.; Lei, H.Z. Quantitative Analysis of Eroded Landform Evolution in Small Watershed. J. Soil Eros. Soil Water Conserv. 1997, 3, 56–62. [Google Scholar]
- Zhao, H.Z.; Li, Y.L.; Yang, J.C.; Lv, H.H. The Longitudinal Profiles of the Ten Rivers in North Tianhan Mountains and Their Tectonic Significance. Acta Geogr. Sin. 2009, 64, 563–570. [Google Scholar]
- Anderson, J.K.; Wondzell, S.M.; Gooseff, M.N.; Haggerty, R. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA. Hydrol. Processes 2005, 19, 2931–2949. [Google Scholar] [CrossRef]
- Shi, G.T.; Jing, C.R. Davis’ Geographical Cycle Theopy and Modern Geomorphology. J. Cent. China Norm. Univ. 1990, 24, 127–131. [Google Scholar]
- Horton, R.E.; Horton, R.; Horton, H. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. J. Jpn. For. Soc. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.H. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Bull. Geol. Soc. Am. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Zhang, H.J.; Chen, J.H. Principle of Soil Erosion; Science Press: Beijing, China, 2014; pp. 63–67. [Google Scholar]
- Yang, D.; Xiong, D.H.; Zhai, J.; Li, J.J.; Su, Z.A.; Dong, Y.F. Morphological characteristics and causes of gullies in Yuanmou Dry-hot Valley Region. Sci. Soil Water Conserv. 2012, 10, 38–45. [Google Scholar]
- Tang, G.Y.; Gao, C.J.; Li, K. Effects of vegetation restoration on the amelioration of degraded soil in a dry-hot valley. Acta Geogr. Sin. 2015, 35, 5157–5167. [Google Scholar]
- Zhang, X.B.; Yang, Z.; Zhang, J.P. Lithologic Types on Hill Slopes and Revegetation Zoning in the Yuanmou Hot and Dry Valley. Sci. Silvae Sin. 2003, 39, 16–22. [Google Scholar]
- Feng, Y.X. Asymmetry Morphology Characteristics of Gully Cross-Profiles in Yuanmou Dry-Hot Valley; China West Normal University: Nanchong, China, 2017. [Google Scholar]
- Na, J.M.; Xue, K.K.; Xiong, L.Y.; Tang, G.A.; Hu, D.; Strobl, J.; Pfeifer, N. UAV-Based Terrain Modeling under Vegetation in the Chinese Loess Plateau: A Deep Learning and Terrain Correction Ensemble Framework. Remote Sens. 2020, 12, 3318. [Google Scholar] [CrossRef]
- Dai, W.; Tang, G.A.; Hu, G.H.; Yang, X.; Xiong, L.Y.; Wang, L. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey. Prog. Geogr. 2021, 40, 1570–1580. [Google Scholar] [CrossRef]
- Ai, N.S.; Yue, T.X. Second discussion of the comentropy of drainage-system. J. Soil Water Conserv. 1988, 2, 1–9. [Google Scholar]
- Guan, H.; Gao, G.H. Distinguishing of the Geomophic Evolution Stage with Information Entropy in the Transitional Region of Qinling Mountains and Huang-Huai Plain. Sci. Geogr. Sin. 2002, 22, 673–676. [Google Scholar]
- Hack, J.T. Studies of longitudinal profiles in Virginia and Maryland. Wood Ibis Va. Md. 1957, 14, 208–209. [Google Scholar]
- Hack, J.T. Stream-Profile analysis and stream-gradient index. Bull. Am. Astron. Soc. 1973, 1, 377–382. [Google Scholar]
- Ohmori, H. Change in the Mathematical Function Type Describing the Longitudinal Profile of a River through an Evolutionary Process. J. Geol. 1991, 99, 97–110. [Google Scholar] [CrossRef]
- Rãdoane, M.; Rãdoane, N.; Dumitriu, D. Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology 2003, 50, 293–306. [Google Scholar] [CrossRef]
- Deng, Y.; Wilson, J.P. Multi-scale and multi-criteria mapping of mountain peaks as fuzzy entities. Int. J. Geogr. Inf. Sci. 2008, 22, 205–218. [Google Scholar] [CrossRef]
- Forman, E.H. Multi criteria decision making and the analytic hierarchy process. In Readings in Multiple Criteria Decision Aid; Springer: Berlin/Heidelberg, Germany, 1990; pp. 295–318. [Google Scholar]
- Majumdar, S.; Kose, M.; Chatterjee, U. Gully Erosion Mapping by Multi-criteria Decision Analysis Techniques and Geoinformatics in Adana Province, Turkey. Earth Syst. Environ. 2021, 1–12. [Google Scholar] [CrossRef]
- Deng, Q.; Qin, F.C.; Zhang, B.; Wang, H.; Luo, M.L.; Shu, C.; Liu, H.; Liu, G. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-Hot Valley. Geomorphology 2015, 228, 703–713. [Google Scholar] [CrossRef]
- Bi, L.S.; He, H.L.; Xu, Y.R.; Wei, Z.Y.; Shi, F. The extraction of knickpoint series based on the high resolution DEM data and the identification of paleo-earthquake series—A case study of the huoshan MTS. Pieamont fault. Seismol. Geol. 2011, 4, 33. [Google Scholar]
- Gardner, T.W. Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material. Geol. Soc. Am. Bull. 1983, 94, 664–672. [Google Scholar] [CrossRef]
- Yang, J.C.; Guo, Z.T.; Cao, Z.D. Investigation on the Holocene activitives of the Helan Mountain piedmont fault by use of geomorphological method. Seismol. Geol. 1985, 7, 23–31. [Google Scholar]
- Cui, N.M.; Wang, P.; Pan, Z.S.; Liao, Y.H. The headward migration rate and age of knickpoints of the piedmont of HeLanShan MT. Seismol. Geol. 1990, 12, 87–95+99. [Google Scholar]
- Markov; Chen, E.Z. Basic Issues of Geomorphology; Geological Publishing House: Beijing, China, 1957; pp. 52–100. [Google Scholar]
- Yang, B.W.; Wang, T.; Ma, Y.G. Study on Development Stage of Water Erosion Gully in Loess Plateau. Yellow River 2004, 26, 6. [Google Scholar]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Cai, Q.G. Soil erosion and management on the Loess Plateau. J. Geogr. Sci. 2001, 11, 53–70. [Google Scholar]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully Erosion and Environmental Change: Importance and Research Needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, L.N.; Zhao, W.W.; Ying, L.X. The influence of rainfall and land use patterns on soil erosion in multi-scale watersheds: A case study in the hilly and gully area on the Loess Plateau, China. J. Geogr. Sci. 2018, 28, 1415–1426. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yao, W.; Ding, W.; Yang, J.; Chen, J. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system. J. Geogr. Sci. 2009, 19, 321–330. [Google Scholar] [CrossRef]
- Chen, W.M.; Gao, X.Y.; Ma, T.; Xu, X.L.; Chen, Y.J.; Zhou, C.H. Spatial-temporal distribution of cropland in China based on geomorphologic regionalization during 1990–2015. Acta Geogr. Sin. 2018, 73, 1613–1629. [Google Scholar]
- Golestani, G.; Issazadeh, L.; Serajamani, R. Lithology effects on gully erosion in Ghoori chay Watershed using RS & GIS. Int. J. Biosci. 2014, 4, 71–76. [Google Scholar]
- Qian, F.; Jiang, F.C. Quaternary Geology and Paleoanthropology of Yuanmou, Yunnan, China; Science Press: Beijing, China, 1992; pp. 30–80. [Google Scholar]
- Zhao, Y.; Zhang, B.; He, Y.; Luo, J.; Wang, L.; Deng, Q.; Liu, H.; Yang, D. Influence of geological conditions on gully distribution in the Dry–hot Valley, SW China. Catena 2022, 214, 106274. [Google Scholar] [CrossRef]
- Chen, A.Q.; Zhang, D.; Wei, Y.L.; Liu, G.C. Impacts of Soil Structure on Infiltration Capacity on Gully Head in the Yuanmou Dry-Hot Valley. J. Soil Water Conserv. 2011, 5, 47–52. [Google Scholar]
- Shu, C.Q.; Zhang, B.; Jiang, L.Q.; Liu, S.J.; Luo, M.L. Development Characteristics and Evolution Process of the Sink Holes in Yuanmou Dry-Hot Valley. Trop. Geogr. 2014, 34, 141–147. [Google Scholar]
- Deng, Q.C.; Zhang, B.; Luo, J.; Shu, C.Q.; Qin, F.C.; Luo, M.L.; Liu, S.J.; Lin, Y.B. Types and controlling factors of piping landform in Yuanmou dry-hot valley. J. Arid Land Resour. Environ. 2014, 28, 138–144. [Google Scholar]
- Liu, H.; Chen, Q.B.; Wang, K.Q.; Zhou, L.; Liu, B.J.; Li, M.M. Comparative study on soil and water loss at forest land and farmland catchment scale in Yuanmou dry-hot valley. Soil Water Conserv. China 2012, 7, 57–59. [Google Scholar]
- Chen, H. Relationship between erosion and sediment yield in drainage basins of loess gully-hilly areas. J. Geogr. Sci. 2001, 11, 71–79. [Google Scholar]
- Sun, L.Y.; Fang, H.Y.; Cai, Q.G.; Yang, X.H.; He, J.J.; Zhou, J.L.; Wang, X.M. Sediment load change with erosion processes under simulated rainfall events. J. Geogr. Sci. 2019, 29, 1001–1020. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.H.; Guo, W.L.; Yang, Q.K.; Guo, Y.F.; Zhu, X.X.; Rui, L. Vegetation cover changes and their relationship with rainfall in different physiognomy type areas of Loess Plateau. Sci. Soil Water Conserv. 2011, 9, 16–23. [Google Scholar]
- Zhang, B.; Shi, K.; Liu, C.Q.; Ai, N.S.; Liu, G.C.; Qin, F.C. Changes of Seasonal Precipitation of Yuanmou Dry-hot Valley in Recent 50 Years Ba sed on method of DFA. Sci. Geogr. Sin. 2009, 29, 561–566. [Google Scholar]
- Luo, J.; Zhou, W.; Qin, F.C.; Deng, Q.C.; Luo, M.L.; Xu, X.; Liu, G.C.; Zhang, B.; Liu, G.H. Response of Vegetation to Micro-topography in the Gullied Area of Yuanmou Dry-hot Valley. J. Mt. Sci. 2012, 30, 535–542. [Google Scholar]
Evolution Period | Longitudinal Profile Morphological Index | Longitudinal Profile Information Entropy | Longitudinal Profile Shape | Developmental Stage | Terrain Features |
---|---|---|---|---|---|
Initial stage | N < 1 | H(N) < 0.193 | Convex | Deep incision erosion stage | Downward erosion is deepened, headward erosion is slowed down |
Medium stage | N = 1 | H(N) = 0.193 | Close to a straight line | Transition stage | Gully bed expansion is slowed down |
Late stage | N > 1 | H(N) > 0.193 | Concave | Equilibrium adjustment stage | Downward erosion is weak, wide gully develops |
Terminal stage | N > 1 | H(N) > 0.193 | Concave | Equilibrium profile stage | Downward stopped and lateral erosion prevailed |
Gully Number | A (m2) | L (m) | N | H(N) | Morphology of Longitudinal Profile | Linear Function (R2) | Exponential Function (R2) | Logarithm Function (R2) | Power Function (R2) |
---|---|---|---|---|---|---|---|---|---|
T1 | 16.37 | 134.71 | 1.147 | 0.230 | concave | 0.983 | 0.962 | 0.944 | 0.995 * |
T2 | 111.17 | 898.51 | 1.075 | 0.212 | concave | 0.732 | 0.803 | 0.477 | 0.916 * |
T3 | 18.77 | 154.93 | 2.384 | 0.515 | concave | 0.815 | 0.636 | 0.881 * | 0.740 |
T4 | 30.76 | 249.00 | 0.592 | 0.093 | knickpoint | 0.406 * | 0.298 * | 0.283 | 0.203 |
T5 | 18.74 | 145.47 | 0.462 | 0.064 | knickpoint | 0.989 * | 0.996 * | 0.977 | 0.987 |
T6 | 10.67 | 119.46 | 2.148 | 0.464 | concave | 0.964 | 0.954 | 0.854 | 0.999 * |
T7 | 118.44 | 969.61 | 1.255 | 0.257 | concave | 0.884 | 0.868 | 0.733 | 0.972 * |
T8 | 73.59 | 616.76 | 1.309 | 0.270 | concave | 0.823 | 0.933 * | 0.671 | 0.944 * |
T9 | 20.54 | 171.94 | 1.491 | 0.314 | concave | 0.942 | 0.992 * | 0.846 | 0.978 |
T10 | 30.48 | 259.75 | 1.375 | 0.286 | concave | 0.999 * | 0.989 | 0.985 | 0.999 * |
T11 | 25.96 | 228.24 | 1.445 | 0.303 | concave | 0.970 | 0.831 | 0.996 * | 0.967 |
T12 | 62.45 | 505.19 | 1.190 | 0.240 | concave | 0.790 | 0.934 * | 0.624 | 0.856 |
T13 | 22.67 | 190.2 | 0.700 | 0.118 | convex | 0.739 * | 0.634 | 0.529 | 0.433 |
T14 | 15.59 | 131.33 | 1.605 | 0.341 | concave | 0.998 | 0.975 | 0.969 | 0.999 * |
T15 | 28.24 | 228.44 | 1.005 | 0.194 | concave | 0.880 | 0.967 * | 0.682 | 0.905 |
T16 | 31.68 | 254.65 | 1.865 | 0.402 | concave | 0.962 | 0.971 | 0.835 | 0.996 * |
T17 | 23.33 | 190.72 | 0.700 | 0.118 | convex | 0.423 | 0.441 * | 0.246 | 0.271 |
T18 | 61.80 | 511.65 | 1.576 | 0.335 | concave | 0.711 | 0.924 * | 0.508 | 0.920 |
T19 | 35.10 | 301.38 | 1.543 | 0.327 | concave | 0.761 | 0.898 | 0.602 | 0.910 * |
T20 | 34.45 | 279.67 | 1.752 | 0.376 | concave | 0.925 | 0.996 * | 0.786 | 0.976 |
T21 | 39.34 | 322.58 | 1.607 | 0.342 | concave | 0.880 | 0.984 * | 0.801 | 0.945 |
T22 | 22.87 | 184.58 | 1.024 | 0.199 | concave | 0.959 | 0.981 * | 0.853 | 0.921 |
T23 | 25.61 | 207.11 | 1.278 | 0.262 | concave | 0.954 | 0.998 * | 0.879 | 0.971 |
T24 | 28.76 | 230.68 | 1.600 | 0.340 | concave | 0.881 | 0.951 * | 0.824 | 0.911 |
T25 | 12.21 | 100.58 | 1.287 | 0.364 | concave | 0.999 * | 0.928 | 0.970 | 0.993 |
Average | 36.78 | 303.49 | 1.337 | 0.279 |
Gully Number | A (m2) | L (m) | N | H(N) | Morphology of Longitudinal Profile | Linear Function (R2) | Exponential Function (R2) | Logarithm Function (R2) | Power Function (R2) |
---|---|---|---|---|---|---|---|---|---|
S1 | 20.13 | 165.73 | 1.511 | 0.319 | concave | 0.991 * | 0.647 | 0.869 | 0.942 |
S2 | 16.23 | 128.55 | 0.933 | 0.176 | convex | 0.982 | 0.935 | 0.907 | 0.994 * |
S3 | 26.60 | 219.15 | 1.253 | 0.256 | concave | 0.965 * | 0.831 | 0.961 | 0.905 |
S4 | 13.19 | 106.10 | 0.645 | 0.106 | convex | 0.944 | 0.846 | 0.972 * | 0.959 |
S5 | 9.04 | 72.22 | 1.306 | 0.269 | concave | 0.926 | 0.828 | 0.981 * | 0.918 |
S6 | 20.78 | 166.68 | 1.061 | 0.208 | knickpoint | 0.969 * | 0.805 | 0.945 | 0.965 |
S7 | 10.90 | 88.72 | 0.927 | 0.175 | convex | 0.989 * | 0.977 | 0.896 | 0.991 * |
S8 | 16.53 | 134.53 | 0.636 | 0.104 | convex | 0.986 * | 0.987 * | 0.892 | 0.945 |
S9 | 16.68 | 136.85 | 1.027 | 0.200 | concave | 0.981 | 0.987 * | 0.897 | 0.990 * |
S10 | 23.43 | 195.99 | 1.331 | 0.275 | concave | 0.884 * | 0.643 | 0.659 | 0.498 |
S11 | 24.99 | 206.22 | 1.344 | 0.279 | knickpoint | 0.972 * | 0.870 | 0.893 | 0.974 * |
S12 | 25.70 | 202.75 | 0.888 | 0.165 | knickpoint | 0.968 * | 0.865 | 0.772 | 0.966 |
S13 | 23.58 | 192.10 | 0.839 | 0.153 | convex | 0.976 * | 0.843 | 0.956 | 0.973 |
S14 | 17.45 | 143.07 | 0.748 | 0.131 | convex | 1.000 * | 0.983 | 0.971 | 0.999 |
S15 | 12.95 | 105.58 | 0.912 | 0.171 | convex | 0.984 | 0.853 | 0.940 | 0.997 * |
S16 | 24.09 | 194.02 | 0.839 | 0.153 | convex | 0.975 * | 0.973 | 0.870 | 0.949 |
S17 | 24.62 | 197.31 | 2.120 | 0.458 | concave | 0.958 | 0.968 | 0.840 | 0.998 * |
S18 | 14.45 | 116.95 | 1.498 | 0.316 | concave | 0.998 * | 0.917 | 0.981 | 0.989 |
S19 | 12.29 | 99.36 | 0.922 | 0.175 | convex | 0.938 | 0.830 | 0.970 * | 0.936 |
S20 | 11.36 | 91.71 | 1.519 | 0.321 | concave | 0.948 | 0.998 * | 0.899 | 0.981 |
S21 | 6.04 | 50.53 | 0.771 | 0.136 | convex | 0.993 | 0.925 | 0.970 | 0.999 * |
S22 | 24.75 | 198.16 | 1.209 | 0.245 | concave | 0.978 | 0.884 | 0.987 * | 0.982 |
S23 | 22.57 | 181.15 | 1.527 | 0.323 | concave | 0.948 * | 0.657 | 0.943 | 0.762 |
S24 | 17.57 | 147.90 | 0.760 | 0.134 | convex | 0.790 | 0.938 * | 0.406 | 0.647 |
S25 | 5.03 | 40.82 | 1.524 | 0.322 | concave | 0.997 * | 0.936 | 0.943 | 0.996 |
Average | 17.64 | 143.29 | 1.122 | 0.223 |
Longitudinal Profile Morphological Index | Cross Profile | Longitudinal Profile | Gully Head | Knickpoint |
---|---|---|---|---|
0.636 < N < 0.933 | V-shape or U-shape | Convex or straight | Begins to cut down, the top forms a drop or cliff | Knickpoints prone to occur in gully bed |
1.005 < N < 2.384 | Repeated U-shape | Concave | The top drop is not obvious, forming a smooth curve | Knickpoints close to gully head |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Bai, L.; Luo, M.; Wang, Z.; Yang, D.; Zhang, B.; Lin, Y. A Multi-Criteria Framework for Identification of Gully Developmental Stages Based on UAV Data—A Case Study in Yuanmou County, Yunnan Province, SW China. Int. J. Environ. Res. Public Health 2022, 19, 8202. https://doi.org/10.3390/ijerph19138202
Lin H, Bai L, Luo M, Wang Z, Yang D, Zhang B, Lin Y. A Multi-Criteria Framework for Identification of Gully Developmental Stages Based on UAV Data—A Case Study in Yuanmou County, Yunnan Province, SW China. International Journal of Environmental Research and Public Health. 2022; 19(13):8202. https://doi.org/10.3390/ijerph19138202
Chicago/Turabian StyleLin, Haimei, Leichao Bai, Mingliang Luo, Zhicheng Wang, Dan Yang, Bin Zhang, and Yebin Lin. 2022. "A Multi-Criteria Framework for Identification of Gully Developmental Stages Based on UAV Data—A Case Study in Yuanmou County, Yunnan Province, SW China" International Journal of Environmental Research and Public Health 19, no. 13: 8202. https://doi.org/10.3390/ijerph19138202
APA StyleLin, H., Bai, L., Luo, M., Wang, Z., Yang, D., Zhang, B., & Lin, Y. (2022). A Multi-Criteria Framework for Identification of Gully Developmental Stages Based on UAV Data—A Case Study in Yuanmou County, Yunnan Province, SW China. International Journal of Environmental Research and Public Health, 19(13), 8202. https://doi.org/10.3390/ijerph19138202