The Effect of Correlated Colour Temperature on Physiological, Emotional and Subjective Satisfaction in the Hygiene Area of a Space Station
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Set-Up and Scene
2.3. Experimental Procedure
2.4. Materials and Data Collection
- A T-Sens HR sensor was located on a chest strap;
- The electrode of the T-Sens GSR sensor was connected to the participant’s right hand: on the inside distal phalanges of the index and ring fingers, the skin surface was degreased with medical alcohol and coated with conductive paste to increase the conductive effect.
2.5. Statistical Analyses
3. Results
4. Discussion
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Effenhauser, L. Human Research Program: 2012 Fiscal Year Annual Report; NASA: Houston, TX, USA, 2012. [Google Scholar]
- De Vera, J.P.; Alawi, M.; Backhaus, T.; Baqué, M.; Billi, D.; Böttger, U.; Berger, T.; Bohmeier, M.; Cockell, C.; Demets, R.; et al. Limits of life and the habitability of Mars: The ESA space experiment BIOMEX on the ISS. Astrobiology 2019, 19, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, H.; Bai, Y.; Wu, B.; Wang, J.; Liu, X.; Jing, X. Research progress of emotion in manned space flight. Aerosp. Med. Med. Eng. 2012, 4, 302–306. (In Chinese) [Google Scholar]
- Messerschmid, E.; Bertrand, R. Space Stations: Systems and Utilization; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Novak, J.B. Summary of current issues regarding space flight habitability. Aviat. Space Environ. Med. 2000, 71 (Suppl. 9), A131–A132. [Google Scholar] [PubMed]
- Mahnke, F.H. Color, Environment, and Human Response: An Interdisciplinary Understanding of Color and its Use as a Beneficial Element in the Design of the Architectural Environment; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Crusan, J.C.; Craig, D.A.; Herrmann, N.B. NASA’s Deep Space Habitation Strategy. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–11. [Google Scholar]
- Clearwater, Y.A. Space station habitability research. Acta Astronaut. 1988, 17, 217–222. [Google Scholar] [CrossRef]
- Cohen, M.M. Overview: Human Factors Issues in Space Station Architecture. In Proceedings of the Seminar on Space Station Human Productivity, Moffett Field, CA, USA, 1 March 1985. [Google Scholar]
- Jiang, A.; Foing, B.H.; Schlacht, I.L.; Yao, X.; Cheung, V.; Rhodes, P.A. Colour schemes to reduce stress response in the hygiene area of a space station: A Delphi study. Appl. Ergon. 2022, 98, 103573. [Google Scholar] [CrossRef]
- Jiang, A.; Yao, X.; Hemingray, C.; Westland, S. Young people’s colour preference and the arousal level of small apartments. Color Res. Appl. 2022, 47, 783–795. [Google Scholar] [CrossRef]
- Helppie, M.A. Soviet Space Stations as Analogs; NASA: Washington, DC, USA, 1986. [Google Scholar]
- Connors, M.M.; Harrison, A.A.; Akins, F.R. Living Aloft: Human Requirements for Extended Spaceflight; NASA: Washington, DC, USA, 1985. [Google Scholar]
- Wise, B.K.; Wise, J.A. The Human Factors of Color in Environmental Design: A Critical Review; Human Factors Report; NASA: Moffett Field, CA, USA, 1988. [Google Scholar]
- Brainard, G.C.; Barger, L.K.; Soler, R.R.; Hanifin, J.P. The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight. Curr. Opin. Pulm. Med. 2016, 22, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Westland, S.; Cheung, V. Effect of intensity of short-wavelength light on electroencephalogram and subjective alertness. Light. Res. Technol. 2020, 52, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Knez, I. Effects of colour of light on nonvisual psychological processes. J. Environ. Psychol. 2001, 21, 201–208. [Google Scholar] [CrossRef]
- NASA-STD-3001; NASA Space Flight Human System Standard, Volume I: Crew Health. National Aeronautics and Space Administration Johnson Space Center: Houston, TX, USA, 2007.
- Gong, Y.; Jiang, A.; Wu, Z.; Yao, X.; Hemingray, C.; Westland, S.; Li, W. Effects of Intensity of Short-Wavelength Light on the EEG and Performance of Astronauts During Target Tracking. In Engineering Psychology and Cognitive Ergonomics, Proceedings of the International Conference on Human-Computer Interaction, Gothenburg, Sweden, 26 June 2022; Springer: Cham, Switzerland, 2022; pp. 279–289. [Google Scholar]
- Fucci, R.L.; Gardner, J.; Hanifin, J.P.; Jasser, S.; Byrne, B.; Gerner, E.; Rollag, M.; Brainard, G.C. Toward optimizing lighting as a countermeasure to sleep and circadian disruption in space flight. Acta Astronaut. 2005, 56, 1017–1024. [Google Scholar] [CrossRef]
- Boray, P.F.; Gifford, R.; Rosenblood, L. Effects of warm white, cool white and full-spectrum fluorescent lighting on simple cognitive performance, mood and ratings of others. J. Environ. Psychol. 1989, 9, 297–307. [Google Scholar] [CrossRef]
- Veitch, J.; Gifford, R.; Hine, D.W. Demand characteristics and full spectrum lighting effects on performance and mood. J. Environ. Psychol. 1991, 11, 87–95. [Google Scholar] [CrossRef]
- Knez, I.; Kers, C. Effects of indoor lighting, gender, and age on mood and cognitive performance. Environ. Behav. 2000, 32, 817–831. [Google Scholar] [CrossRef]
- Ferlazzo, F.; Piccardi, L.; Burattini, C.; Barbalace, M.; Giannini, A.; Bisegna, F. Effects of new light sources on task switching and mental rotation performance. J. Environ. Psychol. 2014, 39, 92–100. [Google Scholar] [CrossRef]
- Hawes, B.K.; Brunye, T.; Mahoney, C.R.; Sullivan, J.M.; Aall, C.D. Effects of four workplace lighting technologies on perception, cognition and affective state. Int. J. Ind. Ergon. 2012, 42, 122–128. [Google Scholar] [CrossRef]
- Schweitzer, M.; Gilpin, L.; Frampton, S. Healing Spaces: Elements of Environmental Design That Make an Impact on Health. J. Altern. Complement. Med. 2004, 10 (Suppl. 1), S71–S83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bommel, W.J.M.; van den Beld, G.J. Lighting for work: A review of visual and biological effects. Light. Res. Technol. 2004, 36, 255–266. [Google Scholar] [CrossRef]
- Veitch, J. Psychological Processes Influencing Lighting Quality. J. Illum. Eng. Soc. 2001, 30, 124–140. [Google Scholar] [CrossRef] [Green Version]
- Kakitsuba, N. Comfortable Indoor Lighting Conditions Evaluated from Psychological and Physiological Responses. LEUKOS 2016, 12, 163–172. [Google Scholar] [CrossRef]
- Kakitsuba, N. Comfortable indoor lighting conditions for LED lights evaluated from psychological and physiological responses. Appl. Ergon. 2020, 82, 102941. [Google Scholar] [CrossRef]
- Konstantzos, I.; Sadeghi, S.A.; Kim, M.; Xiong, J.; Tzempelikos, A. The effect of lighting environment on task performance in buildings—A review. Energy Build. 2020, 226, 110394. [Google Scholar] [CrossRef]
- Takakura, J.Y.; Nishimura, T.; Choi, D.; Egashira, Y.; Watanuki, S. Nonthermal sensory input and altered human thermoregulation: Effects of visual information depicting hot or cold environments. Int. J. Biometeorol. 2015, 59, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Cajochen, C.; Munch, M.; Kobialka, S.; Krauchi, K.; Steiner, R.; Oelhafen, P.; Orgul, S.; Wirz-Justice, A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 2005, 90, 1311–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasukouchi, A.; Yasukouchi, Y.; Ishibashi, K. Effects of color temperature of fluorescent lamps on body temperature regulation in a moderately cold environment. J. Physiol. Anthropol. Appl. Hum. Sci. 2000, 19, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Hallo, J. Informing good lighting in parks through visitors’ perceptions and experiences. Int. J. Sustain. Light. 2019, 21, 47–65. [Google Scholar] [CrossRef]
- Fernandez, P.; Giboreau, A.; Fontoynont, M. Relation Between Preferences of Luminous Environments and Situations Experienced by Users. A Hotel Case Study. In Proceedings of the 3rd International Conference on Appearance, Edinburgh, UK, 17–19 April 2012; pp. 177–180. [Google Scholar]
- Akbay, S.; Avci, A.N. Evaluation of Color Perception in Different Correlated Color Temperature of LED Lighting. GRID Arch. Plan. Des. J. 2018, 1, 139–162. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.H.; Arch, M. NASA Standard 3000, Human Systems Integration Standards (HSIS) Update. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2005, 49, 2018–2022. [Google Scholar] [CrossRef]
- Fleri, E.L., Jr.; Galliano, P.A.; Harrison, M.E.; Johnson, W.B.; Meyer, G.J. Proposal for a Zero-Gravity Toilet Facility for the Space Station; NASA: Washington, DC, USA, 1989. [Google Scholar]
- Kitmacher, G.H. Reference Guide to the International Space Station; NASA: Washington, DC, USA, 2006. [Google Scholar]
- Link, D.E.; Balistreri, S.F.; Gelmis, K. International Space Station USOS Waste and Hygiene Compartment Development. SAE Int. J. Aerosp. 2008, 1, 429–434. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Horne, J.A.; Östberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Allen, M.J.; Austen, D.P.; Jones, A.E.; Levene, J.R.; Miller, S. The Visual Standards for the Selection and Retention of Astronauts; NASA: Houston, TX, USA, 1970. [Google Scholar]
- Wang, H.M.; Yang, F.; Guo, S.J.; Han, L. Analysis of the frontier development of space life science research. Sci. Watch. 2015, 10, 37–51. (In Chinese) [Google Scholar]
- Chen, S.; Zhao, X.; Zhou, R.; Wang, L.; Tan, C. The effect of head down bed rest at 15d-6° on female individual emotions. Aerosp. Med. Med. Eng. 2011, 24, 253–258. (In Chinese) [Google Scholar]
- Borrego, M.A.; Zaruba, Y.G.; Broyan, J.L., Jr.; McKinley, M.K.; Baccus, S. Exploration Toilet Integration Challenges on the International Space Station. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- Kelly, A.C.; Uddin, L.Q.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Competition between functional brain networks mediates behavioral variability. Neuroimage 2008, 39, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liao, N.; Yan, P.; Shinomori, K. Influences of lighting time course and background on categorical colour constancy with RGB-LED light sources. Color Res. Appl. 2019, 44, 694–708. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063. [Google Scholar] [CrossRef]
- Liu, C.; Sun, L.; Jing, X.; Zhang, Y.; Meng, X.; Jia, C.; Gao, W. How correlated color temperature (CCT) affects undergraduates: A psychological and physiological evaluation. J. Build. Eng. 2022, 45, 103573. [Google Scholar] [CrossRef]
- Smolders, K.C.; de Kort, Y.A. Investigating daytime effects of correlated colour temperature on experiences, performance, and arousal. J. Environ. Psychol. 2017, 50, 80–93. [Google Scholar] [CrossRef]
- Kanbier, E.P. Exploring the Mediation of Emotional State on the Influence of Ambient Light on Eating Behaviour. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2021. [Google Scholar]
- Toftum, J.; Thorseth, A.; Markvart, J.; Logadóttir, Á. Occupant response to different correlated colour temperatures of white LED lighting. Build. Environ. 2018, 143, 258–268. [Google Scholar] [CrossRef]
- Chen, R.; Tsai, M.-C.; Tsay, Y.-S. Effect of Color Temperature and Illuminance on Psychology, Physiology, and Productivity: An Experimental Study. Energies 2022, 15, 4477. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, H.-W. The Effect of Dynamic Lighting for Working Shift People on Clinical Heart Rate Variability and Human Slow Wave Sleep. Appl. Sci. 2022, 12, 2284. [Google Scholar] [CrossRef]
- Huiberts, L.M.; Smolders, K.C.; de Kort, Y.A. Non-image forming effects of illuminance level: Exploring parallel effects on physiological arousal and task performance. Physiol. Behav. 2016, 164, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldham, M.A.; Ciraulo, D.A. Bright light therapy for depression: A review of its effects on chronobiology and the autonomic nervous system. Chronobiol. Int. 2014, 31, 305–319. [Google Scholar] [CrossRef]
- Zhang, R.; Campanella, C.; Aristizabal, S.; Jamrozik, A.; Zhao, J.; Porter, P.; Ly, S.; Bauer, B.A. Impacts of dynamic LED lighting on the well-being and experience of office occupants. Int. J. Environ. Res. Public Health 2020, 17, 7217. [Google Scholar] [CrossRef] [PubMed]
- Iskra-Golec, I.; Wazna, A.; Smith, L. Effects of blue-enriched light on the daily course of mood, sleepiness and light perception: A field experiment. Light. Res. Technol. 2012, 44, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Keis, O.; Helbig, H.; Streb, J.; Hille, K. Influence of blue-enriched classroom lighting on students’ cognitive performance. Trends Neurosci. Educ. 2014, 3, 86–92. [Google Scholar] [CrossRef]
- Smolders, K.; de Kort, Y.; Cluitmans, P. A higher illuminance induces alertness even during office hours: Findings on subjective measures, task performance and heart rate measures. Physiol. Behav. 2012, 107, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Smolders, K.C.; de Kort, Y.A. Bright light and mental fatigue: Effects on alertness, vitality, performance and physiological arousal. J. Environ. Psychol. 2014, 39, 77–91. [Google Scholar] [CrossRef]
- Caballero-Arce, C.; Vigil de Insausti, A.; Benlloch Marco, J. Lighting of Space Habitats: Influence of Color Temperature on a Crew’s Physical and Mental Health. In Proceedings of the 42nd International Conference on Environmental Systems, San Diego, CA, USA, 15–19 July 2012; p. 3615. [Google Scholar]
- Wu, B.; Wang, Y.; Wu, X.; Liu, D.; Xu, D.; Wang, F. On-orbit sleep problems of astronauts and countermeasures. Mil. Med. Res. 2018, 5, 17. [Google Scholar] [CrossRef]
- Clark, T.A. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station. In Proceedings of the Strategies in Light 2016 Conference, Santa Clara, CA, USA, 3 March 2016. [Google Scholar]
- Mills, P.R.; Tomkins, S.C.; Schlangen, L.J.M. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J. Circadian Rhythm. 2007, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Viola, A.U.; James, L.M.; Schlangen, L.J.M.; Dijk, D.-J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand. J. Work. Environ. Health 2008, 34, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Jiang, A.; Schlacht, I.; Foing, B.; Westland, S.; Hemingray, C.; Yao, X.; Guo, Y. Effects and Challenges of Operational Lighting Illuminance in Spacecraft on Human Visual Acuity. In Advances in Human Aspects of Transportation, Proceedings of the International Conference on Applied Human Factors and Ergonomics, New York, NY, USA, 25–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 582–588. [Google Scholar]
- Lu, S.; Jiang, A.; Schlacht, I.; Ono, A.; Foing, B.; Yao, X.; Westland, S.; Guo, Y. The Effect on Subjective Alertness and Fatigue of Three Colour Temperatures in the Spacecraft Crew Cabin. In Advances in Human Aspects of Transportation, Proceedings of the International Conference on Applied Human Factors and Ergonomics, New York, NY, USA, 25–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 632–639. [Google Scholar]
- Jiang, A.; Schlacht, I.L.; Yao, X.; Foing, B.; Fang, Z.; Westland, S.; Hemingray, C.; Yao, W. Space Habitat Astronautics: Multicolour Lighting Psychology in a 7-Day Simulated Habitat. Space Sci. Technol. 2022, 2022, 9782706. [Google Scholar] [CrossRef]
- Schlacht, I.L. Space Habitability. Integrating Human Factors into the Design Process to Enhance Habitability in Long Duration Missions. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2012. [Google Scholar]
- Shivers, C.H. NASA space safety standards and procedures for human-rating requirements. In Space Safety Regulations and Standards; Butterworth-Heinemann: Oxford, UK, 2010; pp. 3–15. [Google Scholar]
- Klaus, D.M. Functional Integration of Humans and Spacecraft Through Physics, Physiology, Safety and Operability. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–7. [Google Scholar]
- Meirhaeghe, N.; Bayet, V.; Paubel, P.-V.; Mélan, C. Selective facilitation of egocentric mental transformations under short-term microgravity. Acta Astronaut. 2020, 170, 375–385. [Google Scholar] [CrossRef]
- Chellappa, S.L.; Viola, A.U.; Schmidt, C.; Bachmann, V.; Gabel, V.; Maire, M.; Reichert, C.F.; Valomon, A.; Götz, T.; Landolt, H.P.; et al. Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3. J. Clin. Endocrinol. Metab. 2012, 97, E433–E437. [Google Scholar] [CrossRef] [Green Version]
- Chellappa, S.; Steiner, R.; Blattner, P.; Oelhafen, P.; Götz, T.; Cajochen, C. Non-Visual Effects of Light on Melatonin, Alertness and Cognitive Performance: Can Blue-Enriched Light Keep Us Alert? PLoS ONE 2011, 6, e16429. [Google Scholar] [CrossRef]
- Vienot, F.; Durand, M.L.; Mahler, E. Kruithof’s rule revisited using LED illumination. J. Mod. Opt. 2009, 56, 1433–1446. [Google Scholar] [CrossRef]
Nominal CCT (K) | Duv | Illuminance (Lux) | |
---|---|---|---|
1 | 2700 | 0.0013 | 521 |
2 | 3000 | −0.0010 | 558 |
3 | 3600 | −0.0030 | 552 |
4 | 5000 | 0.0005 | 563 |
5 | 6300 | 0.0037 | 567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, A.; Yao, X.; Westland, S.; Hemingray, C.; Foing, B.; Lin, J. The Effect of Correlated Colour Temperature on Physiological, Emotional and Subjective Satisfaction in the Hygiene Area of a Space Station. Int. J. Environ. Res. Public Health 2022, 19, 9090. https://doi.org/10.3390/ijerph19159090
Jiang A, Yao X, Westland S, Hemingray C, Foing B, Lin J. The Effect of Correlated Colour Temperature on Physiological, Emotional and Subjective Satisfaction in the Hygiene Area of a Space Station. International Journal of Environmental Research and Public Health. 2022; 19(15):9090. https://doi.org/10.3390/ijerph19159090
Chicago/Turabian StyleJiang, Ao, Xiang Yao, Stephen Westland, Caroline Hemingray, Bernard Foing, and Jing Lin. 2022. "The Effect of Correlated Colour Temperature on Physiological, Emotional and Subjective Satisfaction in the Hygiene Area of a Space Station" International Journal of Environmental Research and Public Health 19, no. 15: 9090. https://doi.org/10.3390/ijerph19159090
APA StyleJiang, A., Yao, X., Westland, S., Hemingray, C., Foing, B., & Lin, J. (2022). The Effect of Correlated Colour Temperature on Physiological, Emotional and Subjective Satisfaction in the Hygiene Area of a Space Station. International Journal of Environmental Research and Public Health, 19(15), 9090. https://doi.org/10.3390/ijerph19159090