Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. TLS-Aided Road Erosion Measurement
2.3. Road Erosion Modelling
2.3.1. The Climate File
2.3.2. The Soil File
2.3.3. The Terrain File
2.3.4. The Management Input
2.4. Data Analysis
3. Results
3.1. Predicted Total Soil Loss from Road Segments
3.2. Predicted Detailed Soil Loss along Road Segments
3.3. Factors That Influencing Model Performance
4. Discussion
4.1. The Efficiency of WEPP for Total Road Segment Soil Loss Prediction
4.2. The Efficiency of WEPP for Detailed Soil Loss Prediction along Roads
4.3. Implication and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarolli, P. Humans and the Earth’s surface. Earth Surf. Process Landf. 2016, 41, 2301–2304. [Google Scholar] [CrossRef]
- Wemple, B.C.; Clark, G.E.; Ross, D.S.; Rizzo, D.M. Identifying the spatial pattern and importance of hydro-geomorphic drainage impairments on unpaved roads in the northeastern USA. Earth Surf. Process Landf. 2017, 42, 1652–1665. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W. Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand. J. Hydrol. 1997, 196, 204–229. [Google Scholar] [CrossRef]
- Cao, L.X.; Wang, Y.; Liu, C. Study of unpaved road surface erosion based on terrestrial laser scanning. CATENA 2021, 199, 105091. [Google Scholar] [CrossRef]
- Gucinski, H.; Furniss, M.J.; Ziemer, R.R.; Brookes, M.H. Forest roads: A synthesis of scientific information. In General Technical Report PNWGTR-509; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2001; p. 103. [Google Scholar]
- Ramos-scharrón, C.E. Impacts of off-road vehicle tracks on runoff, erosion and sediment delivery—A combined field and modeling approach. Environ. Model Softw. 2021, 136, 104957. [Google Scholar] [CrossRef]
- Motha, J.A.; Wallbrink, P.J.; Hairsine, P.B.; Grayson, R.B. Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia. J. Hydrol. 2004, 286, 1–18. [Google Scholar] [CrossRef]
- Dangle, C.L.; Bolding, M.C.; Aust, W.M.; Barrett, S.M.; Schilling, E.B. Best management practices influence modeled erosion rates at forest haul road stream crossings in Virginia. J. Am. Water Resour. Assoc. 2019, 55, 1169–1182. [Google Scholar] [CrossRef]
- Yang, B.; Wang, W.L.; Guo, M.M.; Guo, W.Z.; Wang, W.X.; Kang, H.L.; Zhao, M.; Chen, Z.X. Soil erosion of unpaved loess roads subjected to an extreme rainstorm event: A case study of the Jiuyuangou watershed on the Loess Plateau, China. J. Mt. Sci. 2019, 16, 1396–1407. [Google Scholar] [CrossRef]
- Cole, R.P.; Bladon, K.D.; Wagenbrenner, J.W.; Coe, B.R. Hillslope sediment production after wildfire and post-fire forest management in northern California. Hydrol. Process. 2020, 42, 5242–5259. [Google Scholar] [CrossRef]
- Cao, L.X.; Zhang, K.L.; Dai, H.L.; Liang, Y. Modeling interrill erosion on unpaved roads in the loess plateau of China. Land Degrad. Dev. 2015, 26, 825–832. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Yuan, M.; Yang, M.; Deng, J. Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau. Earth Surf. Process Landf. 2021, 46, 1713–1724. [Google Scholar] [CrossRef]
- Benda, L.; James, C.; Miller, D.; Andras, K. Road erosion and delivery index (READI): A model for evaluating unpaved road erosion and stream sediment delivery. J. Am. Water Resour. Assoc. 2019, 55, 1688–1752. [Google Scholar] [CrossRef]
- Guo, W.; Bai, Y.; Cui, Z.; Wang, W.; Li, J.; Su, Z. The impact of concentrated flow and slope on unpaved loess road erosion on the Chinese Loess Plateau. Land Degrad. Dev. 2021, 32, 914–925. [Google Scholar] [CrossRef]
- Elliot, W.J.; Hall, D.E. Disturbed WEPP Model 2.0, Version 2014.04.14; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Moscow, ID, USA, 2010.
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains. In Agricultural Handbook; US Government Print Office: Washington, DC, USA, 1965; Volume 282. [Google Scholar]
- Sheridan, G.J.; Noske, P.J.; Whipp, R.K.; Wijesinghe, N. The effect of traffic volume and road water-status on water quality from forest roads. Hydrol. Process. 2006, 20, 1683–1699. [Google Scholar] [CrossRef]
- Technical Documentation for SEDMODL, Version 2; Boise Cascade Corporation: Boise, ID, USA, 2003; 42p.
- Dubé, K.; Megahan, W.; McCalmon, M. Washington Road Surface Erosion Model (WARSEM) Manual; WA. Department of Natural Resources: Olympia, WA, USA, 2004.
- Anderson, D.M.; MacDonald, L.H. Modeling road surface sediment production using a vector geographic information system. Earth Surf. Process Landf. 1998, 23, 95–107. [Google Scholar] [CrossRef]
- Fu, B.; Newham, L.T.H.; Field, J.B. Modeling erosion and sediment delivery from unsealed roads in southeast Australia. Math Comput. Simulat. 2008, 79, 2679–2688. [Google Scholar] [CrossRef]
- Cao, L.X.; Zhang, K.L.; Dai, H.L.; Guo, Z.L. Estimation of sediment yield during expressway construction period. J. Hwy. Trans. Res Dev. 2011, 32, 292–297. (In Chinese) [Google Scholar]
- Parsakhoo, A.; Lotfalian, M.; Kavian, A.; Hosseini, S.A. Prediction of the soil erosion in a forest and sediment yield from road network through GIS and SEDMODL. Int. J. Sediment Res. 2014, 29, 118–125. [Google Scholar] [CrossRef]
- Akay, A.E.; Erdas, O.; Reis, M.; Yuksel, A. Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques. Earth Surf. Process Landf. 2008, 43, 687–695. [Google Scholar] [CrossRef]
- Zhang, X.C. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data. Soil Sci. Soc. Am. J. 2017, 81, 179–188. [Google Scholar] [CrossRef]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finker, S.C. A process-based soil erosion model for USDA-water erosion prediction project technology. Trans. ASAE. 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Dun, S.; Wu, J.Q.; Elliot, W.J.; Robichaud, P.R.; Flanagan, D.C.; Frankenberger, J.R.; Brown, R.E.; Xu, A.C. Adapting the Water Erosion Prediciton Project (WEPP) model for forest applications. J. Hydrol. 2009, 366, 46–54. [Google Scholar] [CrossRef]
- Kinnell, P.I.A.; Wang, J.; Zheng, F. Comparison of the abilities of WEPP and the USLE-M to predict event soil loss on steep loessal slopes in China. CATENA 2018, 171, 99–106. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain. Environ. Res. 2018, 165, 279–285. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, X.C.; Wang, J.; Flanagan, D.C. Assessing applicability of the WEPP hillslope model to steep landscapes in the northern Loess Plateau of China. Soil Tillage Res. 2020, 197, 104492. [Google Scholar] [CrossRef]
- Revuelta-Acosta, J.D.; Flanagan, D.C.; Engel, B.A.; King, K.W. Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge. Agr. Water Manag. 2021, 244, 106597. [Google Scholar] [CrossRef]
- Elliot, W.J.; Foltz, R.B.; Luce, C.H. Validation of the Water Erosion Prediction Project (WEPP) model for low-volume forest roads. In Proceedings of the 6th International Conference on Low-volume Roads, Washington, DC, USA, 25–29 June 1995; pp. 178–186. [Google Scholar]
- Elliot, W.J. Erosion processes and prediction with WEPP technology in forests in the Northwestern U.S. Trans. ASABE 2013, 56, 563–579. [Google Scholar] [CrossRef]
- Brooks, E.S.; Boll, J.; Elliot, W.J.; Dechert, T. Global Positioning System/GIS-based approach for modeling erosion from large road networks. J Hydrol.Eng. 2006, 11, 418–426. [Google Scholar] [CrossRef]
- Brown, K.R.; Aust, W.M.; McGuire, K.J. Sediment delivery from bare and graveled forest road stream crossing approaches in the Virginia Piedmont. Forest Ecol. Manage. 2013, 310, 836–846. [Google Scholar] [CrossRef]
- Guerra, A.J.T.; Silva, S. Predicting soil loss and runoff from forest roads and seasonal cropping systems in Brazil using WEPP. In Handbook of Erosion Modeling; Morgan, R.P.C., Nearing, M.A., Eds.; Blackwell: Oxford, UK, 2011; pp. 186–194. [Google Scholar] [CrossRef]
- Vinci, A.; Todisco, F.; Mannocchi, F. Calibration of manual measurements of rills using Terrestrial Laser Scanning. CATENA 2016, 140, 164–168. [Google Scholar] [CrossRef]
- Renschler, C.S.; Zhang, H. Long-term, process-based, continuous simulations for a cluster of six smaller, nested rangeland watersheds near Tombstone, AZ (USA): Establishing a baseline for event-based runoff and sediment yields. Sci. Total Environ. 2020, 717, 137089. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.M. Soil erosion, soil conservation and ecosystems in the granitic regions of South China. Soil Water Conser. China. 1985, 12, 6–10. (In Chinese) [Google Scholar]
- Nicks, A.D.; Lane, L.J.; Gander, G.A. Weather generator. In USDA-Water Erosion Prediction Project, Hillslope Profile and Watershed Model Documentation, NSERL Report 10; Flanagan, D.C., Nearing, M.A., Eds.; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part 1—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nearing, M.A.; Nicks, A.D. Evaluation of the Water Erosion Prediction Project (WEPP) model for hillslopes. NATO ASI Ser. 1997, 55, 43–53. [Google Scholar] [CrossRef]
- Elliot, W.J.; Elliot, A.V.; Wu, Q.; Laflen, J.M. Validation of WEPP model with rill erosion plot data. In Proceedings of the American Society of Agricultural Engineers International Winter Meeting, Chicago, IL, USA, 17–20 December 1991. [Google Scholar]
- Foster, G.R.; Flanagan, D.C.; Nearing, M.A.; Lane, L.J.; Risse, L.M.; Finkner, S.C. Hillslope erosion component. In USDA-Water Erosion Prediction Project, Hillslope Profile and Watershed Model Documentation, NSERL Report 10; Flanagan, D.C., Nearing, M.A., Eds.; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. [Google Scholar]
- Zhang, J.X.; Wu, J.Q.; Chang, K.; Elliot, W.J.; Dun, S. Effects of DEM source and resolution on WEPP hydrologic and erosion simulation: A case study of two forest watersheds in northern Idaho. Trans. ASABE. 2009, 52, 447–457. [Google Scholar] [CrossRef]
- Cao, L.X.; Zhang, K.L.; Dai, H.L.; Guo, Z.L. Modeling soil detachment on unpaved road surfaces on the Loess Plateau. Trans. ASABE 2011, 54, 1377–1384. [Google Scholar] [CrossRef]
CODE | Length (m) | Slope (%) | RT * | UA * (m2/m) | Erosion (t/a) | CODE | Length (m) | Slope (%) | RT * | UA * (m2/m) | Erosion (t/a) |
---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 340.0 | 13.9 | 1.43 | 34.41 | 58.49 | R11 | 91.3 | 1.5 | 1.50 | 13.14 | 0.14 |
R2 | 45.2 | 10.4 | 1.03 | 6.64 | 3.93 | R12 | 89.0 | 5.0 | 1.37 | 22.47 | 0.53 |
R3 | 72.4 | 6.3 | 1.11 | 19.34 | 8.96 | R13 | 85.1 | 3.8 | 2.14 | 11.75 | 0.64 |
R4 | 208.5 | 14.8 | 1.21 | 35.97 | 17.93 | R14 | 159.3 | 9.3 | 1.27 | 7.53 | 2.57 |
R5 | 103.4 | 17.4 | 1.14 | 117.02 | 21.31 | R15 | 67.9 | 4.0 | 1.07 | 19.15 | 0.23 |
R6 | 195.0 | 9.3 | 1.41 | 46.67 | 44.65 | R16 | 389.5 | 12.9 | 1.67 | 28.50 | 21.25 |
R7 | 101.1 | 8.3 | 1.17 | 44.51 | 7.98 | R17 | 73.8 | 6.5 | 1.03 | 16.26 | 0.15 |
R8 | 300.5 | 10.7 | 1.26 | 35.27 | 12.15 | R18 | 50.3 | 3.5 | 1.12 | 11.93 | 0.08 |
R9 | 213.3 | 9.0 | 1.18 | 30.47 | 48.02 | R19 | 251.1 | 10.5 | 1.97 | 9.16 | 11.90 |
R10 | 106.4 | 6.9 | 1.27 | 16.92 | 0.19 | R20 | 271.4 | 12.3 | 1.21 | 25.06 | 38.82 |
Input Soil Parameters | Values |
---|---|
Albedo of the bare dry surface soil | 0.6 |
Initial saturation level of the soil profile porosity (m/m) | 0.5 |
Baseline interrill erodibility parameter (kg·s/m4) | 500,000 |
Baseline rill erodibility parameter (s/m) | 0.0001 |
Baseline critical shear parameter (N/m2) | 2 |
Effective hydraulic conductivity of surface soil (mm/h) | 3.8 |
Depth from soil surface to bottom of soil layer (mm) | 200 |
CODE | Equation | R2 | SIG | N | CODE | Equation | R2 | SIG | N |
---|---|---|---|---|---|---|---|---|---|
R1 | Y = 1.555x − 1.044 | 0.507 | 0.000 | 67 | R11 | Y = 0.892x − 0.182 | 0.523 | 0.001 | 18 |
R2 | Y = 0.042x3.824 | 0.926 | 0.000 | 9 | R12 | Y = 0.468x + 0.086 | 0.506 | 0.006 | 13 |
R3 | Y = 0.297x2.665 | 0.782 | 0.000 | 13 | R13 | Y = 0.797x + 0.526 | 0.053 | 0.472 | 12 |
R4 | Y = 0.955x0.856 | 0.283 | 0.000 | 40 | R14 | Y = 0.441x + 0.991 | 0.514 | 0.000 | 25 |
R5 | Y = 0.270x + 16.44 | 0.008 | 0.712 | 20 | R15 | Y = 0.722x − 0.666 | 0.746 | 0.006 | 8 |
R6 | Y = 6.934x − 41.49 | 0.278 | 0.039 | 36 | R16 | Y = 0.450x1.015 | 0.645 | 0.000 | 76 |
R7 | Y = 2.657x + 3.68 | 0.312 | 0.013 | 19 | R17 | Y = 3.022 − 0.295x | 0.106 | 0.675 | 4 |
R8 | Y = 0.867x0.805 | 0.419 | 0.000 | 58 | R18 | Y = 2.095x − 1.450 | 0.688 | 0.041 | 6 |
R9 | Y = 7.319x − 42.51 | 0.591 | 0.000 | 42 | R19 | Y = 1.098x − 3.369 | 0.068 | 0.131 | 35 |
R10 | Y = 1.46 − 0.140x | 0.125 | 0.235 | 13 | R20 | Y = 1.841x − 1.257 | 0.202 | 0.001 | 51 |
Length | Slope | Road Tortuosity | Upstream Area | Unit-UA * | |
---|---|---|---|---|---|
Pearson R | 0.034 | −0.331 | 0.304 | −0.340 | −0.506 * |
SIG | 0.886 | 0.154 | 0.193 | 0.142 | 0.023 |
N | 20 | 20 | 20 | 20 | 20 |
Code | Distance | Slope | N | Code | Distance | Slope | N | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson R | SIG | Pearson R | SIG | Pearson R | SIG | Pearson R | SIG | ||||
R1 | −0.015 | 0.906 | −0.322 ** | 0.008 | 67 | R11 | 0.325 | 0.189 | −0.073 | 0.780 | 18 |
R2 | −0.761 * | 0.017 | 0.003 | 0.995 | 9 | R12 | −0.354 | 0.235 | 0.373 | 0.233 | 13 |
R3 | −0.705 ** | 0.007 | −0.173 | 0.590 | 13 | R13 | −0.653 * | 0.021 | 0.243 | 0.447 | 12 |
R4 | 0.144 | 0.374 | −0.204 | 0.213 | 40 | R14 | −0.331 | 0.099 | 0.689 ** | 0.000 | 26 |
R5 | 0.277 | 0.224 | 0.019 | 0.937 | 21 | R15 | 0.118 | 0.780 | 0.475 | 0.234 | 8 |
R6 | −0.466 ** | 0.004 | 0.076 | 0.660 | 36 | R16 | 0.451 ** | 0.000 | 0.035 | 0.763 | 76 |
R7 | −0.025 | 0.919 | −0.290 | 0.243 | 19 | R17 | −0.617 | 0.383 | 0.475 | 0.525 | 4 |
R8 | −0.119 | 0.370 | 0.369 ** | 0.004 | 59 | R18 | −0.499 | 0.314 | 0.632 | 0.178 | 6 |
R9 | −0.426 ** | 0.005 | −0.368 * | 0.016 | 42 | R19 | 0.220 | 0.204 | 0.053 | 0.761 | 35 |
R10 | −0.864 ** | 0.000 | 0.843 ** | 0.000 | 13 | R20 | 0.034 | 0.815 | −0.232 | 0.109 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, W.; Zhang, T.; Zhang, Y.; Cao, L. Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion. Int. J. Environ. Res. Public Health 2022, 19, 9213. https://doi.org/10.3390/ijerph19159213
Wang Y, He W, Zhang T, Zhang Y, Cao L. Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion. International Journal of Environmental Research and Public Health. 2022; 19(15):9213. https://doi.org/10.3390/ijerph19159213
Chicago/Turabian StyleWang, Yi, Wei He, Ting Zhang, Yani Zhang, and Longxi Cao. 2022. "Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion" International Journal of Environmental Research and Public Health 19, no. 15: 9213. https://doi.org/10.3390/ijerph19159213
APA StyleWang, Y., He, W., Zhang, T., Zhang, Y., & Cao, L. (2022). Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion. International Journal of Environmental Research and Public Health, 19(15), 9213. https://doi.org/10.3390/ijerph19159213