Regional Potential Wind Erosion Simulation Using Different Models in the Agro-Pastoral Ecotone of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Wind Erosion Models
2.2.1. The NWESMC Model
2.2.2. The RWEQ Model
2.2.3. The WEPS Model
2.2.4. The IWEMS Model
2.3. Data Preparation
3. Results
3.1. Potential Wind Erosion for Different Hazards
3.2. Spatial Variation of Potential Wind Erosion
3.3. Temporal Distribution of Potential Wind Erosion
3.4. Potential Wind Erosion under Different Land Use
4. Discussion
4.1. Models’ Verification and Applicability
4.2. Factors Impacting on Regional Potential Wind Erosion Modeling
4.3. Limitations and Future Perspectives
5. Conclusions
- The potential wind erosion values predicted by the four models were correlated with the observed wind erosion collected from published documents, but the correlation coefficients between the predicted and the measured wind erosion data for the four models vary greatly;
- The values of average potential wind erosion were different while the spatial pattern of potential wind erosion was similar for different wind erosion models. Most areas of APEC suffered from weak and slight hazards of wind erosion, while severe and catastrophic hazards of wind erosion mainly occurred in the Horqin, Mu Us, and Hunshan Dake sands;
- The temporal trends of annual potential wind erosion were similar and the total potential wind erosion decreased significantly from 2000 to 2012;
- The average potential wind erosion of grassland, farmland, and sand land calculated by NWESMC, RWEQ, WEPS, and IWEMS showed similar successive increases.
- Wind speed, soil moisture, and vegetation coverage were the dominant factors affecting regional wind erosion estimation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webb, N.; Herrick, J.E.; Van Zee, J.W.; Courtright, E.M.; Hugenholtz, C.H.; Zobeck, T.M.; Okin, G.S.; Barchyn, T.E.; Billings, B.J.; Boyd, R.; et al. The national wind erosion research network: Building a standardized long-term data resource for aeolian research, modeling and land management. Aeolian Res. 2016, 22, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Bullard, J.E.; Baddock, M.; Bradwell, T.; Crusius, J.; Darlington, E.; Gaiero, D.; Gasso, S.; Gisladottir, G.; Hodgkins, R.; Mcculloch, R.; et al. High-Latitude Dust in the Earth System. Rev. Geophys. 2016, 54, 447–485. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Hu, G.; Qian, G.; Lu, J.; Zhang, Z.; Luo, W.; Lyu, P. High-altitude aeolian research on the Tibetan Plateau. Rev. Geophys. 2017, 55, 864–901. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Leys, J.F.; Waters, C.M.; Orgill, S.; Eyres, M.J. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environ. Sci. Policy 2018, 93, 43–52. [Google Scholar] [CrossRef]
- Chappell, A.; Lee, J.A.; Baddock, M.C.; Gill, T.E.; Herrick, J.E.; Leys, J.; Telfer, M.; Marticorena, B.; Petherick, L.; Schepanski, K.; et al. A clarion call for aeolian research to engage with global land degradation and climate change. Aeolian Res. 2018, 32, A1–A3. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.E.; Zobeck, T.M. The Wolfforth field experiment: A wind erosion study. Soil Sci. 1996, 161, 616–632. [Google Scholar] [CrossRef]
- Webb, N.P.; Chappell, A.; Edwards, B.L.; McCord, S.E.; Van Zee, J.W.; Cooper, B.F.; Courtright, E.M.; Duniway, M.C.; Sharratt, B.S.; Tedela, N.; et al. Reducing sampling uncertainty in aeolian research to improve change detection. J. Geophys. Res. Earth Surf. 2019, 124, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zuo, H.; Jia, X. Full particle size distribution characteristics of land surface sediment and their effect on wind erosion resistance in arid and semiarid regions of Northwest China. Geomorphology 2021, 372, 107458. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Barnes, M.C.; Strack, J.E. Using rare earth elements to trace wind-driven dispersion of sediments from a point source. Aeolian Res. 2018, 32, 35–41. [Google Scholar] [CrossRef]
- Zhang, C.L.; Song, C.Q.; Wang, Z.T.; Zou, X.Y.; Wang, X.S. Review and Prospect of the Study on Soil Wind Erosion Process. Adv. Earth Sci. 2018, 33, 27–41. [Google Scholar]
- Fryrear, D.W.; Saleh, A.; Bilbro, J.D.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. Revised Wind Erosion Equation (RWEQ), Technical Bulletin. 1; Wind Erosion and Water Conservation Research Unit, USDA-ARS, Southern Plains Area Cropping Systems Research Laboratory: Lubbcok, TX, USA, 1998.
- Shao, Y.P. Physics and Modelling of Wind Erosion; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Zou, X.Y.; Zhang, C.L.; Cheng, H.; Kang, L.Q.; Wu, Y.Q. Cogitation on developing a dynamic model of soil wind erosion. Sci. China Earth Sci. 2015, 58, 462–473. [Google Scholar] [CrossRef]
- Webb, N.P.; Mcgowan, H.A. Approaches to modelling land erodibility by wind. Prog. Phys. Geogr. Earth Environ. 2009, 33, 587–613. [Google Scholar] [CrossRef]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A review of wind erosion models: Data requirements, processes, and validity. Catena 2020, 187, 104388. [Google Scholar] [CrossRef]
- Woodruff, N.P.; Siddoway, F.H. A wind erosion equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Hagen, L.J. Technical Documentation; Wind Erosion Prediction System (WEPS)-Wind Erosion Research Unit: Manhattan, NY, USA, 1996.
- Gregory, J.M.; Wilson, G.R.; Singh, U.B.; Darwish, M.M. TEAM: Integrated, process-based wind-erosion model. Environ. Model. Softw. 2004, 19, 205–215. [Google Scholar] [CrossRef]
- Potter, K.N.; Williams, J.R.; Larney, F.J.; Bullock, M.S. Evaluation of EPIC’s wind erosion submodel using data from southern Alberta. Can. J. Soil Sci. 1998, 78, 485–492. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Zobeck, T.M.; Potter, K.N.; Stout, J.E.; Popham, T.W. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events. Environ. Model. Softw. 2004, 19, 191–198. [Google Scholar] [CrossRef]
- Funk, R.; Reuter, H.I.; Hoffffmann, C.; Engel, W.; Öttl, D. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Process. Landf. 2008, 33, 1851–1863. [Google Scholar] [CrossRef]
- Buschiazzo, D.E.; Zobeck, T.M. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surf. Process. Landf. 2008, 33, 1839–1850. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.; Feng, G.; Lei, J. Evaluation of two empirical wind erosion models in arid and semi-arid regions of China and the USA. Environ. Model. Softw. 2017, 91, 28–46. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.Y.; Guo, Z.L.; Chang, C.P.; Wang, R.D.; Zhang, Z.D. Validation of RWEQ model in the Bashang Area, Hebei, China. J. Desert Res. 2018, 38, 1180–1192. [Google Scholar]
- Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agric. Ecosyst. Environ. 2000, 82, 247–259. [Google Scholar] [CrossRef]
- Feng, G.; Sharratt, B. Scaling from field to region for wind erosion prediction using the Wind Erosion Prediction System and geographical information systems. J. Soil Water Conserv. 2007, 62, 321–328. [Google Scholar]
- Borrelli, P.; Lugato, E.; Montanarella, L.; Panagos, P. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. Land Degrad. Dev. 2017, 28, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Tatarko, J.; Wagner, L.; Fox, F. The wind erosion prediction system and its use in conservation planning. Bridg. Discip. Synth. Soil Plant Process. 2019, 8, 71–101. [Google Scholar]
- Shao, Y.P.; Raupach, M.R.; Leys, J.F. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Soil Res. 1996, 34, 309–342. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.Y.; Zhang, C.L.; Zou, X.Y.; Wu, Y.Q.; Wei, X.H.; Huang, Y.M.; Shi, S.; Li, D.H. Benefits of Beijing-Tianjin Sandstorm Source Control Project, 2nd ed.; Science Press: Beijing, China, 2012. [Google Scholar]
- Edwards, B.L.; Webb, N.P.; Galloza, M.S. Parameterizing an aeolian erosion model for rangelands. Aeolian Res. 2022, 54, 100769. [Google Scholar] [CrossRef]
- Guo, Z.L.; Zobeck, T.M.; Zhang, K.; Li, F. Estimating potential wind erosion of agricultural lands in northern China using the Revised Wind Erosion Equation and geographic information systems. J. Soil Water Conserv. 2013, 68, 13–21. [Google Scholar] [CrossRef]
- Du, H.; Xue, X.; Wang, T.; Deng, X. Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res. 2015, 17, 193–204. [Google Scholar] [CrossRef]
- Webb, N.P.; Kachergis, E.; Miller, S.W.; Mccord, S.E.; Zwicke, G.; Bestelmeyer, B.T.; Brown, J.R.; Chappell, A.; Edwards, B.L.; Herrick, J.E.; et al. Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecol. Indic. 2019, 110, 105881. [Google Scholar] [CrossRef]
- O’Neal, M.R.; Nearing, M.A.; Vining, R.C.; Southworth, J.; Pfeifer, R.A. Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 2005, 61, 165–184. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Wei, Z.G.; Zheng, Z.Y.; Dong, W.J. Surface Temperature and Precipitation Variation of Pastoral Transitional Zone in Northern China during 1964–2013. Plateau Meteorol. 2016, 35, 979–988. [Google Scholar]
- Li, G.Z.; Zou, X.Y.; Cheng, H. Method of wind erosion sampling survey in China. Sci. Soil Water Conserv. 2013, 11, 17. [Google Scholar]
- Fryrear, D.W.; Bilbro, J.D.; Saleh, A.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. RWEQ: Improved Wind Erosion Technology. J. Soil Water Conserv. 2000, 55, 183–189. [Google Scholar]
- Gong, G.L.; Liu, J.Y.; Shao, Q.Q. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the Revised Wind Erosion Equation. Prog. Geogr. 2014, 33, 825–834. [Google Scholar]
- Shen, L.; Tian, M.R.; Gao, J.X. Analysis on wind erosion and main factors in desertification control ecological function area of Hunshandake Using the Revised Wind Erosion Equation Model. Res. Soil Water Conserv. 2016, 23, 90–97. [Google Scholar]
- Guo, Z.L. Improvement and Application of RWEQ Model in North China; Beijing Normal University: Beijing, China, 2012. [Google Scholar]
- Du, H.; Wang, T.; Xue, X. Potential wind erosion rate response to climate and landuse changes in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River, China, 1986–2013. Earth Surf. Process. Landf. 2017, 42, 1923–1937. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Cao, W.; Harris, W.; Li, Y.; Chi, W.; Wang, S. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Hagen, L.J. Evaluation of the wind erosion prediction system (WEPS) erosion submodel on cropland fields. Environ. Model. Softw. 2004, 19, 171–176. [Google Scholar] [CrossRef]
- Wagner, L.E. A history of wind erosion prediction models in the United States Department of Agriculture: The Wind Erosion Prediction System (WEPS). Aeolian Res. 2013, 10, 9–24. [Google Scholar] [CrossRef]
- Hagen, L.J. WEPS Technical Documentation: Erosion Submodel; SWCS WEPP/WEPS Symposium[R/OL]: Ankeny, IA, USA; USDA-ARS, Wind Erosion Research Unit: Manhattan, KS, USA, 2006.
- Gao, J.; Wagner, L.E.; Fox, F.; Chung, S.H.; Vaughan, J.K.; Lamb, B.K. Spatial application of WEPS for estimating wind erosion in the Pacific Northwest. Trans. ASABE 2013, 56, 613–624. [Google Scholar]
- Chen, L.; Zhao, H.; Han, B.; Bai, Z. Combined use of WEPS and Models-3/CMAQ for simulating wind erosion source emission and its environmental impact. Sci. Total Environ. 2014, 466, 762–769. [Google Scholar] [CrossRef]
- Tatarko, J.; Van Donk, S.J.; Ascough, J.C., II; Walker, D.G. Application of the WEPS and SWEEP models to non-agricultural disturbed lands. Heliyon 2016, 2, e00215. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Sharratt, B.; Lei, J. Wind erosion and dust emissions in central Asia: Spatiotemporal simulations in a typical dust year. Earth Surf. Process. Landf. 2018, 44, 521–534. [Google Scholar] [CrossRef]
- Pi, H.; Feng, G.; Sharratt, B.S. Performance of the SWEEP model affected by estimates of threshold friction velocity. Trans. ASABE 2014, 57, 1675–1685. [Google Scholar]
- Lu, H.; Shao, Y. Toward quantitative prediction of dust storms: An integrated wind erosion modeling system and its applications. Environ. Environ. Model. Softw. 2001, 16, 233–249. [Google Scholar] [CrossRef]
- Shao, Y.P. A model for mineral dust emission. J. Geophys. Res. Earth Surf. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Du, H.; Wang, T.; Xue, X.; Li, S. Modelling of sand/dust emission in Northern China from 2001 to 2014. Geoderma 2018, 330, 162–176. [Google Scholar] [CrossRef]
- Song, H.; Zhang, K.; Piao, S.; Liu, L.; Wang, Y.P.; Chen, Y.; Yang, Z.; Zhu, L.; Wan, S. Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmos. Environ. 2019, 213, 585–596. [Google Scholar] [CrossRef]
- Owen, R.P. Saltation of uniform grains in air. J. Fluid Mech. 1964, 20, 225–242. [Google Scholar] [CrossRef]
- Guang, J.; Xue, Y. SRAP AOD Dataset of Asia (2002–2011); National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. Standards for Classification and Gradation of Soil Erosion; China Water Power Press: Beijing, China, 2007. [Google Scholar]
- Li, J.; Okin, G.S.; Tatarko, J.; Webb, N.P.; Herrick, J.E. Consistency of wind erosion assessments across land use and land cover types: A critical analysis. Aeolian Res. 2014, 15, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Li, J.; Chang, C.; Zou, X.; Wang, R.; Zhou, N.; Li, Q. Logistic growth models for describing the fetch effect of aeolian sand transport. Soil Tillage Res. 2019, 194, 104306. [Google Scholar] [CrossRef]
- Chi, W.F.; Bai, W.K.; Liu, Z.J.; Dang, X.H.; Kuang, W.H. Wind erosion in Inner Mongolia Plateau using the revised wind erosion equation. Ecol. Environ. Sci. 2018, 27, 1024–1033. [Google Scholar]
- Zhang, H.B.; Gao, Y.; Cui, Y.Z. Evaluation of the effects of wind erosion control projects in typical sandy arean based on RWEQ model. Acta Sci. Nat. Univ. Pelinensis 2019, 55, 342–350. [Google Scholar]
- Yang, G.C.; Sun, R.H.; Jing, Y.C.; Xiong, M.Q.; Li, J.L.; Chen, L.D. Global assessment of wind erosion based on a spatially distributed RWEQ model. Prog. Phys. Geogr. Earth Environ. 2021, 46, 28–42. [Google Scholar] [CrossRef]
- Youssef, F.; Visser, S.; Karssenberg, D.; Bruggeman, A.; Erpul, G. Calibration of RWEQ in a patchy landscape; a first step towards a regional scale wind erosion model. Aeolian Res. 2011, 3, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Jin, Z.P.; Shi, P.J. Soil Erosion in Inner Mongolia; Science Press: Beijing, China, 1998. [Google Scholar]
- Xu, B.; Liu, X.M.; Zhao, X.Y. Soil wind erosion in farmland and its control in the middle part of Naiman Banner, Inner Mongola Autonomous. J. Soil Water Conserv. 1993, 2, 75–80+88. [Google Scholar]
- Dong, Z.B.; Chen, G.T. A preliminary insight into the wind erosion problem in Houshan area of Inner Mongolia. J. Soil Water Conserv. 1997, 2, 84–90. [Google Scholar]
- Li, F.-R.; Kang, L.-F.; Zhang, H.; Zhao, L.-Y.; Shirato, Y.; Taniyama, I. Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China. J. Arid Environ. 2005, 62, 567–585. [Google Scholar] [CrossRef]
- Zhao, Y.; Yue, J.H.; Xu, C.H.; Du, C.H.; Chang, Y.C. Application of 137Cs tracer technique to estimate the wind erosion rate of Castanozem in Luanhe River Source Area. Acta Sci. Circumstantiae 2005, 4, 562–566. [Google Scholar]
- Shi, C.X. A quantitative analysis of the effects of wind erosion on sediment yield in the Wudinghe River watershed. Geogr. Res. 2006, 2, 285–293. [Google Scholar]
- Wang, Y.C.; Zhang, L.F.; Hou, D.S.; Gao, Y.Q. Study on soil wind erosion of different underlying in ecotone between agriculture and animal husbandry in Bashang of Hebei. Chin. Agric. Sci. Bull. 2006, 8, 565–568. [Google Scholar]
- Liu, J.Y.; Qi, Y.Q.; Shi, H.D.; Zhuang, D.F.; Hu, Y.F. A 137Cs tracer analysis of soil wind erosion rate in the Tariat-Xilingol transect of Mongolian Plateau. Sci. Bull. 2008, 53, 751–758. [Google Scholar] [CrossRef]
- Li, Q.Y.; Cai, Q.G.; Fang, H.Y. Contribution characteristics of wind erosion to the sediment yield in the Kuyehe River water shed at time scales. J. Nat. Resour. 2011, 26, 674–682. [Google Scholar]
- Guo, H.H.; Hao, M.D.; Li, L.; Su, F.Y.; Ma, H.; Niu, Y.H. Impacts of land use type on soil wind erosion in Agro-pastoral Area. Bull. Soil Water Conserv. 2016, 36, 53–57. [Google Scholar]
- Jiang, H.T. Study on Soil Erosion in Agro-Pastoral Ecotone of Northern China Based on 137Cs Technology. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2010. [Google Scholar]
- Zhang, J.Q.; Zou, X.L.; Zhang, C.L.; Yang, S.; Pan, X.H.; Liu, Y.G. Evaluating farmland soil erosion by wind in Bashang of Zhangjiakou with 137Cs as a tracer. J. Beijing Norm. Univ. 2010, 46, 724–728. [Google Scholar]
- Li, M.; Yao, W.; Shen, Z.; Yang, J.; Yang, E. Erosion rates of different land uses and sediment sources in a watershed using the 137Cs tracing method: Field studies in the Loess Plateau of China. Environ. Earth Sci. 2016, 75, 591. [Google Scholar] [CrossRef]
- Guo, Q.K.; Cheng, C.; Jiang, H.T.; Liu, B.Y.; Wang, Y.S. Comparative rates of wind and water erosion on typical farmland at the northern end of the Loess Plateau, China. Geoderma 2019, 352, 104–115. [Google Scholar] [CrossRef]
- Chepil, W.S. Factor that influence clod structure and erodibility of soil by wind: III. Calcium Carbonate and decomposed organic material. Soil Sci. 1954, 77, 473–480. [Google Scholar] [CrossRef]
- Li, Q.; Kang, F.; Zhang, Z.; Ma, C.; Nan, W. Simulated experiment on wind erosion resistance of Salix residual in the agro-pastoral ecotone. Front. Environ. Sci. 2021, 9, 261. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, Y.; Xiang, M.; Hong, C.; Zhang, B.-T.; Liu, L.Y.; Shi, P.J.; Liu, J.F. Structure and morphological characteristics of polygonal salt crust, the West Juyan Lake, China. Geosci. J. 2021, 26, 323–334. [Google Scholar] [CrossRef]
- Zou, X.Y.; Zhang, Z.D.; Zhou, Z.L.; Qiu, Q.; Luo, J.Y. Landscape-scale spatial variability of soil organic carbon content in a temperate grassland: Insights into the role of wind erosion. Catena 2021, 207, 105635. [Google Scholar] [CrossRef]
- Hagen, L.J.; Wagner, L.E.; Skidmore, E.L. Analytical solutions and sensitivity analyses for sediment transport in weps. Trans. ASAE 1999, 42, 1715–1722. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Z.L.; Li, J.F.; Chang, C.P.; Wang, R.D.; Li, Q. Effect of the Type of Wind Data on Regional Potential Wind Erosion Estimation. Front. Environ. Sci. 2022, 10, 118. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Zou, X.; Zhang, K.; Zhang, W. Quantifying wind erosion at landscape scale in a temperate grassland: Nonignorable influence of topography. Geomorphology 2020, 370, 107401. [Google Scholar] [CrossRef]
- Chi, W.; Zhao, Y.; Kuang, W.; He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 2019, 668, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Kurosaki, Y.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef]
- Lin, J.; Guan, Q.; Pan, N.; Zhao, R.; Yang, L.; Xu, C. Spatiotemporal variations and driving factors of the potential wind erosion rate in the hexi region. Land Degrad. Dev. 2020, 32, 139–157. [Google Scholar] [CrossRef]
- Chepil, W.S. Factor that influence clod structure and erodibility of soil by wind: II. Water stable structure. Soil Sci. 1953, 76, 389–399. [Google Scholar] [CrossRef]
- Siegmund, N.; Funk, R.; Koszinsky, S.; Buschiazzo, E.D.; Sommer, M. Effects of low-scale landscape structures on aeolian transport processes on arable land. Aeolian Res. 2018, 32, 181–191. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Sterk, G.; Funk, R.; Rajot, J.L.; Stout, J.E.; Van Pelt, R.S. Measurement and data analysis methods for fifield-scale wind erosion studies and model validation. Earth Surf. Process. Landf. 2003, 28, 1163–1188. [Google Scholar] [CrossRef]
Data Types | Temporal Resolution | Spatial Resolution | Format | Web Sites |
---|---|---|---|---|
Meteorological data | Hourly/Daily | N/A | Text | http://data.cma.cn accessed on 10 July 2020 |
Normalized difference vegetation index (NDVI) | 16 days | 1 km | Raster | https://www.usgs.gov accessed on 12 July 2020 |
Soil data | N/A | 1 km | Raster | http://westdc.westgis.ac.cn accessed on 12 July 2020 |
Digital Elevation Model (DEM) data | N/A | 1 km | Raster | http://westdc.westgis.ac.cn accessed on 12 July 2020 |
The land use data | Annual | 1 km | Raster | http://www.resdc.cn accessed on 15 July 2020 |
Aerosol optical depth (AOD) | Annual | 0.1° | Raster | https://data.tpdc.ac.cn accessed on 15 July 2020 |
Class/Range (t hm−2 a−1) | NWESMC | RWEQ | WEPS | IWEMS |
---|---|---|---|---|
Area of the Class (km2)/Percent of Total Area for the Class (%) | ||||
Weak/0–2 | 222 298/40.88 | 88 186/16.23 | 174 601/32.12 | 138 243/25.43 |
Slight/2–25 | 240 184/44.17 | 325 643/59.94 | 174 257/32.06 | 182 649/33.60 |
Moderate/25–50 | 61 382/11.29 | 54 389/10.01 | 72 945/13.42 | 82 648/15.20 |
Severe/50–80 | 18 178/3.34 | 13 818/2.54 | 34 763/6.40 | 31 292/5.76 |
Very Severe/80–150 | 1 747/0.32 | 48 251/8.88 | 27 484/5.06 | 36 604/6.73 |
Catastrophic/>150 | 0/0.0 | 13 015/2.40 | 59 474/10.94 | 72 133/13.27 |
Site No. | Land Use | Method | Wind Erosion (t hm−2 a−1) | Reference |
---|---|---|---|---|
1 | Sand | Field Survey | 243.00 | Zhao et al., 1988 [66] |
2 | Farmland | Sand trap | 883.30 | Xu et al., 1993 [67] |
3 | Farmland | Particle-size distribution comparison method | 14.40 | Dong et al., 1997 [68] |
4 | Farmland | 24.60 | ||
5 | Farmland | 19.05 | ||
6 | Farmland | 41.10 | ||
7 | Farmland | 28.80 | ||
8 | Sand | Sand trap | 83.95 | Li et al., 2005 [69] |
9 | Farmland | 137Cs | 28.97 | Zhao et al., 2005 [70] |
10 | — | Sediment analysis | 172.23 | Shi et al., 2006 [71] |
11 | 8.02 | |||
12 | 156.57 | |||
13 | 167.43 | |||
14 | 167.97 | |||
15 | 22.46 | |||
16 | 39.08 | |||
17 | Farmland | Sand trap | 1.08 | Wang et al., 2006 [72] |
18 | Grassland | 137Cs | 3.51 | Liu et al., 2007 [73] |
19 | Grassland | 4.18 | ||
20 | Grassland | 0.53 | ||
21 | Grassland | 4.80 | ||
22 | Grassland | 3.10 | ||
23 | — | Sediment analysis | 101.00 | Li et al., 2011 [74] |
24 | Farmland | Field Survey | 27.50 | Guo et al., 2016 [75] |
25 | Farmland | 137Cs | 17.65 | Jiang, 2010 [76] |
26 | Farmland | 137Cs | 83.62 | Zhang et al., 2010 [77] |
27 | Farmland | 137Cs | 59.00 | Li et al., 2016 [78] |
28 | Grassland | 3.20 | ||
29 | Farmland | 65.00 | ||
30 | Sand | 48.50 | ||
31 | Farmland | Sand trap | 1.96 | Guo et al., 2019 [79] |
Model | Correlation Analysis | Wind Speed (M S−1) | Soil Moisture (%) | Vegetation (%) | Precipitation (mm) | Temperature (°C) |
---|---|---|---|---|---|---|
Area of the Correlation Level (km2)/Percent of Total Area for the Correlation Level (%) | ||||||
NWESMC | Significant negative correlation | 1 325/0.31 | 134 697/31.21 | 80 325/18.64 | 6 010/1.39 | 12 011/2.78 |
Negative correlation | 20 734/4.79 | 249 886/57.89 | 200 194/46.46 | 363 203/83.98 | 71 297/16.48 | |
No correlation | 2/0.00 | 3/0.00 | 14/0.00 | 1/0.00 | 9/0.00 | |
Positive correlation | 234 479/54.21 | 44 487/10.31 | 137 871/32 | 63 020/14.57 | 315 922/73.04 | |
Significant positive correlation | 175 967/40.68 | 2 567/0.59 | 12 486/2.9 | 273/0.06 | 33 268/7.69 | |
RWEQ | Significant negative correlation | 4 027/0.93 | 94 338/21.86 | 53 579/12.43 | 11 852/2.74 | 11 144/2.58 |
Negative correlation | 34 018/7.87 | 315 636/73.13 | 193 589/44.93 | 394 135/91.13 | 46 389/10.73 | |
No correlation | 0/0.00 | 0/0.00 | 6/0.00 | 1/0.00 | 30/0.01 | |
Positive correlation | 210 974/48.78 | 21 680/5.02 | 168 168/39.03 | 26 280/6.08 | 366 320/84.70 | |
Significant positive correlation | 183 260/42.37 | 285/0.07 | 15 964/3.71 | 11/0.00 | 8 396/1.94 | |
WEPS | Significant negative correlation | 511/0.12 | 105 471/24.44 | 47 839/11.1 | 5 184/1.2 | 19 114/4.42 |
Negative correlation | 48 425/11.2 | 283 505/65.68 | 239 370/55.55 | 340 884/78.81 | 68 562/15.85 | |
No correlation | 2/0.00 | 11/0.00 | 2/0.00 | 1/0.00 | 32/0.01 | |
Positive correlation | 266 665/61.65 | 40 761/9.44 | 141 026/32.73 | 83 639/19.34 | 338 221/78.2 | |
Significant positive correlation | 116 841/27.01 | 2 245/0.52 | 3 067/0.71 | 2 736/0.63 | 6 515/1.51 | |
IWEMS | Significant negative correlation | 101/0.02 | 105 396/24.42 | 94 572/21.95 | 11 975/2.77 | 29 598/6.84 |
Negative correlation | 24 081/5.57 | 243 576/56.43 | 243 201/56.44 | 306 282/70.81 | 128 717/29.76 | |
No correlation | 0/0.00 | 8/0.00 | 12/0.00 | 0/0.00 | 31/0.01 | |
Positive correlation | 271 953/62.88 | 76 719/17.77 | 90 823/21.08 | 110 984/25.66 | 243 031/56.19 | |
Significant positive correlation | 136 377/31.53 | 5 928/1.37 | 2 267/0.53 | 3 271/0.76 | 31 135/7.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, X.; Zhang, L.; Guo, Z.; Chang, C.; Du, H.; Wang, H.; Wang, R.; Li, J.; Li, Q. Regional Potential Wind Erosion Simulation Using Different Models in the Agro-Pastoral Ecotone of Northern China. Int. J. Environ. Res. Public Health 2022, 19, 9538. https://doi.org/10.3390/ijerph19159538
Liu J, Wang X, Zhang L, Guo Z, Chang C, Du H, Wang H, Wang R, Li J, Li Q. Regional Potential Wind Erosion Simulation Using Different Models in the Agro-Pastoral Ecotone of Northern China. International Journal of Environmental Research and Public Health. 2022; 19(15):9538. https://doi.org/10.3390/ijerph19159538
Chicago/Turabian StyleLiu, Jun, Xuyang Wang, Li Zhang, Zhongling Guo, Chunping Chang, Heqiang Du, Haibing Wang, Rende Wang, Jifeng Li, and Qing Li. 2022. "Regional Potential Wind Erosion Simulation Using Different Models in the Agro-Pastoral Ecotone of Northern China" International Journal of Environmental Research and Public Health 19, no. 15: 9538. https://doi.org/10.3390/ijerph19159538
APA StyleLiu, J., Wang, X., Zhang, L., Guo, Z., Chang, C., Du, H., Wang, H., Wang, R., Li, J., & Li, Q. (2022). Regional Potential Wind Erosion Simulation Using Different Models in the Agro-Pastoral Ecotone of Northern China. International Journal of Environmental Research and Public Health, 19(15), 9538. https://doi.org/10.3390/ijerph19159538