Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.2.1. Race Characteristics
2.2.2. CK and MB Determination
2.2.3. Incremental Exercise Test
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granier, C.; Abbiss, C.R.; Aubry, A.; Vauchez, Y.; Dorel, S.; Hausswirth, C.; Le Meur, Y. Power output and pacing during international cross-country mountain bike cycling. Int. J. Sports. Physiol. Perform. 2018, 13, 1243–1249. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S. The physiology of mountain biking. Sports Med. 2007, 37, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Macdermid, P.W.; Stannard, S. Mechanical work and physiological responses to simulated cross country mountain bike racing. J. Sports Sci. 2012, 30, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Hays, A.; Devys, S.; Bertin, D.; Marquet, L.A.; Brisswalter, J. Understanding the physiological requirements of the mountain bike cross-country olympic race format. Front. Physiol. 2018, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.R.; Martin, D.T.; Stephens, B.; Withers, R.T. Power output during a professional men’s road-cycling tour. Int. J. Sports Physiol. Perform. 2006, 1, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I.; Padilla, S. Physiological and performance characteristics of male professional road cyclists. Sports Med. 2001, 31, 479–487. [Google Scholar] [CrossRef]
- Padilla, S.; Mujika, I.; Orbañanos, J.; Santisteban, J.; Angulo, F.; José Goiriena, J. Exercise intensity and load during mass-start stage races in professional road cycling. Med. Sci. Sports Exerc. 2001, 33, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Laursen, P.B. Models to explain fatigue during prolonged endurance cycling. Sports Med. 2002, 35, 865–898. [Google Scholar] [CrossRef]
- Hebisz, R.; Hebisz, P.; Borkowski, J.; Zatoń, M. Effects of concomitant high-intensity interval training and sprint interval training on exercise capacity and response to exercise-induced muscle damage in mountain bike cyclists with different training backgrounds. Isokinet. Exerc. Sci. 2019, 27, 21–29. [Google Scholar] [CrossRef]
- Bijker, K.E.; de Groot, G.; Hollander, A.P. Differences in leg muscle activity during running and cycling in humans. Eur. J. Appl. Physiol. 2002, 87, 556–561. [Google Scholar] [PubMed]
- Vogt, S.; Heinrich, L.; Schumacher, Y.O.; Blum, A.; Roecker, K.; Dickhuth, H.H.; Schmid, A. Power output during stage racing in professional road cycling. Med. Sci. Sports Exerc. 2006, 38, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Lievens, E.; Bellinger, P.; Van Vossel, K.; Vancompernolle, J.; Bex, T.; Minahan, C.; Derave, W. Muscle typology of world-class cyclists across various disciplines and events. Med. Sci. Sports Exerc. 2021, 53, 816–824. [Google Scholar] [CrossRef]
- Córdova, A.; Sureda, A.; Albina, M.L.; Linares, V.; Bellés, M.; Sánchez, D.J. Oxidative stress markers after a race in professional cyclists. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 171–178. [Google Scholar] [CrossRef]
- Noakes, T.D. Effect of exercise on serum enzyme activities in humans. Sports Med. 1987, 4, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Epstein, Y. Clinical significance of serum creatine phosphoki-nase activity levels following exercise. Isr. J. Med. Sci. 1995, 31, 698–699. [Google Scholar]
- Bijsterbosch, M.K.; Duursma, A.M.; Smit, M.J.; Bos, O.J.; Bouma, J.M.; Gruber, M. Several dehydrogenases and kinases compete forendocytosis from plasma by rat tissues. Biochem. J. 1985, 229, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jürgens, K.D.; Papadopoulos, S.; Peters, T.; Gros, G. Myoglobin: Just an oxygen store or also an oxygen transporter? News Physiol. Sci. 2000, 15, 269–274. [Google Scholar] [CrossRef]
- Plotnikov, E.Y.; Chupyrkina, A.A.; Pevzner, I.B.; Isaev, N.K.; Zorov, D.B. Myoglobin causes oxidative stress, increase of NO pro-duction and dysfunction of kidney’s mitochondria. Biochim. Biophys. Acta 2009, 1792, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Serrão, F.V.; Foerster, B.; Spad, S.; Morales, M.M.; Monteiro-Pedro, V.; Tannús, A.; Salvini, T.F. Functional changes of human quadriceps muscle injured by eccentric exercise. Braz. J. Med. Biol. Res. 2003, 36, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Stäubli, M.; Roessler, B.; Köchli, H.P.; Peheim, E.; Straub, P.W. Creatine kinase and creatine kinase MB in endurance runners and in patients with myocardial infarction. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Hurley, B.F.; Redmond, R.A.; Pratley, R.E.; Treuth, M.S.; Rogers, M.A.; Goldberg, A.P. Effects of strength training on muscle hypertrophy and muscle cell disruption in older men. Int. J. Sports Med. 1995, 16, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Totsuka, M.; Nakaji, S.; Suzuki, K.; Sugawara, K.; Sato, K. Break point of serum creatine kinase release after endurance exercise. J. Appl. Physiol. 2002, 93, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Lee, M.G. Effects of unaccustomed downhill running on muscle damage, oxidative stress, and leukocyte apoptosis. J. Exerc. Nutr. Biochem. 2015, 19, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Koutedakis, Y.; Raafat, A.; Sharp, N.C.; Rosmarin, M.N.; Beard, M.J.; Robbins, S.W. Serum enzyme activities in individuals with dif-ferent levels of physical fitness. J. Sports Med. Phys. Fit. 1993, 33, 252–257. [Google Scholar]
- Lee, H.; Martin, D.T.; Anson, J.M.; Grundy, D.; Hahn, A.G. Physiological characteristics of successful mountain bikers and professional road cyclists. J. Sports Sci. 2002, 20, 1001–1008. [Google Scholar] [CrossRef]
- Wilber, R.L.; Zawadzki, K.M.; Kearney, J.T.; Shannon, M.P.; Disalvo, D. Physiological profiles of elite off-road and road cyclists. Med. Sci. Sports Exerc. 1997, 29, 1090–1094. [Google Scholar] [CrossRef]
- Valentine, R.J.; Saunders, M.J.; Kent Todd, M.; St Laurent, T.G. Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessen-Kletter, M.F.; Amelink, G.J.; Bär, P.R.; van Gijn, J. Myoglobin is a sensitive marker of increased muscle membrane vulnerability. J. Neurol. 1990, 237, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Perryman, M.B.; Strauss, A.W.; Buettner, T.L.; Roberts, R. Molecular heterogeneity of creatine kinase isoenzymes. Biochim. Biophys. Acta 1983, 747, 284–290. [Google Scholar] [CrossRef]
- Tai, P.W.; Fisher-Aylor, K.I.; Himeda, C.L.; Smith, C.L.; Mackenzie, A.P.; Helterline, D.L.; Angello, J.C.; Welikson, R.E.; Wold, B.J.; Hauschka, S.D. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet. Muscle 2011, 1, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, K.; Yoshioka, T. Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. J. Muscle Res. Cell. Motil. 1991, 12, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Jansson, E.; Sylvén, C. Myoglobin concentration in single type I and type II muscle fibres in man. Histochemistry 1983, 78, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A. Histochemical characteristics of vertebrate striated muscle: A review. Prog. Histochem. Cytochem. 1976, 8, 1–48. [Google Scholar]
- Karlsson, J.; Sjödin, B.; Jacobs, I.; Kaiser, P. Relevance of muscle fibre type to fatigue in short intense and prolonged exercise in man. Ciba Found. Symp. 1981, 82, 59–74. [Google Scholar]
- Borszcz, F.K.; Tramontin, A.F.; de Souza, K.M.; Carminatti, L.J.; Costa, V.P. Physiological correlations with short, medium, and long cycling time-trial performance. Res. Q. Exerc. Sport 2018, 89, 120–125. [Google Scholar] [CrossRef]
- Heuberger, J.A.; Gal, P.; Stuurman, F.E.; de Muinck Keizer, W.A.; Mejia Miranda, Y.; Cohen, A.F. Repeatability and predictive value of lactate threshold concepts in endurance sports. PLoS ONE 2018, 13, e0206846. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Marcora, S.M.; Rampinini, E.; Mognoni, P.; Sassi, A. Correlations between physiological variables and performance in high level cross country off road cyclists. Br. J. Sports Med. 2005, 39, 747–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touron, J.; Costes, F.; Coudeyre, E.; Perrault, H.; Richard, R. Aerobic metabolic adaptations in endurance eccentric exercise and training: From whole body to mitochondria. Front. Physiol. 2021, 11, 596351. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.; Aoi, W.; Takami, M.; Hirano, N.; Ogaya, Y.; Wada, S.; Higashi, A. Effect of downhill walking on next-day muscle damage and glucose metabolism in healthy young subjects. J. Physiol. Sci. 2019, 69, 31–38. [Google Scholar] [CrossRef] [PubMed]
Mountain Bike Cyclists | Road Cyclists | Cohen’s d | |||||
---|---|---|---|---|---|---|---|
Mean ± SD | CI 95% | Mean ± SD | CI 95% | ||||
Upper | Lower | Upper | Lower | ||||
Age [y] | 19.1 ± 1.3 | 20.0 | 18.3 | 19.4 ± 1.6 | 20.4 | 18.5 | 0.21 |
BM [kg] | 68.1 ± 5.5 | 71.8 | 64.4 | 71.1 ± 4.8 | 73.8 | 68.3 | 0.58 |
BH [m] | 1.79 ± 0.04 | 1.81 | 1.76 | 1.77 ± 0.04 | 1.80 | 1.75 | 0.50 |
BMI | 21.3 ± 1.2 | 22.2 | 20.5 | 22.6 ± 1.79 | 23.6 | 21.6 | 0.85 |
Mountain Bike Cyclists | Road Cyclists | Cohen’s d | |||||
---|---|---|---|---|---|---|---|
Mean ± SD | CI 95% | Mean ± SD | CI 95% | ||||
Upper | Lower | Upper | Lower | ||||
VO2max [L∙min−1] | 4.28 ± 0.51 | 4.62 | 3.94 | 4.82 ± 0.33 * | 5.01 | 4.63 | 1.26 |
VO2max [mL∙min−1∙kg−1] | 62.9 ± 5.2 | 66.4 | 59.4 | 67.9 ± 4.4 * | 70.4 | 65.4 | 1.04 |
Pmax [W] | 378.2 ± 41.2 | 405.9 | 350.5 | 415 ± 27.5 * | 430.9 | 399.1 | 1.05 |
Pmax [W∙kg−1] | 5.56 ± 0.52 | 5.91 | 5.21 | 5.86 ± 0.51 | 6.16 | 5.56 | 0.58 |
VT2 [W] | 264.5 ± 43.6 | 235.2 | 293.8 | 315.4 ± 40.5 * | 338.8 | 291.9 | 1.21 |
VT2 [W∙kg−1] | 3.89 ± 0.55 | 4.26 | 3.52 | 4.46 ± 0.67 * | 4.85 | 4.07 | 0.93 |
TD [s] | 644.3 ± 383.6 | 902.0 | 386.5 | 204.9 ± 255.9 * | 352.6 | 57.1 | 1.35 |
2 h Pre-Race | 1 h Post-Race | |||||
---|---|---|---|---|---|---|
Mean ± SD | CI 95% | Mean ± SD | CI 95% | |||
Upper | Lower | Upper | Lower | |||
Mountain bike cyclists | ||||||
CK [u∙L−1] | 320.1 ± 182.0 | 442.4 | 197.8 | 392.3 ± 237.3 | 551.7 | 179.6 |
MB [ng∙mL−1] | 21.0 ± 14.3 | 30.6 | 11.4 | 31.6 * ± 20.1 | 45.1 | 18.1 |
ΔPV [%] | −4.1 ± 9.3 | 2.2 | −10.3 | |||
Road cyclists | ||||||
CK [u∙L−1] | 267.1 ± 131.7 | 343.2 | 191.1 | 336.9 * ± 143.7 | 419.8 | 253.9 |
MB [ng∙mL−1] | 17.8 ± 4.3 | 20.3 | 15.4 | 21.3 ± 3.9 | 23.6 | 19.0 |
ΔPV [%] | 0.1 ± 13.9 | 8.1 | −7.9 |
VO2max [L∙min−1] | VO2max [mL∙min−1∙kg−1] | ΔCK [u∙L−1] | ΔMB [ng∙mL−1] | Pmax [W∙kg−1] | Pmax [W] | VT2 [W] | VT2 [W∙kg−1] | |
---|---|---|---|---|---|---|---|---|
T1 | - | - | −0.68 * | - | - | - | - | −0.86 * |
T2 | - | - | - | 0.76 * | - | −0.64 * | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hebisz, R.; Borkowski, J.; Hebisz, P. Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race. Int. J. Environ. Res. Public Health 2022, 19, 9456. https://doi.org/10.3390/ijerph19159456
Hebisz R, Borkowski J, Hebisz P. Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race. International Journal of Environmental Research and Public Health. 2022; 19(15):9456. https://doi.org/10.3390/ijerph19159456
Chicago/Turabian StyleHebisz, Rafal, Jacek Borkowski, and Paulina Hebisz. 2022. "Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race" International Journal of Environmental Research and Public Health 19, no. 15: 9456. https://doi.org/10.3390/ijerph19159456
APA StyleHebisz, R., Borkowski, J., & Hebisz, P. (2022). Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race. International Journal of Environmental Research and Public Health, 19(15), 9456. https://doi.org/10.3390/ijerph19159456