Estimation of Functional Fitness of Korean Older Adults Using Machine Learning Techniques: The National Fitness Award 2015–2019
Abstract
:1. Introduction
- This study proposed the FF variable estimation model for evaluating the physical fitness level of elderly adults using easy-to-measure independent variables. The proposed model can be used as an effective tool to evaluate the personal fitness level in smart fitness services.
- Various nonlinear machine learning regression models were constructed and evaluated to compare the accuracy with the previous linear model and to derive the optimal estimation model presenting the best estimation performance.
2. Materials and Methods
2.1. Ethics Statement
2.2. Dataset
2.3. Data Pre-Processing
2.4. Machine Learning-Based Estimation Models
2.4.1. Support Vector Regression
2.4.2. Decision Tree
2.4.3. Random Forest Regression
2.4.4. EXtreme Gradient Boost (XGBoost)
2.4.5. Deep Neural Network (DNN)
2.4.6. Mixture Density Network (MDN)
2.5. Model Evaluation
3. Results
3.1. Performance Evaluation of the Regression Models
3.2. Performance Evaluation of the Regression Models without Outlier Data
3.3. Regression Model Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022. [Google Scholar]
- Grimmer, M.; Riener, R.; Walsh, C.J.; Seyfarth, A. Mobility Related Physical and Functional Losses Due to Aging and Disease-a Motivation for Lower Limb Exoskeletons. J. Neuroeng. Rehabil. 2019, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Hurst, C.; Weston, K.L.; McLaren, S.J.; Weston, M. The Effects of Same-Session Combined Exercise Training on Cardiorespiratory and Functional Fitness in Older Adults: A Systematic Review and Meta-Analysis. Aging Clin. Exp. Res. 2019, 31, 1701–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, C.E.; Greaney, M.L.; Riebe, D.; Nigg, C.R.; Burbank, P.A.; Clark, P.G. Physical and Mental Health-Related Correlates of Physical Function in Community Dwelling Older Adults: A Cross Sectional Study. BMC Geriatr. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Chung, P.-K. Differences in Functional Fitness among Older Adults with and without Risk of Falling. Asian Nurs. Res. 2016, 10, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, D.A.; Silva, A.M.; Baptista, F.; Santos, R.; Vale, S.; Mota, J.; Sardinha, L.B. Sedentary Behavior and Physical Activity Are Independently Related to Functional Fitness in Older Adults. Exp. Gerontol. 2012, 47, 908–912. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001512-8. [Google Scholar]
- Brown, D.R.; Yore, M.M.; Ham, S.A.; Macera, C.A. Physical Activity among Adults > Or = 50 Yr with and without Disabilities, BRFSS 2001. Med. Sci. Sports Exerc. 2005, 37, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human kinetics: Champaign, IL, USA, 2013; ISBN 1-4504-1118-5. [Google Scholar]
- Church, T.S.; Earnest, C.P.; Skinner, J.S.; Blair, S.N. Effects of Different Doses of Physical Activity on Cardiorespiratory Fitness among Sedentary, Overweight or Obese Postmenopausal Women with Elevated Blood Pressure: A Randomized Controlled Trial. JAMA 2007, 297, 2081–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, U.; Krishnan, A.; Malhotra, V.; Sharma, D.; Gore, S. Predicting Fitness and Performance of Diving Using Machine Learning Algorithms. In Proceedings of the 2019 IEEE Pune Section International Conference (PuneCon), Pune, India, 18–20 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Akay, M.F.; Abut, F.; Cetin, E.; Yarim, I.; Sow, B. Support Vector Machines for Predicting the Hamstring and Quadriceps Muscle Strength of College-Aged Athletes. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 2567–2582. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Sun, F. Sports Athletes’ Performance Prediction Model Based on Machine Learning Algorithm. In Proceedings of the International Conference on Applications and Techniques in Cyber Security and Intelligence, Huainan, China, 22–24 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 498–505. [Google Scholar]
- Taha, Z.; Musa, R.M.; Majeed, A.P.A.; Alim, M.M.; Abdullah, M.R. The Identification of High Potential Archers Based on Fitness and Motor Ability Variables: A Support Vector Machine Approach. Hum. Mov. Sci. 2018, 57, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Matteo, D.; Gastin, P.; Suppiah, H.; Carey, D. Predicting Athlete Performance in Team Sports Using Nearest Neighbour Modelling. In Proceedings of the International Conference on Security, Privacy, and Anonymity in Computation, Communication, and Storage, Nanjing, China, 18 December 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 101–108. [Google Scholar]
- Lee, S.-H.; Ju, H.-S.; Lee, S.-H.; Kim, S.-W.; Park, H.-Y.; Kang, S.-W.; Song, Y.-E.; Lim, K.; Jung, H. Estimation of Health-Related Physical Fitness (HRPF) Levels of the General Public Using Artificial Neural Network with the National Fitness Award (NFA) Datasets. Int. J. Environ. Res. Public Health 2021, 18, 10391. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Park, H.-Y.; Jung, H.; Lee, J.; Lim, K. Estimation of Health-Related Physical Fitness Using Multiple Linear Regression in Korean Adults: National Fitness Award 2015–2019. Front. Physiol. 2021, 12, 668055. [Google Scholar] [CrossRef] [PubMed]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An Introduction to Decision Tree Modeling. J. Chemom. A J. Chemom. Soc. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019; ISBN 1-4920-3259-X. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2 2015, 1, 1–4. [Google Scholar]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.M. Mixture Density Networks; Aston University: Birmingham, UK, 1994. [Google Scholar]
- Kim, C.R.; Jeon, Y.-J.; Kim, M.C.; Jeong, T.; Koo, W.R. Reference Values for Hand Grip Strength in the South Korean Population. PLoS ONE 2018, 13, e0195485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Mishra, D.; Satapathy, S. Prediction of Hand Grip Strength among Elderly Farmers of Odisha in India. Mater. Today Proc. 2020, 24, 318–325. [Google Scholar] [CrossRef]
- Pan, P.-J.; Lin, C.-H.; Yang, N.-P.; Chen, H.-C.; Tsao, H.-M.; Chou, P.; Hsu, N.-W. Normative Data and Associated Factors of Hand Grip Strength among Elderly Individuals: The Yilan Study, Taiwan. Sci. Rep. 2020, 10, 6611. [Google Scholar] [CrossRef]
- Clegg, M.E.; Williams, E.A. Optimizing Nutrition in Older People. Maturitas 2018, 112, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Mcleod, J.C.; Stokes, T.; Phillips, S.M. Resistance Exercise Training as a Primary Countermeasure to Age-Related Chronic Disease. Front. Physiol. 2019, 10, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data Type | Variables | Training Dataset | Validation Dataset | ||
---|---|---|---|---|---|
Men (n = 42,991) | Women (n = 82,281) | Men (n = 18,474) | Women (n = 35,214) | ||
Independent Variable (Input) | Age (year) | 73.26 ± 5.45 | 72.55 ± 5.62 | 73.31 ± 5.45 | 72.51 ± 5.59 |
Height (cm) | 165.10 ± 5.86 | 152.37 ± 5.54 | 165.10 ± 5.79 | 152.38 ± 5.52 | |
Weight (kg) | 66.33 ± 8.87 | 57.54 ± 8.00 | 66.39 ± 8.84 | 57.49 ± 7.93 | |
Percent body fat (%) | 24.31 ± 2.80 | 24.77 ± 3.13 | 24.33 ± 2.79 | 24.75 ± 3.09 | |
BMI (kg/m2) | 26.01 ± 6.39 | 34.97 ± 6.42 | 26.06 ± 6.42 | 34.93 ± 6.38 | |
Functional Fitness Variable (Output) | HGS (kg) | 30.76 ± 6.66 | 19.45 ± 4.84 | 30.75 ± 6.65 | 19.49 ± 4.82 |
30-s chair stand (n) | 20.58 ± 6.40 | 18.23 ± 6.05 | 20.53 ± 6.40 | 18.27 ± 6.05 | |
Chair sit-and-reach (cm) | 3.87 ± 9.70 | 13.06 ± 8.06 | 3.79 ± 9.64 | 13.12 ± 8.02 | |
Figure of 8 walk (s) | 26.04 ± 7.01 | 28.00 ± 7.96 | 26.13 ± 7.16 | 27.95 ± 7.90 | |
Timed up-and-go (s) | 6.20 ± 1.81 | 6.79 ± 2.07 | 6.20 ± 1.78 | 6.77 ± 2.02 | |
2-sim step test (n) | 107.20 ± 24.90 | 100.31 ± 27.49 | 107.02 ± 24.50 | 100.58 ± 27.18 |
HGS | 30-s Chair Stand | Chair Sit-and-Reach | Figure of 8 Walk | Timed Up-and-Go | 2-min Step Test | |
---|---|---|---|---|---|---|
Age | −0.223 | −0.317 | −0.250 | 0.429 | 0.397 | −0.306 |
Sex | −0.693 | −0.172 | 0.454 | 0.122 | 0.144 | −0.126 |
Height | 0.688 | 0.169 | −0.307 | −0.223 | −0.239 | 0.196 |
Weight | 0.492 | 0.029 | −0.229 | −0.070 | −0.082 | 0.074 |
Percent body fat | −0.466 | −0.246 | 0.153 | 0.212 | 0.212 | −0.189 |
BMI | 0.013 | −0.111 | −0.016 | 0.106 | 0.104 | −0.079 |
HGS | 30 s Chair Stand | Chair Sit-and-Reach | Figure of 8 Walk | Timed Up-and-Go | 2 min Step Test | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | Rank | p-Value | Rank | p-Value | Rank | p-Value | Rank | p-Value | Rank | p-Value | Rank | |
Age | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 |
Sex | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.554 | 1 |
Height | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 |
Weight | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 3 | 0.000 | 1 |
Percent body fat | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 |
BMI | 0.000 | 1 | 0.000 | 1 | 0.000 | 1 | 0.034 | 1 | 0.059 | 2 | 0.000 | 1 |
Support Vector Regression | R | R2 | Adjusted R2 | SEE |
HGS | 0.788 | 0.621 | 0.621 | 4.750 kg |
30 s chair stand | 0.417 | 0.174 | 0.174 | 5.635 n |
Chair sit-and-reach | 0.515 | 0.265 | 0.265 | 8.395 cm |
Figure-of-eight walk | 0.423 | 0.179 | 0.179 | 6.784 s |
Timed up-and-go | 0.391 | 0.153 | 0.153 | 1.846 s |
2 min step test | 0.313 | 0.098 | 0.098 | 25.73 n |
Random Forest | R | R2 | Adjusted R2 | SEE |
HGS | 0.787 | 0.619 | 0.619 | 4.681 kg |
30 s chair stand | 0.406 | 0.165 | 0.165 | 5.293 n |
Chair sit-and-reach | 0.528 | 0.279 | 0.279 | 8.124 cm |
Figure-of-eight walk | 0.617 | 0.381 | 0.381 | 3.116 s |
Timed up-and-go | 0.460 | 0.212 | 0.212 | 1.198 s |
2 min step test | 0.310 | 0.096 | 0.096 | 22.63 n |
XGBoost | R | R2 | Adjusted R2 | SEE |
HGS | 0.787 | 0.620 | 0.620 | 4.755 kg |
30 s chair stand | 0.409 | 0.167 | 0.167 | 5.660 n |
Chair sit-and-reach | 0.521 | 0.272 | 0.272 | 8.355 cm |
Figure-of-eight walk | 0.442 | 0.195 | 0.195 | 6.716 s |
Timed up-and-go | 0.416 | 0.173 | 0.173 | 1.823 s |
2 min step test | 0.321 | 0.103 | 0.103 | 25.66 n |
DNN | R | R2 | Adjusted R2 | SEE |
HGS | 0.789 | 0.622 | 0.622 | 4.741 kg |
30 s chair stand | 0.418 | 0.175 | 0.175 | 5.640 n |
Chair sit-and-reach | 0.523 | 0.274 | 0.274 | 8.347 cm |
Figure-of-eight walk | 0.449 | 0.202 | 0.202 | 6.688 s |
Timed up-and-go | 0.423 | 0.179 | 0.179 | 1.817 s |
2 min step test | 0.329 | 0.108 | 0.108 | 25.59 n |
MDN | R | R2 | Adjusted R2 | SEE |
HGS | 0.785 | 0.617 | 0.617 | 4.771 kg |
30 s chair stand | 0.394 | 0.155 | 0.155 | 5.700 n |
Chair sit-and-reach | 0.522 | 0.273 | 0.273 | 8.349 cm |
Figure-of-eight walk | 0.448 | 0.201 | 0.201 | 6.693 s |
Timed up-and-go | 0.436 | 0.190 | 0.190 | 1.804 s |
2 min step test | 0.345 | 0.119 | 0.119 | 25.44 n |
FF Variables | SRE | Independent Variables (Input Variables) | ||
HGS | SRE 32: n = 101,438 | Age, Sex, Height, Weight, Percent body fat, BMI | ||
30 s chair stand | SRE 39: n = 102,726 | Age, Sex, Height, Weight, Percent body fat, BMI | ||
Chair sit-and-reach | SRE 35: n = 102,640 | Age, Sex, Height, Weight, Percent body fat, BMI | ||
Figure-of-eight walk | SRE 22: n = 79,724 | Age, Sex, Height, Weight, Percent body fat, BMI | ||
Timed up-and-go | SRE 36: n = 94,621 | Age, Sex, Height, Percent body fat | ||
2-min step test | SRE 28: n = 91,420 | Age, Height, Weight, Percent body fat, BMI | ||
Support Vector Regression | R | R2 | Adjusted R2 | SEE |
HGS | 0.885 | 0.784 | 0.784 | 3.069 kg |
30-s chair stand | 0.548 | 0.300 | 0.300 | 3.800 n |
Chair sit-and-reach | 0.664 | 0.441 | 0.441 | 5.436 cm |
Figure-of-eight walk | 0.628 | 0.395 | 0.395 | 3.083 s |
Timed up-and-go | 0.624 | 0.389 | 0.389 | 0.705 s |
2-min step test | 0.455 | 0.207 | 0.207 | 12.46 n |
Random Forest | R | R2 | Adjusted R2 | SEE |
HGS | 0.861 | 0.742 | 0.742 | 3.336 kg |
30-s chair stand | 0.514 | 0.264 | 0.264 | 5.492 n |
Chair sit-and-reach | 0.655 | 0.429 | 0.429 | 3.197 cm |
Figure-of-eight walk | 0.590 | 0.348 | 0.348 | 3.197 s |
Timed up-and-go | 0.588 | 0.346 | 0.346 | 0.729 s |
2-min step test | 0.438 | 0.192 | 0.192 | 12.57 n |
XGBoost | R | R2 | Adjusted R2 | SEE |
HGS | 0.885 | 0.783 | 0.783 | 3.069 kg |
30-s chair stand | 0.548 | 0.301 | 0.301 | 3.800 n |
Chair sit-and-reach | 0.662 | 0.438 | 0.438 | 5.448 cm |
Figure-of-eight walk | 0.628 | 0.395 | 0.395 | 3.080 s |
Timed up-and-go | 0.626 | 0.392 | 0.392 | 0.704 s |
2-min step test | 0.453 | 0.205 | 0.205 | 12.48 n |
DNN | R | R2 | Adjusted R2 | SEE |
HGS | 0.885 | 0.784 | 0.784 | 3.054 kg |
30-s chair stand | 0.550 | 0.302 | 0.302 | 3.794 n |
Chair sit-and-reach | 0.668 | 0.446 | 0.446 | 5.418 cm |
Figure-of-eight walk | 0.629 | 0.396 | 0.396 | 3.078 s |
Timed up-and-go | 0.628 | 0.394 | 0.394 | 0.702 s |
2-min step test | 0.458 | 0.210 | 0.210 | 12.44 n |
MDN | R | R2 | Adjusted R2 | SEE |
HGS | 0.885 | 0.783 | 0.783 | 3.069 kg |
30-s chair stand | 0.529 | 0.280 | 0.280 | 3.852 n |
Chair sit-and-reach | 0.646 | 0.417 | 0.417 | 5.552 cm |
Figure-of-eight walk | 0.628 | 0.394 | 0.394 | 3.083 s |
Timed up-and-go | 0.622 | 0.387 | 0.387 | 0.707 s |
2-min step test | 0.451 | 0.203 | 0.203 | 12.49 n |
HGS (kg) | 30 s Chair Stand (n) | Chair Sit-and-Reach (cm) | Figure of 8 Walk (s) | Timed Up-and-Go (s) | 2 min Step Test (n) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE (%) | SEE | MAPE (%) | SEE | MAPE (%) | SEE | MAPE (%) | SEE | MAPE (%) | SEE | MAPE (%) | SEE | |
MLR | 0.160 | 4.216 | 0.206 | 4.214 | 20.12 | 6.315 | 0.100 | 3.565 | 0.089 | 0.822 | 0.100 | 13.13 |
SVR | 0.157 | 4.147 | 0.202 | 4.183 | 19.81 | 6.274 | 0.098 | 3.549 | 0.087 | 0.817 | 0.099 | 13.03 |
RF | 0.160 | 4.258 | 0.210 | 4.307 | 20.75 | 6.455 | 0.102 | 3.649 | 0.091 | 0.840 | 0.103 | 13.56 |
XGBoost | 0.158 | 4.160 | 0.205 | 4.178 | 19.96 | 6.252 | 0.098 | 3.529 | 0.087 | 0.814 | 0.099 | 13.06 |
DNN | 0.157 | 4.135 | 0.205 | 4.169 | 20.92 | 6.228 | 0.097 | 3.546 | 0.084 | 0.805 | 0.099 | 13.00 |
MDN | 0.158 | 4.141 | 0.214 | 4.228 | 22.68 | 6.313 | 0.096 | 3.517 | 0.086 | 0.831 | 0.099 | 13.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Lee, S.-H.; Kim, S.-W.; Park, H.-Y.; Lim, K.; Jung, H. Estimation of Functional Fitness of Korean Older Adults Using Machine Learning Techniques: The National Fitness Award 2015–2019. Int. J. Environ. Res. Public Health 2022, 19, 9754. https://doi.org/10.3390/ijerph19159754
Lee S-H, Lee S-H, Kim S-W, Park H-Y, Lim K, Jung H. Estimation of Functional Fitness of Korean Older Adults Using Machine Learning Techniques: The National Fitness Award 2015–2019. International Journal of Environmental Research and Public Health. 2022; 19(15):9754. https://doi.org/10.3390/ijerph19159754
Chicago/Turabian StyleLee, Sang-Hun, Seung-Hun Lee, Sung-Woo Kim, Hun-Young Park, Kiwon Lim, and Hoeryong Jung. 2022. "Estimation of Functional Fitness of Korean Older Adults Using Machine Learning Techniques: The National Fitness Award 2015–2019" International Journal of Environmental Research and Public Health 19, no. 15: 9754. https://doi.org/10.3390/ijerph19159754
APA StyleLee, S. -H., Lee, S. -H., Kim, S. -W., Park, H. -Y., Lim, K., & Jung, H. (2022). Estimation of Functional Fitness of Korean Older Adults Using Machine Learning Techniques: The National Fitness Award 2015–2019. International Journal of Environmental Research and Public Health, 19(15), 9754. https://doi.org/10.3390/ijerph19159754