TTN Variants Are Associated with Physical Performance and Provide Potential Markers for Sport-Related Phenotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.3. WGS and Data Processing
2.4. WGS Data Filtering and Annotation
2.5. Variant Filtering
2.6. SNPs Genotyping
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huxley, H.; Hanson, J. Changes in the Cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 1954, 173, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Huxley, A.F.; Niedergerke, R. Structural changes in muscle during contraction: Interference microscopy of living muscle fibres. Nature 1954, 173, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K. Connectin, an elastic protein from myofibrils. J. Biochem. 1976, 80, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K. Connectin/titin, giant elastic protein of muscle. FASEB J. 1997, 11, 341–345. [Google Scholar] [CrossRef]
- Wang, K.; McClure, J.; Tu, A. Titin: Major myofibrillar components of striated muscle. Proc. Natl. Acad. Sci. USA 1979, 76, 3698–3702. [Google Scholar] [CrossRef]
- Chauveau, C.; Rowell, J.; Ferreiro, A. A rising titan: TTN review and mutation update. Hum. Mutat. 2014, 35, 1046–1059. [Google Scholar] [CrossRef]
- Adewale, A.O.; Ahn, Y.H. Titin N2A domain and its interactions at the sarcomere. Int. J. Mol. Sci. 2021, 22, 7563. [Google Scholar] [CrossRef]
- Leońska-Duniec, A.; Maciejewska-Skrendo, A. TTN Gene’s Variants as Potential Markers Associated with Muscle Tissue’s Disfunctions and Physical Performance. Acta Kinesiol. 2021, 15, 119–126. [Google Scholar] [CrossRef]
- Monroy, J.A.; Powers, K.L.; Gilmore, L.A.; Uyeno, T.A.; Lindstedt, S.L.; Nishikawa, K.C. What is the role of titin in active muscle? Exerc. Sport Sci. Rev. 2012, 40, 73–78. [Google Scholar] [CrossRef]
- Lieber, R.L.; Roberts, T.J.; Blemker, S.S.; Lee, S.S.M.; Herzog, W. Skeletal muscle mechanics, energetics and plasticity. J. Neuroeng. Rehabil. 2017, 14, 108. [Google Scholar] [CrossRef]
- Linke, W.A. Titin Gene and Protein Functions in Passive and Active Muscle. Annu. Rev. Physiol. 2018, 80, 389–411. [Google Scholar] [CrossRef]
- Granzier, H.; Labeit, S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve. 2007, 36, 740–755. [Google Scholar] [CrossRef]
- Linke, W.A.; Krüger, M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology 2010, 25, 186–198. [Google Scholar] [CrossRef]
- Linke, W.A.; Popov, V.I.; Pollack, G.H. Passive and active tension in single cardiac myofibrils. Biophys. J. 1994, 67, 782–792. [Google Scholar] [CrossRef]
- Eckels, E.C.; Tapia-Rojo, R.; Rivas-Pardo, J.A.; Fernández, J.M. The Work of Titin Protein Folding as a Major Driver in Muscle Contraction. Annu. Rev. Physiol. 2018, 80, 327–351. [Google Scholar] [CrossRef]
- Freiburg, A.; Trombitas, K.; Hell, W.; Cazorla, O.; Fougerousse, F.; Centner, T.; Kolmerer, B.; Witt, C.; Beckmann, J.S.; Gregorio, C.C.; et al. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ. Res. 2000, 86, 1114–1121. [Google Scholar] [CrossRef]
- Labeit, S.; Kolmerer, B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 1995, 270, 293–296. [Google Scholar] [CrossRef]
- Wang, K.; Mccarter, R.; Wright, J.; Beverly, J.; Ramirez-Mitchell, R. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: A test of the segmental extension model of resting tension. Proc. Natl. Acad. Sci. USA 1991, 88, 7101–7105. [Google Scholar] [CrossRef]
- Fry, A.C.; Staron, R.S.; James, C.B.L.; Hikida, R.S.; Hagerman, F.C. Differential titin isoform expression in human skeletal muscle. Acta Physiol. Scand. 1997, 161, 473–479. [Google Scholar] [CrossRef]
- Stebbings, G.K.; Williams, A.G.; Herbert, A.J.; Lockey, S.J.; Heffernan, S.M.; Erskine, R.M.; Morse, C.I.; Day, S.H. TTN genotype is associated with fascicle length and marathon running performance. Scand. J. Med. Sci. Sport 2018, 28, 400–406. [Google Scholar] [CrossRef]
- Lewinter, M.M.; Granzier, H.L. Titin is a major human disease gene. Circulation 2013, 127, 938–944. [Google Scholar] [CrossRef]
- Tharp, C.A.; Haywood, M.E.; Sbaizero, O.; Taylor, M.R.G.; Mestroni, L. The Giant Protein Titin’s Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Front. Physiol. 2019, 10, 1436. [Google Scholar] [CrossRef]
- Savarese, M.; Valipakka, S.; Johari, M.; Hackman, P.; Udd, B. Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? J. Neuromuscul. Dis. 2020, 7, 203–216. [Google Scholar] [CrossRef]
- Kellermayer, D.; Smith, J.E.; Granzier, H. Titin mutations and muscle disease. Pflugers. Arch. 2019, 471, 673–682. [Google Scholar] [CrossRef]
- Timmons, J.A.; Knudsen, S.; Rankinen, T.; Koch, L.G.; Sarzynski, M.; Jensen, T.; Keller, P.; Scheele, C.; Vollaard, N.; Nielsen, S.; et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J. Appl. Physiol. 2010, 108, 1487–1496. [Google Scholar] [CrossRef]
- Vera, A.M.; Peterson, L.; Dong, D.; Haghshenas, V.; Yetter, T.; Delgado, D.A.; McCulloch, P.; Varner, K.E.; Harris, J. High Prevalence of Connective Tissue Gene Variants in Professional Ballet. Am. J. Sports Med. 2020, 48, 222–228. [Google Scholar] [CrossRef]
- Perrin, C.; Nosaka, K.; Steele, J. Could titin have a role in strain-induced injuries? J. Sport Health Sci. 2017, 6, 143–144. [Google Scholar] [CrossRef]
- Tanisawa, K.; Wang, G.; Seto, J.; Verdouka, I.; Twycross-Lewis, R.; Karanikolou, A.; Tanaka, M.; Borjesson, M.; Di Luigi, L.; Dohi, M.; et al. Sport and exercise genomics: The FIMS 2019 consensus statement update. Br. J. Sports Med. 2020, 54, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Switala, K.; Leonska-Duniec, A. Physical activity and gene association with human obesity. Balt. J. Health Phys. Act. 2021, 13, 99–111. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Mieszkowski, J.; Kochanowicz, A.; Stankiewicz, B.; Cieszczyk, P.; Switala, K.; Gomes de Assis, G.; Kecler, K.; Tarnowski, M.; Sawczuk, M. TNFA expression level changes observed in response to the Wingate Anaerobic Test in non-trained and trained individuals. Balt. J. Health Phys. Act. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Rankinen, T.; Rice, T.; Boudreau, A.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C. Titin is a candidate gene for stroke volume response to endurance training: The HERITAGE Family Study. Physiol. Genom. 2004, 15, 27–33. [Google Scholar] [CrossRef]
- Kaariainen, M.; Jarvinen, T.; Jarvinen, M.; Rantanen, J.; Kalimo, H. Relation between myofibers and connective tissue during muscle injury repair. Scand. J. Med. Sci. Sports 2000, 10, 332–337. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J. Altering the length-tension relationship with eccentric exercise: Implications for performance and injury. Sports Med. 2007, 37, 807–826. [Google Scholar] [CrossRef]
SNP | Model | Control (n = 403) | Sport (n = 348) | OR | 95% CI | p * |
---|---|---|---|---|---|---|
rs10497520 | Co-dominant | |||||
C/C | 320 (79.4) | 258 (74.1) | 1 | 0.200/ 0.169 | ||
C/T | 80 (19.9) | 88 (25.3) | 1.36 | 0.97–1.93 | ||
T/T | 3 (0.7) | 2 (0.6) | 0.83 | 0.14–4.99 | ||
Dominant | ||||||
C/C | 320 (79.4) | 258 (74.1) | 1 | 0.088/ 0.075 | ||
C/T-T/T | 83 (20.6) | 90 (25.9) | 1.34 | 0.96–1.89 | ||
Recessive | ||||||
C/C-C/T | 400 (99.3) | 346 (99.4) | 1 | 0.775/ 0.732 | ||
T/T | 3 (0.7) | 2 (0.6) | 0.77 | 0.13–4.64 | ||
Over-dominant | ||||||
C/C-T/T | 323 (80.1) | 260 (74.7) | 1 | 0.075/ 0.062 | ||
C/T | 80 (19.9) | 88 (25.3) | 1.37 | 0.97–1.93 | ||
rs55837610 | Co-dominant | |||||
A/A | 399 (99.0) | 344 (98.9) | 1 | 0.835/ 0.905 | ||
A/G | 4 (1.0) | 4 (1.1) | 1.16 | 0.29–4.67 | ||
rs72648256 | Co-dominant | |||||
A/A | 401 (99.5) | 346 (99.4) | 1 | 0.883/ 0.791 | ||
A/T | 2 (0.5) | 2 (0.6) | 1.16 | 0.16–8.27 |
SNP | Model | Control (n = 403) | Sport (n = 100) | OR | 95% CI | p * |
---|---|---|---|---|---|---|
rs10497520 | Co-dominant | |||||
C/C | 320 (79.4) | 64 (64.0) | 1 | 0.0025/ 0.0034 | ||
C/T | 80 (19.9) | 36 (36.0) | 2.25 | 1.40–3.62 | ||
T/T | 3 (0.7) | 0 (0) | 0 | |||
Dominant | ||||||
C/C | 320 (79.4) | 64 (64.0) | 1 | 0.0017/ 0.0021 | ||
C/T-T/T | 83 (20.6) | 36 (36.0) | 2.17 | 1.35–3.49 | ||
Recessive | ||||||
C/C-C/T | 400 (99.3) | 100 (100.0) | 1 | 1.0/ 0.279 | ||
T/T | 3 (0.7) | 0 (0) | 0 | |||
Over-dominant | ||||||
C/C-T/T | 323 (80.1) | 64 (64.0) | 1 | 0.00095/ 0.0013 | ||
C/T | 80 (19.9) | 36 (36.0) | 2.27 | 1.41–3.66 | ||
rs55837610 | Co-dominant | |||||
A/A | 399 (99.0) | 98 (98.0) | 1 | 0.437/ 0.438 | ||
A/G | 4 (1.0) | 2 (2.0) | 2.04 | 0.37–11.27 | ||
rs72648256 | Co-dominant | |||||
A/A | 401 (99.5) | 100 (100.0) | 1 | 1.0/ 0.236 | ||
A/T | 2 (0.5) | 0 (0) | 0 |
SNP | Model | Control (n = 403) | Sport (n = 108) | OR | 95% CI | p * |
---|---|---|---|---|---|---|
rs10497520 | Co-dominant | |||||
C/C | 320 (79.4) | 92 (85.2) | 1 | 0.345/ 0.380 | ||
C/T | 80 (19.9) | 15 (13.9) | 0.65 | 0.36–1.19 | ||
T/T | 3 (0.7) | 1 (0.9) | 1.16 | 0.12–11.28 | ||
Dominant | ||||||
C/C | 320 (79.4) | 92 (85.2) | 1 | 0.167/ 0.190 | ||
C/T-T/T | 83 (20.6) | 16 (14.8) | 0.67 | 0.37–1.20 | ||
Recessive | ||||||
C/C-C/T | 400 (99.3) | 107 (99.1) | 1 | 0.852/ 0.838 | ||
T/T | 3 (0.7) | 1 (0.9) | 1.25 | 0.13–12.10 | ||
Over-dominant | ||||||
C/C-T/T | 323 (80.1) | 93 (86.1) | 1 | 0.146/ 0.167 | ||
C/T | 80 (19.9) | 15 (13.9) | 0.65 | 0.36–1.18 | ||
rs55837610 | Co-dominant | |||||
A/A | 399 (99.0) | 107 (99.1) | 1 | 0.950/ 0.838 | ||
A/G | 4 (1.0) | 1 (0.9) | 0.93 | 0.10–8.43 | ||
rs72648256 | Co-dominant | |||||
A/A | 401 (99.5) | 108 (100.0) | 1 | 1.0/ 0.195 | ||
A/T | 2 (0.5) | 0 (0) | 0 |
SNP | Model | Control (n = 403) | Sport (n = 140) | OR | 95% CI | p * |
---|---|---|---|---|---|---|
rs10497520 | Co-dominant | |||||
C/C | 320 (79.4) | 102 (72.9) | 1 | 1 | 0.276/ 0.397 | |
C/T | 80 (19.9) | 37 (26.4) | 1.45 | 0.93–2.27 | ||
T/T | 3 (0.7) | 1 (0.7) | 1.05 | 0.11–10.16 | ||
Dominant | ||||||
C/C | 320 (79.4) | 102 (72.9) | 1 | 1 | 0.114/ 0.181 | |
C/T-T/T | 83 (20.6) | 38 (27.1) | 1.44 | 0.92–2.24 | ||
Recessive | ||||||
C/C-C/T | 400 (99.3) | 139 (99.3) | 1 | 1 | 0.971/ 0.973 | |
T/T | 3 (0.7) | 1 (0.7) | 0.96 | 0.10–9.30 | ||
Over-dominant | ||||||
C/C-T/T | 323 (80.1) | 103 (73.6) | 1 | 1 | 0.108/ 0.174 | |
C/T | 80 (19.9) | 37 (26.4) | 1.45 | 0.93–2.27 | ||
rs55837610 | Co-dominant | |||||
A/A | 399 (99.0) | 139 (99.3) | 1 | 1 | 0.760/ 0.665 | |
A/G | 4 (1.0) | 1 (0.7) | 0.72 | 0.08–6.48 | ||
rs72648256 | Co-dominant | |||||
A/A | 401 (99.5) | 138 (98.6) | 1 | 1 | 0.299/ 0.275 | |
A/T | 2 (0.5) | 2 (1.4) | 2.91 | 0.41–20.83 |
Group | SNP | Model | High Elite | Elite | Sub-Elite | ||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | ||||
Sprint/power | rs10497520 | Co-dominant | C/T vs. C/C | 4.44 | 1.75–11.30 * | 1.62 | 0.82–3.24 | 2.26 | 1.10–4.66 |
T/T vs. C/C | 0 | 0 | 0 | ||||||
Dominant | 4.28 | 1.69–10.88 * | 1.57 | 0.79–3.12 | 2.18 | 1.06–4.48 | |||
Recessive | 0 | 0 | 0 | ||||||
Over-dominant | 4.49 | 1.76–11.41 * | 1.64 | 0.82–3.27 | 2.28 | 1.11–4.70 * | |||
rs55837610 | Co-dominant | A/G vs. A/A | 0 | 2.27 | 0.25–20.73 | 2.85 | 0.31–26.2 | ||
rs72648256 | Co-dominant | A/T vs. A/A | 0 | 0 | 0 | ||||
Endurance | rs10497520 | Co-dominant | C/T vs. C/C | 1.07 | 0.34–3.30 | 0.82 | 0.37–1.82 | 0.32 | 0.10–1.05 |
T/T vs. C/C | 0 | 0 | 2.81 | 0.28–27.66 | |||||
Dominant | 1.03 | 0.33–3.18 | 0.79 | 0.36–1.76 | 0.41 | 0.14–1.17 | |||
Recessive | 0 | 0 | 3.25 | 0.33–31.98 | |||||
Over-dominant | 1.08 | 0.35–3.33 | 0.83 | 0.37–1.84 | 0.31 | 0.09–1.03 | |||
rs55837610 | Co-dominant | A/G vs. A/A | 0 | 2.17 | 0.24–19.82 | 0 | |||
rs72648256 | Co-dominant | A/T vs. A/A | 0 | 0 | 0 | ||||
Mixed-sports | rs10497520 | Co-dominant | C/T vs. C/C | 2.18 | 0.78–6.08 | 1.28 | 0.68–2.40 | 1.45 | 0.78–2.71 |
T/T vs. C/C | 0 | 0 | 2.42 | 0.25–23.82 | |||||
Dominant | 2.10 | 0.76–5.85 | 1.23 | 0.66–2.31 | 1.49 | 0.81–2.74 | |||
Recessive | 0 | 0 | 2.22 | 0.23–21.71 | |||||
Over-dominant | 2.20 | 0.79–6.13 | 1.29 | 0.69–2.42 | 1.44 | 0.77–2.67 | |||
rs55837610 | Co-dominant | A/G vs. A/A | 0 | 0 | 1.66 | 0.18–15.13 | |||
rs72648256 | Co-dominant | A/T vs. A/A | 0 | 6.68 | 0.92–48.34 | 0 |
SNP | Model | Control | Sport (n = 19) | OR | 95% CI | p * |
---|---|---|---|---|---|---|
rs10497520 | Co-dominant | |||||
C/C | 320 (79.4) | 9 (47.4) | 1 | 1 | 0.009694/ 0.009898 | |
C/T | 80 (19.9) | 10 (52.6) | 4.44 | 1.75–11.30 | ||
T/T | 3 (0.7) | 0 (0) | 0 | 0 | ||
Dominant | ||||||
C/C | 320 (79.4) | 9 (47.4) | 1 | 1 | 0.002793/ 0.003333 | |
C/T-T/T | 83 (20.6) | 10 (52.6) | 4.28 | 1.69–10.88 | ||
Recessive | ||||||
C/C-C/T | 400 (99.3) | 19 (100.0) | 1 | 1 | 1.0/ 0.617126 | |
T/T | 3 (0.7) | 0 (0) | 0 | 0 | ||
Over-dominant | ||||||
C/C-T/T | 323 (80.1) | 9 (47.4) | 1 | 1 | 0.002092/ 0.002584 | |
C/T | 80 (19.9) | 10 (52.6) | 4.49 | 1.76–11.41 | ||
rs55837610 | Co-dominant | |||||
A/A | 399 (99.0) | 19 (100.0) | 1 | 1 | 1.0/ 0.5278 | |
A/G | 4 (1.0) | 0 (0) | 0 | 0 | ||
rs72648256 | Co-dominant | |||||
A/A | 401 (99.5) | 19 (100.0) | 1 | 1 | 1.0/ 0.5861 | |
A/T | 2 (0.5) | 0 (0) | 0 | 0 |
rs10497520 | rs55837610 | rs72648256 | Frequency |
---|---|---|---|
C | A | A | 0.87350 |
C | A | T | 0.00266 |
C | G | A | 0.00533 |
T | A | A | 0.11851 |
Group | All | High Elite | Elite | Sub-Elite |
---|---|---|---|---|
Sprint/power | 0.80 (0.00146) | 1.42 (0.003) | 0.46 (0.197) | 0.77 (0.044) |
Endurance | −0.41 (0.191) | −0.03 (0.961) | −0.24 (0.564) | −0.97 (0.079) |
Mixed | 0.34 (0.158) | 0.64 (0.231) | 0.21 (0.530) | 0.37 (0.237) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leońska-Duniec, A.; Borczyk, M.; Piechota, M.; Korostyński, M.; Brodkiewicz, A.; Cięszczyk, P. TTN Variants Are Associated with Physical Performance and Provide Potential Markers for Sport-Related Phenotypes. Int. J. Environ. Res. Public Health 2022, 19, 10173. https://doi.org/10.3390/ijerph191610173
Leońska-Duniec A, Borczyk M, Piechota M, Korostyński M, Brodkiewicz A, Cięszczyk P. TTN Variants Are Associated with Physical Performance and Provide Potential Markers for Sport-Related Phenotypes. International Journal of Environmental Research and Public Health. 2022; 19(16):10173. https://doi.org/10.3390/ijerph191610173
Chicago/Turabian StyleLeońska-Duniec, Agata, Małgorzata Borczyk, Marcin Piechota, Michał Korostyński, Andrzej Brodkiewicz, and Paweł Cięszczyk. 2022. "TTN Variants Are Associated with Physical Performance and Provide Potential Markers for Sport-Related Phenotypes" International Journal of Environmental Research and Public Health 19, no. 16: 10173. https://doi.org/10.3390/ijerph191610173
APA StyleLeońska-Duniec, A., Borczyk, M., Piechota, M., Korostyński, M., Brodkiewicz, A., & Cięszczyk, P. (2022). TTN Variants Are Associated with Physical Performance and Provide Potential Markers for Sport-Related Phenotypes. International Journal of Environmental Research and Public Health, 19(16), 10173. https://doi.org/10.3390/ijerph191610173