Reducing Anxiety and Social Stress in Primary Education: A Breath-Focused Heart Rate Variability Biofeedback Intervention
Abstract
:1. Introduction
1.1. Polyvagal Theory
1.2. Theory of the Process Model of Emotion Regulation
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Instruments and Materials
2.4. Procedure
3. Results
3.1. Anxiety
3.2. Social Stress
4. Conclusions
Limitations and Future Proposals
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inchley, J.; Currie, D.; Vieno, A.; Torsheim, T.; Ferreira-Borges, C.; Weber, M.M.; Bernekow, V.; Breda, S. Adolescent Alcohol-Related Behaviors: Trends and Inequalities in the WHO European Region, 2002–2014: Observations from the Health Behavior in School-aged Children (HBSC) WHO Collaborative Cross-National Study; World Health Organization: Copenhagen, Denmark, 2018. [Google Scholar]
- Kaczmarek, M.; Trambacz-Oleszak, S. HRQoL impact of stressful life events in children beginning primary school: Results of a prospective study in Poland. Qual. Life Res. 2017, 26, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Pirskanen, H.; Jokinen, K.; Karhinen-Soppi, A.; Notko, M.; Lämsä, T.; Otani, M.; Rogero-García, J. Children’s emotions in educational settings: Teacher perceptions from Australia, China, Finland, Japan and Spain. Early Child. Educ. J. 2019, 47, 417–426. [Google Scholar] [CrossRef]
- Valizadeh, L.; Farnam, A.; Farshi, M.R. Investigation of stress symptoms among primary school children. Int. J. Caring Sci. 2012, 1, 25–30. [Google Scholar] [CrossRef]
- Varela-Garay, R.M.; Ávila, E.M.; Martínez, B. School violence: An analysis from different contexts of interaction. Interv. Psicosoc. 2013, 22, 25–32. [Google Scholar] [CrossRef]
- Schwabe, L.; Joëls, M.; Roozend, B.; Wolf, O.T.; Oitzl, M.S. Stress effects on memory: An update and integration. Neurosci. Biobehav. Rev. 2012, 36, 1740–1749. [Google Scholar] [CrossRef]
- Morgan, P.L.; Farkas, G.; Wang, Y.; Hillemeier, M.M.; Oh, Y.; Maczuga, S. Executive function deficits in kindergarten predict repeated academic difficulties across elementary school. Early Child Res. Q. 2019, 46, 20–32. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal, and Coping; Springer Publishing Company: New York, NY, USA, 1984. [Google Scholar]
- Porges, S.W. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 1995, 32, 301–318. [Google Scholar] [CrossRef]
- Xiang, Z.; Tan, S.; Kang, Q.; Zhang, B.; Zhu, L. Longitudinal effects of examination stress on psychological well-being and a possible mediating role of self-esteem in chinese high school students. J. Happiness Stud. 2019, 20, 283–305. [Google Scholar] [CrossRef]
- Power, T.G. Stress and coping in childhood: The parents’ role. Parent. Sci. Pract. 2004, 4, 271–317. [Google Scholar] [CrossRef]
- Yang, Q.; Tian, L.; Huebner, E.S.; Zhu, X. Relations among academic achievement, self-esteem, and subjective well-being in school among elementary school students: A longitudinal mediation model. Sch. Psychol. Int. 2019, 34, 328–340. [Google Scholar] [CrossRef]
- Pozos-Radillo, B.E.; Preciado-Serrano, M.; Campos, A.R.; Acosta-Fernández, M.; Aguilera, M. Estrés académico y síntomas físicos, psicológicos y comportamentales en estudiantes mexicanos de una universidad pública. Ansiedad Y Estrés 2015, 21, 35–42. [Google Scholar]
- Trueba, A.F.; Smith, N.B.; Auchus, R.J.; Ritz, T. Academic exam stress and depressive mood are associated with reductions in exhaled nitric oxide in healthy individuals. Biol. Psychol. 2013, 93, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Masi, G.; Brovedani, P. The hippocampus, neurotrophic factors and depression. CNS Drugs 2011, 25, 913–931. [Google Scholar] [CrossRef]
- Nesse, R.M.; Bhatnagar, S.; Ellis, B. Evolutionary origins and functions of the stress response system. In Stress: Concepts, Cognition, Emotion, and Behavior; Academic Press: Cambridge, MA, USA, 2016; pp. 95–101. [Google Scholar] [CrossRef]
- Escobar, M.; Trianes, M.V.; Fernández-Baena, F.J.; Miranda Páez, J. Relaciones entre aceptación sociométrica escolar e inadaptación socioemocional, estrés cotidiano y afrontamiento. Rev. Lat. Am. Psicol. 2010, 42, 469–479. [Google Scholar]
- Murray, J.; Farrington, D.P.; Sekol, I.; Olsen, R.F. Effects of parental imprisonment on child antisocial behaviour and mental health: A systematic review. Campbell Syst. Rev. 2009, 5, 1–105. [Google Scholar] [CrossRef]
- Weems, C.F.; Silverman, W.K. An integrative model of control: Implications for understanding emotion regulation and dysregulation in childhood anxiety. J. Affect. 2006, 91, 113–124. [Google Scholar] [CrossRef]
- Delors, J. La educación Encierra Un Tesoro, Informe a la UNESCO de la Comisión Internacional Sobre la Educación Para El Siglo XXI; Ediciones Unesco: Paris, France, 1996; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000109590_spa (accessed on 3 January 2022).
- Schlesier, J.; Roden, I.; Moschner, B. Emotion regulation in primary school children: A systematic review. Child. Youth Serv. Rev. 2019, 100, 239–257. [Google Scholar] [CrossRef]
- Vierhaus, M.; Lohaus, A.; Wild, E. The development of achievement emotions and coping/emotion regulation from primary to secondary school. Learn. Instr. 2016, 42, 12–21. [Google Scholar] [CrossRef]
- Zhang, W.; Ouyang, Y.; Tang, F.; Chen, J.; Li, H. Breath-focused mindfulness alters early and late components during emotion regulation. Brain Cogn. 2019, 135, 103585. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. Polyvagal theory: A science of safety. Front. Integr. Neurosci. 2022, 16. [Google Scholar] [CrossRef]
- Karavaev, A.S.; Kiselev, A.R.; Gridnev, V.I.; Borovkova, E.I.; Prokhorov, M.D.; Posnenkova, O.M.; Shvartz, V.A. Phase and frequency locking of 0.1-Hz oscillations in heart rate and baroreflex control of blood pressure by breathing of linearly varying frequency as determined in healthy subjects. Hum. Physiol. 2013, 39, 416–425. [Google Scholar] [CrossRef]
- Lin, I.M.; Wang, S.Y.; Fan, S.Y.; Peper, E.; Huang, C.Y. A single session of heart rate variability biofeedback produced greater increases in heart rate variability than autogenic training. Appl. Psychophysiol. Biofeedback 2020, 45, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Bothe, D.A.; Grignon, J.B.; Olness, K.N. The effects of a stress management intervention in elementary school children. J. Dev. Behav. 2014, 35, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A. Biofeedback as An Intervention to Increase Self-Regulation in School-Aged Children in An Urban Charter School. Doctoral Dissertation, Widener University, Chester, Pensilvania, 2019. Available online: https://search.proquest.com/docview/2284756111/fulltextPDF/20682CE768684BC1PQ/1?accountid=17248 (accessed on 1 September 2021).
- Institute of HeartMath. EmWave Desktop ©; HeartMath: Boulder Creek, CA, USA, 2012. [Google Scholar]
- Kim, S.; Zemon, V.; Cavallo, M.M.; Rath, J.F.; McCarty, R.; Foley, F.W. Heart rate variability biofeedback, executive functioning and chronic brain injury. Brain Inj. 2013, 27, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.F.; DiFrancesco, D.; Noble, S.J. How does adrenaline accelerate the heart? Nature 1979, 280, 235–236. [Google Scholar] [CrossRef]
- Weil-Malherbe, H.; Axelrod, J.; Tomchick, R. Blood-brain barrier for adrenaline. Science 1959, 129, 1226–1227. [Google Scholar] [CrossRef]
- Chen, C.C.; Williams, C. Interactions between epinephrine, ascending vagal fibers, and central noradrenergic systems in modulating memory for emotionally arousing events. Fron. Behav. Neurosci. 2012, 6, 35–55. [Google Scholar] [CrossRef]
- Noble, L.J.; Meruva, V.B.; Hays, S.A.; Rennaker, R.L.; Kilgard, M.P.; McIntyre, C.K. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimul. 2019, 12, 9–18. [Google Scholar] [CrossRef]
- Noma, A.; Trautwein, W. Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell. Pflügers Arch. 1978, 377, 193–200. [Google Scholar] [CrossRef]
- Osterrieder, W.; Noma, A.; Trautwein, W. On the kinetics of the potassium channel activated by acetylcholine in the SA node of the rabbit heart. Pflugers Arch. 1980, 386, 101–109. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Balzarotti, S.; Biassoni, F.; Colombo, B.; Ciceri, M.R. Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biol. Psychol. 2017, 130, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, S.; McGrath, J.J. Inter-relation between autonomic and HPA axis activity in children and adolescents. Biol. Psychol. 2016, 117, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.L.; Claassen, N.; Becker, P.; Viljoen, M. Validity of commonly used heart rate variability markers of autonomic nervous system function. Neuropsychobiology 2019, 78, 14–26. [Google Scholar] [CrossRef]
- Hildebrandt, L.K.; McCall, C.; Engen, H.G.; Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 2016, 53, 880–890. [Google Scholar] [CrossRef]
- Porges, S.W. The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self-Regulation; WW Norton & Company: New York, NY, USA, 2011. [Google Scholar]
- Porges, S.W. Norton Series on Interpersonal Neurobiology. The Pocket Guide to the Polyvagal Theory: The Transformative Power of Feeling Safe; WW Norton & Company: New York, NY, USA, 2017. [Google Scholar]
- Calkins, S.D. Commentary: Conceptual and methodological challenges to the study of emotion regulation and psychopathology. J. Psychopathol. Behav. Assess. 2010, 32, 92–95. [Google Scholar] [CrossRef]
- Kuhn, M.A.; Ahles, J.J.; Aldrich, J.T.; Wielgus, M.D.; Mezulis, A.H. Physiological self-regulation buffers the relationship between impulsivity and externalizing behaviors among nonclinical adolescents. J. Youth Adolesc. 2018, 47, 829–841. [Google Scholar] [CrossRef]
- Schwartz, M.S.; Andrasik, F. Evaluating research in clinical biofeedback. In Biofeedback: A Practitioner’s Guide; Schwartz, M.S., Andrasik, F., Eds.; Guilford Press: New York, NY, USA, 2003; pp. 867–880. [Google Scholar]
- Aritzeta, A.; Soroa, G.; Balluerka, N.; Muela, A.; Gorostiaga, A.; Aliri, J. Reducing Anxiety and improving academic performance through a biofeedback relaxation training program. Appl. Psychophysiol. Biofeedback 2017, 42, 193–202. [Google Scholar] [CrossRef]
- Aritzeta, A.; Aranberri-Ruiz, A.; Soroa, G.; Mindeguia, R.; Olarza, A. Emotional Self-Regulation in Primary Education: A Heart Rate-Variability Biofeedback Intervention Programme. Int. J. Environ. Res. Public Health 2022, 19, 5475. [Google Scholar] [CrossRef]
- Kiselev, A.R.; Karavaev, A.S.; Gridnev, V.I.; Prokhorov, M.D.; Ponomarenko, V.I.; Borovkova, E.I.; Bezruchko, B.P. Method of estimation of synchronization strength between low-frequency oscillations in heart rate variability and photoplethysmographic waveform variability. Russ. Open Med. J. 2016, 5, e0101. [Google Scholar] [CrossRef]
- Lehrer, P.; Eddie, D. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Appl. Psychophysiol. Biofeedback 2013, 38, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Arnsten, A.F.; Raskind, M.A.; Taylor, F.B.; Connor, D.F. The Effects of Stress Exposure on Prefrontal Cortex: Translating Basic Research into Successful Treatments for Post-Traumatic Stress Disorder. Neurobiol. Stress 2015, 1, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Goessl, V.C.; Curtiss, J.E.; Hofmann, S.G. The effect of heart rate variability biofeedback training on stress and anxiety: A meta-analysis. Psychol. Med. 2017, 47, 2578–2586. [Google Scholar] [CrossRef]
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Sgobba, P.; Zhang, Y. Heart rate variability biofeedback improves emotional and physical health and performance: A systematic review and meta analysis. Appl. Psychophysiol. Biofeedback 2020, 45, 109–129. [Google Scholar] [CrossRef]
- Shaffer, F.; Meehan, Z.M. A practical guide to resonance frequency assessment for heart rate variability biofeedback. Front. Neurosci. 2020, 14, 1055–1069. [Google Scholar] [CrossRef]
- Gross, J.J. Emotion regulation: Current status and future prospects. Psychol. Inq. 2015, 26, 1–26. [Google Scholar] [CrossRef]
- Ochsner, K.N.; Gross, J.J. The neural bases of emotion and emotion regulation: A valuation perspective. In Handbook of Emotion Regulation; Gross, J.J., Ed.; Guilford Press: New York, NY, USA, 2014; pp. 23–42. [Google Scholar]
- Gross, J.J.; Sheppes, G.; Urry, H.L. Cognition and Emotion Lecture at the 2010 SPSP Emotion Preconference. Cogn. Emot. 2011, 25, 765–781. [Google Scholar] [CrossRef]
- Opitz, P.C.; Lee, I.A.; Gross, J.J.; Urry, H.L. Fluid cognitive ability is a resource for successful emotion regulation in older and younger adults. Fron. Psychol. 2014, 5, 609–622. [Google Scholar] [CrossRef]
- Beedie, C.J.; Lane, A.M.; Wilson, M.G. A possible role for emotion and emotion regulation in physiological responses to false performance feedback in 10 mile laboratory cycling. Appl. Psychophysiol. Biofeedback 2012, 37, 269–277. [Google Scholar] [CrossRef]
- Raio, C.M.; Orederu, T.A.; Palazzolo, L.; Shurick, A.A.; Phelps, E.A. Cognitive emotion regulation fails the stress test. Proc. Natl. Acad. Sci. USA 2013, 110, 15139–15144. [Google Scholar] [CrossRef]
- Sheppes, G.; Gross, J.J. Is timing everything? Temporal considerations in emotion regulation. Pers. Soc. Psychol. Rev. 2011, 15, 319–331. [Google Scholar] [CrossRef]
- Decety, J.; Michalska, K.J.; Kinzler, K.D. The contribution of emotion and cognition to moral sensitivity: A neurodevelopmental study. Cereb. Cortex 2011, 22, 209–220. [Google Scholar] [CrossRef]
- Silvers, J.A.; Insel, C.; Powers, A.; Franz, P.; Helion, C.; Martin, R.E.; Mischel, V.; Weber, J.; Ochsner, K.N. vlPFC–vmPFC–amygdale interactions under lineage-related differences in cognitive regulation of emotion. Cereb. Cortex 2016, 27, 3502–3514. [Google Scholar] [CrossRef]
- Darling-Churchill, K.E.; Lippman, L. Early childhood social and emotional development: Advancing the field of measurement. J. Appl. Dev. Psychol. 2016, 45, 1–7. [Google Scholar] [CrossRef]
- Etkin, A.; Büchel, C.; Gross, J.J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 2015, 16, 693–700. [Google Scholar] [CrossRef]
- Graziano, P.; Derefinko, K. Cardiac vagal control and children’s adaptive functioning: A meta-analysis. Biol. Psychol. 2013, 94, 22–37. [Google Scholar] [CrossRef]
- Silvers, J.S.; Insel, C.; Powers, A.; Franz, P.; Helion, C.; Martin, R.; Weber, J.; Mischel, W.; Casey, B.J.; Ochsner, J.N. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev. Cogn. Neurosci. 2017, 25, 128–137. [Google Scholar] [CrossRef]
- Thomas, J.C.; Letourneau, N.; Campbell, T.S.; Tomfohr-Madsen, L.; Giesbrecht, G.F. Developmental origins of infant emotion regulation: Mediation by temperamental negativity and moderation by maternal sensitivity. Dev. Psychol. 2017, 53, 611. [Google Scholar] [CrossRef]
- Babkirk, S.; Rios, V.; Dennis, T.A. The late positive potential predicts emotion regulation strategy use in school-aged children concurrently and two years later. Dev. Sci. 2014, 18, 832–841. [Google Scholar] [CrossRef]
- López-Pérez, B.; Gummerum, M.; Wilson, E.; Dellaria, G. Studying Children’s Intrapersonal Emotion Regulation Strategies from the Process Model of Emotion Regulation, J. Genet. Psychol. 2017, 178, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, J. Effects of a programme to improve emotional intelligence on psychosocial adjustment and academic performance in primary education. J. Educ. Dev. 2017, 40, 503–553. [Google Scholar] [CrossRef]
- Lavy, S. A review of character strengths interventions in twenty-first-century schools: Their importance and how they can be fostered. Appl. Res. Qual. Life 2019, 15, 573–596. [Google Scholar] [CrossRef]
- Walker, S.; Graham, L. At risk students and teacher-student relationships: Student characteristics, attitudes to school and classroom climate. Int. J. Incl. Educ. 2021, 25, 896–913. [Google Scholar] [CrossRef]
- Somerville, M.P.; Whitebread, D. Emotion regulation and well-being in primary classrooms situated in low-socioeconomic communities. Br. J. Educ. Psychol. 2019, 89, 565–584. [Google Scholar] [CrossRef]
- Tutsch, S.F.; Fowler, P.; Kumar, G.; Weaver, A.; Minter, C.I.J.; Baccaglini, L. Universal anxiety interventions in united states schools: A systematic review. Health Behav. Policy Rev. 2019, 6, 438–454. [Google Scholar] [CrossRef]
- Van Loon, A.W.G.; Creemers, H.E.; Beumer, W.Y.; Okorn, A.; Vogelaar, S.; Saab, N.; Miers, A.C.; Westenberg, P.M.; Asscher, J.J. Can schools reduce adolescent psychological stress? A multilevel meta-analysis of the effectiveness of school-based intervention programs. J. Youth Adolesc. 2020, 49, 1127–1145. [Google Scholar] [CrossRef]
- Zachariou, A.; Whitebread, D. The relation between early self-regulation and classroom context: The role of adult presence, the task’s source of initiation, and social context. Br. J. Educ. Psychol. 2021, 92, 861–880. [Google Scholar] [CrossRef]
- Reynolds, C.R.; Kamphaus, R.W. BASC: Sistema de Evaluación de la Conducta en Niños Y Adolescentes; TEA Ediciones: Madrid, Spain, 2004. [Google Scholar]
- Morera, L.P.; Tempesti, T.C.; Pérez, E.; Medrano, L.A. Biomarcadores en la medición del estrés: Una revisión sistemática. Ansiedad Y Estrés 2019, 25, 49–58. [Google Scholar] [CrossRef]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef]
- Epel, E.S.; Crosswell, A.D.; Mayer, S.E.; Prather, A.A.; Slavich, G.M.; Puterman, E.; Mendes, W.B. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 2018, 49, 146–169. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. The brain on stress: Toward an integrative approach to brain, body, and behavior. Perspect. Psychol. Sci. 2013, 8, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Jaureguizar, J.; Bernaras, E.; Ibabe, I.; Sarasa, M. Scholar, clinical and emotional maladjustment in 8-12 school-age children: Adaptation of the Self-Report Version of the Behavior Assessment System for Children (BASC-S2) 1to the Basque-Speaking Population. Rev. Psicodidáctica 2012, 17, 415–439. [Google Scholar] [CrossRef]
- Rush, K.S.; Golden, M.E.; Mortenson, B.P.; Albohn, D.; Horger, M. The effects of a mindfulness and biofeedback program on the on-and off-task behaviors of students with emotional behavioral disorders. Contemp. Sch. Psychol. 2017, 21, 347–357. [Google Scholar] [CrossRef]
- Kelley, K.; Preacher, K.J. On Effect Size. Psychol. Methods 2012, 17, 137–152. [Google Scholar] [CrossRef]
- Reynolds, C.R.; Richmond, B.O. Revised Children’s Manifest Anxiety Scale (RCMAS); Western Psychological Services: Los Angeles, CA, USA, 1985. [Google Scholar]
- Reynolds, C.R.; Kamphaus, R.W. Behavior Assessment System for Children BASC-3, 3rd ed.; MN Pearson: Bloomington, IN, USA, 2015. [Google Scholar]
- Lang, P.J. Self-Assessment Manikin (SAM); Elsevier: London, UK, 1980. [Google Scholar]
- Sabatier, C.; Restrepo Cervantes, D.; Moreno Torres, M.; Hoyos De los Rios, O.; Palacio Sañudo, J. Emotion Regulation in Children and Adolescents: Concepts, processes and influences. Psicol. Caribe 2017, 34, 101–110. [Google Scholar] [CrossRef]
- Crick, N.R.; Dodge, K.A. A review and reformulation of social information-processing mechanisms in children’s social adjustment. Psychol. Bull. 1994, 115, 74. [Google Scholar] [CrossRef]
- Daunic, A.P.; Smith, S.W.; Garvan, C.W.; Barber, B.R.; Becker, M.K.; Peters, C.D.; Taylor, G.G.; Van Loan, C.L.; Li, W.; Naranjo, A.H. Reducing developmental risk for emotional/behavioral problems: A randomized controlled trial examining the tools for getting along curriculum. J. Sch. Psychol. 2012, 50, 149–166. [Google Scholar] [CrossRef]
- Fraser, M.W.; Day, S.H.; Galinsky, M.; Hodges, V.; Smokowski, P.R. Preventing youth violence: A single-blind, randomized trial of a multi-element program for aggressive, rejected children in elementary school. Res. Soc. Work Pract. 2004, 13, 1–22. [Google Scholar]
- Sichko, S.; Borelli, J.L.; Smiley, P.A.; Goldstein, A.; Rasmussen, H.F. Child and maternal attachment predict school-aged children’s psychobiological convergence. Dev. Psychobiol. 2018, 60, 913–926. [Google Scholar] [CrossRef]
- García, F.; Gracia, E. What is the optimum parental socialisation style in Spain? A study with children and adolescents aged 10–14 years. J. Educ. Dev. 2010, 33, 365–384. [Google Scholar] [CrossRef]
- Brissette, I.; Scheier, M.F.; Carver, C.S. The role of optimism in social network development, coping, and psychological adjustment during a life transition. J. Pers. Soc. Psychol. 2002, 82, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Conley, C.S.; Shapiro, J.B.; Huguenel, B.M.; Kirsch, A.C. Navigating the college years: Developmental trajectories and gender differences in psychological functioning, cognitive-affective strategies, and social well-being. Emerg. Adulthood 2020, 8, 103–117. [Google Scholar] [CrossRef]
- Bruce, J.; Poggi Davis, E.; Gunnar, M.R. Individual differences in children’s cortisol response to the beginning of a new school year. Psychoneuroendocrinology 2002, 27, 635–650. [Google Scholar] [CrossRef]
- Obradović, J.; Armstrong-Carter, E. Addressing educational inequalities and promoting learning through studies of stress physiology in elementary school students. Dev. Psychopathol. 2020, 32, 1899–1913. [Google Scholar] [CrossRef] [PubMed]
- Boen, C.E.; Kozlowski, K.; Tyson, K.D. “Toxic” schools? How school exposures during adolescence influence trajectories of health through young adulthood. SSM-Popul. Health 2020, 11, 100623. [Google Scholar] [CrossRef] [PubMed]
- Paulle, B. Toxic Schools; University of Chicago Press: Illinois, Chicago, IL, USA, 2013. [Google Scholar]
- Karrera, X.; Arguiñano, M.; Basasoro, C.; Castillo, A. Innovative pedagogical experiences at basque country inclusive schools. Br. J. Educ. Stud. 2020, 68, 753–770. [Google Scholar] [CrossRef]
- Murillo, F.J.; Belavi, G.; Pinilla, L.M. Public-private school segregation in spain. Papers 2018, 103, 307–337. [Google Scholar] [CrossRef]
- Extremera, N.; Duran, A.; Rey, L. Recursos personales, síndrome de estar quemado por el trabajo y sintomatología asociada al estrés en docentes de enseñanza primaria y secundaria. Ansiedad Estres 2010, 16, 47–60. [Google Scholar]
- Burić, I.; Moè, A. What makes teachers enthusiastic: The interplay of positive affect, self-efficacy and job satisfaction. Teach. Teach. Educ. 2020, 89, 103008. [Google Scholar] [CrossRef]
Cycle 1 | Cycle 2 | Cycle 3 | Total | |
---|---|---|---|---|
s | M (SD) | M (SD) | M (SD) | M (SD) |
Session 1 | 26.61 (31.93) | 23.78 (29.75) | 13.16 (19.88) | 23.25 (29.55) |
Session 5 | 49.77 (51.10) | 94.99 (60.56) | 76.39 (54.84) | 79.52 (60.47) |
Cycle 1 | Cycle 2 | Cycle 3 | |||||
---|---|---|---|---|---|---|---|
Treatment | Control | Treatment | Control | Treatment | Control | ||
M(SD) | M(SD) | M(SD) | M(SD) | M(SD) | M(SD) | ||
AN | Pre | 13.54 (1.82) | 13.78 (1.71) | 12.67 (2.18) | 12.90 (2.10) | 11.94 (2.57) | 12.32 (2.71) |
Post | 14.46 (1.61) | 13.30 (2.46) | 13.47 (2.07) | 12.83 (2.51) | 11.88 (1.93) | 13.69 (1.78) | |
Total | M(SD) | M(SD) | t | df | p | d | |
Pre | 12.81 (2.22) | 12.95 (2.16) | −0.73 | 503 | >0.05 | - | |
Post | 13.70 (1.98) | 12.79 (2.45) | 4579 | 488 | <0.001 | 0.42 | |
SS | Pre | 12.04 (1.47) | 12.50 (1.38) | 12.31 (1.73) | 12.49 (1.66) | 12.47 (1.81) | 11.93 (1.78) |
Post | 12.81 (1.49) | 12.00 (2.03) | 12.85 (1.43) | 12.34 (2.07) | 11.85 (2.07) | 13.27 (1.41) | |
Total | M(SD) | M(SD) | t | df | p | d | |
Pre | 12.45 (1.63) | 12.22 (1.67) | −1.55 | 503 | >0.05 | - | |
Post | 12.93 (1.45) | 12.23 (2.06) | 4.37 | 480 | <0.001 | −0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranberri-Ruiz, A.; Aritzeta, A.; Olarza, A.; Soroa, G.; Mindeguia, R. Reducing Anxiety and Social Stress in Primary Education: A Breath-Focused Heart Rate Variability Biofeedback Intervention. Int. J. Environ. Res. Public Health 2022, 19, 10181. https://doi.org/10.3390/ijerph191610181
Aranberri-Ruiz A, Aritzeta A, Olarza A, Soroa G, Mindeguia R. Reducing Anxiety and Social Stress in Primary Education: A Breath-Focused Heart Rate Variability Biofeedback Intervention. International Journal of Environmental Research and Public Health. 2022; 19(16):10181. https://doi.org/10.3390/ijerph191610181
Chicago/Turabian StyleAranberri-Ruiz, Ainara, Aitor Aritzeta, Amaiur Olarza, Goretti Soroa, and Rosa Mindeguia. 2022. "Reducing Anxiety and Social Stress in Primary Education: A Breath-Focused Heart Rate Variability Biofeedback Intervention" International Journal of Environmental Research and Public Health 19, no. 16: 10181. https://doi.org/10.3390/ijerph191610181
APA StyleAranberri-Ruiz, A., Aritzeta, A., Olarza, A., Soroa, G., & Mindeguia, R. (2022). Reducing Anxiety and Social Stress in Primary Education: A Breath-Focused Heart Rate Variability Biofeedback Intervention. International Journal of Environmental Research and Public Health, 19(16), 10181. https://doi.org/10.3390/ijerph191610181