Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Inclusion and Exclusion Criteria
2.4. Materials and Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glassman, G. Nutrition Lecture Part 2: Optimizing Performance. Available online: http://journal.crossfit.com/2007/11/nutrition-lecture-part-2-optim.tpl (accessed on 29 April 2020).
- Mehrab, M.; de Vos, R.-J.; Kraan, G.A.; Mathijssen, N.M.C. Injury Incidence and Patterns Among Dutch CrossFit Athletes. Orthop. J. Sports Med. 2017, 5, 2325967117745263. [Google Scholar] [CrossRef]
- Fisker, F.Y.; Kildegaard, S.; Thygesen, M.; Grosen, K.; Pfeiffer-Jensen, M. Acute Tendon Changes in Intense CrossFit Workout: An Observational Cohort Study. Scand. J. Med. Sci. Sports 2017, 27, 1258–1262. [Google Scholar] [CrossRef]
- CrossFit Inc. Official CrossFit Affiliate Map. Available online: https://map.crossfit.com/ (accessed on 2 January 2020).
- Schultz, J.; Parker, A.; Curtis, D.; Daniel, J. The Physiological and Psychological Benefits of CrossFit Training—A Pilot Study. Int. J. Exerc. Sci. 2016, 2, 14. [Google Scholar]
- CrossFit Inc. WOD “Annie”. Available online: https://www.crossfit.com/workout/2018/12/25 (accessed on 29 April 2020).
- CrossFit Inc. WOD “Coffey”. Available online: https://www.crossfit.com/workout/2013/12/11 (accessed on 29 April 2020).
- Gil-Antuñano, N.P.; Bonafonte, L.F.; Marqueta, P.M.; González, B.M.; Villegas-García, J.A. Consenso Sobre Bebidas Para El Deportista. Composición y Pautas de Reposición de Líquidos. Documento de Consenso de La Federación Española de Medicina Del Deporte. Archivos de Medicina del Deporte 2008, 25, 245–258. [Google Scholar]
- Glassman, G. What Is Fitness? Available online: https://journal.crossfit.com/article/what-is-fitness (accessed on 29 April 2020).
- Fry, A.C.; Ciroslan, D.; Fry, M.D.; LeRoux, C.D.; Schilling, B.K.; Chiu, L.Z.F. Anthropometric and Performance Variables Discriminating Elite American JuniorMen Weightlifters. J. Strength Cond. Res. 2006, 20, 861–866. [Google Scholar] [CrossRef]
- Ross, W.D.; Hebbelinck, M.; Van Gheluwe, B.; Lemmens, M.L. Kinanthropométrie et l’apprétiation de l’erreur de mesure. Kinanthropométrie 1972, 4, 23–24. [Google Scholar]
- Norton, K.; Olds, T. (Eds.) Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; University of New South Wales Press: Sidney, Australia, 1996; ISBN 0-86840-223-0. [Google Scholar]
- Heath, B.H.; Carter, J.E.L. A Modified Somatotype Method. Am. J. Phys. Anthropol. 1967, 27, 57–74. [Google Scholar] [CrossRef]
- Pacheco del Cerro, J.L. Análisis Antropométrico de Los Velocistas y Vallistas de Élite Españoles. Arch. Med. Del Deporte 1992, 9, 95–98. [Google Scholar]
- Fields, J.B.; Metoyer, C.J.; Casey, J.C.; Esco, M.R.; Jagim, A.R.; Jones, M.T. Comparison of Body Composition Variables across a Large Sample of National Collegiate Athletic Association Women Athletes from 6 Competitive Sports. J. Strength Cond. Res. 2018, 32, 2452–2457. [Google Scholar] [CrossRef]
- Pilis, K.; Stec, K.; Pilis, A.; Mroczek, A.; Michalski, C.; Pilis, W. Body Composition and Nutrition of Female Athletes. Rocz. Panstw. Zakl. Hig. 2019, 70, 243–251. [Google Scholar] [CrossRef]
- Canda, A.S. Variables Antropométricas de La Población Deportista Española; Lizalde, E., Ed.; Consejo Superior de Deportes: Madrid, 2012; ISBN 978-84-7949-220-5.
- Mangine, G.T.; Cebulla, B.; Feito, Y. Normative Values for Self-Reported Benchmark Workout Scores in CrossFit® Practitioners. Sports Med.-Open 2018, 4, 39–46. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do Physiological Measures Predict Selected CrossFit® Benchmark Performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. Protocolo Internacional Para La Valoración Antropométrica; UCAM Universidad Católica de Murcia, Ed.; Sociedad Internacional para el Avance de la Cineantropometría: Murcia, Spain, 2019; ISBN 978-84-92986-17-0. [Google Scholar]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-Body Skeletal Muscle Mass: Development and Cross-Validation of Anthropometric Prediction Models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Faulkner, J.A. Physiology of Swimming and Diving. In Exercise Physiology; Academic Press: Baltimore, MD, USA, 1968. [Google Scholar]
- Rocha, M.S.L. Peso Ósseo Do Brasileiro de Ambos Os Sexos de 17–25 Años. Arq. Anatomía Antropol. 1975, 1, 445–451. [Google Scholar]
- Alvero-Cruz, J.R.; Cabañas-Armesilla, M.D.; Herrero de Lucas, Á.; Martínez-Riaza, L.; Moreno-Pascual, C.; Porta-Manzañido, J.; Sillero-Quintana, M.; Sirvent-Belando, J.E. Protocolo de Valoración de La Composición Corporal Para El Reconocimiento Médico-Deportivo. Documento de Consenso Del Grupo Español de Cineantropometría de La Federación Española de Medicina Del Deporte. Arch. Med. Deporte 2009, 26, 166–179. [Google Scholar]
- Ross, W.D.; Wilson, N.C. A Stratagem for Proportional Growth Assessment. Acta Paediatr. Belg. 1974, 28, 169–182. [Google Scholar]
- Cabañas-Armesilla, M.D.; Esparza-Ros, F. Compendio de Cineantropometría; CTO Editorial: Madrid, Spain, 2009; Volume 2. [Google Scholar]
- Bellar, D.; Hatchett, A.; Judge, L.W.; Breaux, M.E.; Marcus, L. Herthe Relationship of Aerobic Capacity, Anaerobic Peak Power and Experience to Performance in CrossFit Exercise. Biol. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit Training Changes Brain-Derived Neurotrophic Factor and Irisin Levels at Rest, after Wingate and Progressive Tests, and Improves Aerobic Capacity and Body Composition of Young Physically Active Men and Women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- WHO Mean Body Mass Index (BMI). Available online: https://www.who.int/gho/ncd/risk_factors/bmi_text/en/ (accessed on 27 June 2020).
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic Performance of Body Mass Index to Identify Obesity as Defined by Body Adiposity: A Systematic Review and Meta-Analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef]
- Provencher, M.T.; Chahla, J.; Sanchez, G.; Cinque, M.E.; Kennedy, N.I.; Whalen, J.; Price, M.D.; Moatshe, G.; LaPrade, R.F. Body Mass Index Versus Body Fat Percentage in Prospective National Football League Athletes. J. Strength Cond. Res. 2018, 32, 1013–1019. [Google Scholar] [CrossRef]
- Canda, A.S. Deportistas de Alta Competición Con Índice de Masa Corporal Igual o Mayor a 30 Kg/m2. ¿Obesidad o Gran Desarrollo Muscular? Apunt. Med. L’esport 2017, 52, 29–36. [Google Scholar] [CrossRef]
- Chumlea, W.C.; Wisemandle, W.; Guo, S.S.; Siervogel, R.M. Relations between Frame Size and Body Composition and Bone Mineral Status. Am. J. Clin. Nutr. 2002, 75, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Padilla Alvarado, J.R. Perfil de Proporcionalidad y La Velocidad Del Lanzamiento En Jugadores de Béisbol. Rev. Int. Med. Y Cienc. Act. Física Deporte 2010, 10, 93–116. [Google Scholar]
- Cárceles, F.A.; Muyor, J.M.; Alvero-Cruz, J.R.; Isorna, M.; López-Miñarro, P.Á. Anthropometric Indexes in Young Elite Male Sprint Canoeists. Int. J. Morphol. 2012, 30, 583–587. [Google Scholar] [CrossRef]
- Taboada-Iglesias, Y.; Gutiérrez-Sánchez, Á.; Vernetta, M. Índices de Proporcionalidad y Composición Corporal de La Élite de Gimnasia Acrobática. Int. J. Morphol. 2015, 33, 996–1001. [Google Scholar] [CrossRef]
- Alacid, F.; López-Miñarro, P.Á.; Martínez, I.; Ferrer-López, V. Índices Antropométricos En Piragüistas de Categoría Infantil. Rev. Int. Med. Y Cienc. Act. Física Deporte 2011, 11, 58–76. [Google Scholar]
- Vidal Pérez, D.; Martínez-Sanz, J.M.; Ferriz-Valero, A.; Gómez-Vicente, V.; Ausó, E. Relationship of Limb Lengths and Body Composition to Lifting in Weightlifting. Int. J. Environ. Res. Public Health 2021, 18, 756. [Google Scholar] [CrossRef]
- Mayhew, J.L.; McCormick, T.P.; Piper, F.C.; Kurth, A.L.; Arnold, M.D. Relationships of Body Dimensions to Strength Performance in Novice Adolescent Male Powerlifters. Pediatric. Exerc. Sci. 1993, 5, 347–356. [Google Scholar] [CrossRef]
- Pons, V.; Riera, J.; Galilea, P.A.; Drobnic, F.; Banquells, M.; Ruiz, O. Características Antropométricas, Composición Corporal y Somatotipo Por Deportes. Datos de Referencia Del CAR de San Cugat, 1989–2013. Apunt. Med. L’esport 2015, 50, 65–72. [Google Scholar] [CrossRef]
(Kipping 1) Fran | Kelly |
21-15-9 Repetitions per Time | 5 Rounds for Time |
|
|
Time Cap 2: 9′ | Time Cap: 30′ |
Cindy | CrossFit Total |
AMRAP3in 20′ | Sum of the Best of Each Lift |
|
|
Minimum 12 sets | Time Cap: 15′ |
Male | Female | |||||||
---|---|---|---|---|---|---|---|---|
n | Mean ± Std Dev. | Median | Min–Max | n | Mean ± Std Dev. | Median | Min–Max | |
Kipping Fran (s) | 18 | 372 ± 78 | 349 | 233–523 | 6 | 375 ± 534 | 393 | 292–430 |
Kelly (s) | 18 | 1806 ± 174 | 1795 | 1373–2082 | 7 | 1712 ± 180 | 1660 | 1472–2027 |
Cindy (reps) | 19 | 577 ± 85 | 555 | 470–801 | 7 | 566 ± 85 | 605 | 453–660 |
Shoulder Press (kg) | 19 | 63.8 ± 7.3 | 63,0 | 52.5–80.0 | 8 | 43.3 ± 4.2 | 42,8 | 37.5–50.0 |
Back Squat (kg) | 19 | 126.2 ± 11.4 | 125.0 | 110.0–160.0 | 8 | 89.8 ± 5.5 | 90.0 | 83.0–100.0 |
Dead Lift (kg) | 19 | 165.8 ± 16.6 | 170.0 | 140.0–190.0 | 8 | 109.7 ± 10.4 | 110.0 | 97.5–125.0 |
CrossFit Total (kg) | 19 | 355.8 ± 29.1 | 355.0 | 305.0–420.0 | 8 | 242.7 ± 15.9 | 244.0 | 222.5–260.0 |
Male (n = 19) | Female (n = 8) | ||||||
---|---|---|---|---|---|---|---|
Mean ± Std Dev | Median | Min–Max | Mean ± Std Dev. | Median | Min–Max | ||
Basics | Age (years) | 37 ± 6 | 39 | 24–44 | 30 ± 7 | 28 | 23–40 |
Body mass (kg) | 79.3 ± 8.3 | 78.6 | 66.5–96.3 | 60.9 ± 5.2 | 61.8 | 52.3–67.0 | |
Stature (cm) | 174.0 ± 4.5 | 173.6 | 163.3–180.9 | 163.5 ± 3.4 | 162.0 | 160.3–169.7 | |
Sitting height (cm) | 93.3 ± 2.2 | 93.5 | 89.4–97.3 | 87.0 ± 1.6 | 86.9 | 85.4–90.2 | |
Arm span (cm) | 177.4 ± 6.1 | 178.0 | 160–185.2 | 164.5 ± 4.6 | 166.1 | 155.2–168.5 | |
Skinfolds (mm) | Triceps | 7.3 ± 2.9 | 6.5 | 4.0–13.8 | 11.8 ± 2.8 | 12.3 | 8.0–16.6 |
Subscapular | 10.6 ± 4.7 | 9.1 | 6.1–21.7 | 7.7 ± 1.7 | 7.1 | 5.9–11.1 | |
Biceps | 3.8 ± 1.3 | 3.5 | 2.2–7.0 | 4.8 ± 1.8 | 3.8 | 3.0–7.7 | |
Iliac crest | 14.5 ± 8.3 | 12.5 | 5.3–34.2 | 9.3 ± 1.5 | 9.3 | 7.2–11.2 | |
Supraspinale | 7.5 ± 3.7 | 6.2 | 3.6–16.6 | 5.8 ± 0.9 | 5.7 | 5.0–7.8 | |
Abdominal | 16.4 ± 8.4 | 16.0 | 4.9–34.1 | 9.8 ± 0.9 | 9.8 | 8.7–11.4 | |
Thigh | 10.6 ± 4.2 | 10.2 | 5.0–22.0 | 20.5 ± 4.3 | 20.7 | 13.5–27.1 | |
Calf | 6.1 ± 2.7 | 5.3 | 2.8–12.6 | 12.0 ± 3.7 | 12.0 | 7.3–18.4 | |
∑ 8 skinfolds | 76.7 ± 32.3 | 67.6 | 37.0–136.7 | 81.8 ± 13.4 | 79.2 | 64.6–103.3 | |
Girths (cm) | Arm (relaxed) | 33.9 ± 2.2 | 33.5 | 29.7–37.5 | 27.7 ± 1.4 | 27.9 | 25.2–30.0 |
Arm (flexed and tensed) | 36.3 ± 1.9 | 36.1 | 33.5–39.9 | 29.3 ± 139 | 29.4 | 26.7–31.0 | |
Waist (minimum) | 82.5 ± 6.1 | 81.5 | 74.2–98.0 | 68.5 ± 3.6 | 69.4 | 62.8–73.5 | |
Hip (maximum) | 96.1 ± 5.3 | 96.2 | 88.2–106.0 | 92.8 ± 3.8 | 93.5 | 87.9–98.3 | |
Thigh middle | 55.4 ± 3.4 | 55.1 | 50.7–61.9 | 51.0 ± 2.5 | 51.5 | 46.3–53.8 | |
Calf (maximum) | 37.7 ± 2.4 | 37.5 | 33.5–42.2 | 34.7 ± 1.8 | 34.6 | 31.5–36.9 | |
Breadths (cm) | Biacromial | 39.3 ± 1.5 | 39.4 | 37.7–43.4 | 35.3 ± 1.6 | 35.7 | 33.3–37.8 |
Biiliocristal | 27.1 ± 1.5 | 27.0 | 25.0–29.6 | 24.7 ± 1.3 | 24.9 | 22.4–26.4 | |
Humerus | 7.4 ± 0.3 | 7.4 | 6.6–8.2 | 6.4 ± 0.3 | 6.5 | 5.7–6.6 | |
Bi-styloid | 5.8 ± 0.3 | 5.8 | 5.3–6.3 | 5.0 ± 0.3 | 5.0 | 4.7–5.5 | |
Femur | 10.0 ± 0.4 | 9.9 | 9.4–10.8 | 9.1 ± 0.4 | 9.0 | 8.4–9.6 | |
Body composition (kg) | Lean mass | 69.46 ± 5.59 | 68.93 | 60.67–79.31 | 51.52 ± 4.33 | 51.50 | 45.05–57.10 |
Muscle mass | 35.42 ± 2.88 | 34.76 | 30.57–39.88 | 23.14 ± 1.28 | 23.57 | 21.13–24.46 | |
Fat mass | 9.82 ± 3.22 | 8.71 | 5.78–16.99 | 9.39 ± 1.15 | 9.89 | 7.25–10.93 | |
Bone mass | 12.06 ± 0.73 | 12.10 | 10.88–13.11 | 9.31 ± 0.77 | 9.23 | 8.19–10.77 | |
Residual mass | 21.98 ± 3.23 | 22.35 | 16.83–28.52 | 19.07 ± 2.83 | 18.64 | 15.73–23.67 | |
% Muscle mass | 44.86 ± 3.02 | 44.68 | 38.83–50.38 | 38.11 ± 2.03 | 37.88 | 35.78–41.60 | |
% Fat mass | 12.17 ± 2.80 | 11.60 | 8.71–17.64 | 15.40 ± 1.25 | 15.23 | 13.86–17.89 | |
% Bone mass | 15.31 ± 1.22 | 15.54 | 12.27–16.67 | 15.31 ± 0.81 | 15.56 | 13.99–16.40 | |
% Residual mass | 27.66 ± 2.08 | 28.03 | 22.17–30.29 | 31.18 ± 2.24 | 30.38 | 28.66–35.33 | |
Anthropometric indexes | Body mass index (kg/m2) | 26.19 ± 2.59 | 25.79 | 23.31–32.23 | 22.77 ± 1.34 | 23.12 | 20.33–24.37 |
Waist-Stature Index | 0.47 ± 0.04 | 0.46 | 0.43–0.57 | 0.42 ± 0.02 | 0.42 | 0.39–0.44 | |
Relative Span | 101.94 ± 1.86 | 102.02 | 98.01–104.84 | 100.61 ± 2.12 | 101.22 | 96.73–103.29 | |
Acromio-Iliac Index | 68.96 ± 3.99 | 69.04 | 62.11–77.06 | 69.81 ± 3.51 | 70.15 | 65.57–74.68 | |
Somatotype | Endomorphy | 2.4 ± 1.1 | 2.0 | 1.2–4.8 | 2.7 ± 0.6 | 2.6 | 1.9–3.8 |
Mesomorphy | 6.7 ± 1.1 | 6.8 | 5.1–8.6 | 4.7 ± 0.6 | 4.9 | 3.2–5.2 | |
Ectomorphy | 1.3 ± 0.7 | 1.1 | 0.1–2.6 | 1.9 ± 0.6 | 1.9 | 1.2–2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menargues-Ramírez, R.; Sospedra, I.; Holway, F.; Hurtado-Sánchez, J.A.; Martínez-Sanz, J.M. Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. Int. J. Environ. Res. Public Health 2022, 19, 11003. https://doi.org/10.3390/ijerph191711003
Menargues-Ramírez R, Sospedra I, Holway F, Hurtado-Sánchez JA, Martínez-Sanz JM. Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. International Journal of Environmental Research and Public Health. 2022; 19(17):11003. https://doi.org/10.3390/ijerph191711003
Chicago/Turabian StyleMenargues-Ramírez, Rubén, Isabel Sospedra, Francis Holway, José Antonio Hurtado-Sánchez, and José Miguel Martínez-Sanz. 2022. "Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training" International Journal of Environmental Research and Public Health 19, no. 17: 11003. https://doi.org/10.3390/ijerph191711003
APA StyleMenargues-Ramírez, R., Sospedra, I., Holway, F., Hurtado-Sánchez, J. A., & Martínez-Sanz, J. M. (2022). Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. International Journal of Environmental Research and Public Health, 19(17), 11003. https://doi.org/10.3390/ijerph191711003