Effects of Sodium Intake on Health and Performance in Endurance and Ultra-Endurance Sports
Abstract
:1. Introduction
2. Importance of Sodium and Ideal Composition
3. Effects of Sodium Consumption
3.1. Very Low Sodium Consumption
3.2. Very High Sodium Consumption
4. Sodium in Sport
4.1. Exercise-Associated Muscle Cramps
4.2. Exercise-Associated Hyponatremia
Prevention and Treatment
5. Sodium and Hydration
6. Sources and Dosages of Sodium in Endurance–Ultra-Endurance Sports
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stellingwerff, T.; Maughan, R.J.; Burke, L.M. Nutrition for power sports: Middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J. Sports Sci. 2011, 29, S79–S89. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011, 29, 91–99. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Camões-Costa, V.; Snipe, R.M.J.; Dixon, D.; Russo, I.; Huschtscha, Z. The impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J. Appl. Physiol. 2019, 126, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Ungaro, C.T.; Barnes, K.A.; Nuccio, R.P.; Reimel, A.J.; Stofan, J.R. Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot-humid environment. Physiol. Rep. 2014, 2, e12007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyle, E.F. Fluid and fuel intake during exercise. J. Sports Sci. 2004, 22, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Sawka, M.N. Fluid and electrolyte needs for training, competition, and recovery. J. Sports Sci. 2011, 29, S39–S46. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Armstrong, L.E.; Kavouras, S.A. Hydration. In Sport and Physical Activity in the Heat; Springer: Cham, Switzerland, 2018; pp. 83–100. [Google Scholar]
- Schwellnus, M.P.; Drew, N.; Collins, M. Muscle cramping in athletes—Risk factors, clinical assessment, and management. Clin. Sports Med. 2008, 27, 183–194. [Google Scholar] [CrossRef]
- Knechtle, B.; Chlíbková, D.; Papadopoulou, S.; Mantzorou, M.; Rosemann, T.; Nikolaidis, P.T. Exercise-Associated Hyponatremia in Endurance and Ultra-Endurance Performance–Aspects of Sex, Race Location, Ambient Temperature, Sports Discipline, and Length of Performance: A Narrative Review. Medicina 2019, 55, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Navarro, I.; Montoya-Vieco, A.; Collado-Boira, E.; Hernando, B.; Panizo, N.; Hernando, C. Muscle Cramping in the Marathon: Dehydration and Electrolyte Depletion vs. Muscle Damage. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rust, P.; Ekmekcioglu, C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. In Hypertension: From Basic Research to Clinical Practice; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Drüeke, T.B. Salt and health: Time to revisit the recommendations. Kidney Int. 2016, 89, 259–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koepsell, H. Glucose transporters in the small intestine in health and disease. Pflüg. Arch. Eur. J. Physiol. 2020, 472, 1207–1248. [Google Scholar] [CrossRef] [PubMed]
- Stolarz-Skrzypek, K.; Bednarski, A.; Czarnecka, D.; Kawecka-Jaszcz, K.; Staessen, J.A. Sodium and Potassium and the Pathogenesis of Hypertension. Curr. Hypertens. Rep. 2013, 15, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, W.B.; Edwards, D.G.; Jurkovitz, C.T.; Weintraub, W.S. Dietary Sodium and Health. J. Am. Coll. Cardiol. 2015, 65, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadifard, N.; Gotay, C.; Humphries, K.H.; Ignaszewski, A.; Esmaillzadeh, A.; Sarrafzadegan, N. Electrolyte minerals intake and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2018, 59, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; González-Millán, C.; Salinero, J.J.; Abián-Vicén, J.; Areces, F.; Lledó, M.; Lara, B.; Gallo-Salazar, C.; Ruiz-Vicente, D. Effects of oral salt supplementation on physical performance during a half-ironman: A randomized controlled trial. Scand. J. Med. Sci. Sports 2015, 26, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Shirreffs, S.M.; Maughan, R.J. Volume repletion following exercise-induced volume depletion in man: Replacement of water and sodium losses. Am. J. Physiol. 1998, 274, F868–F875. [Google Scholar]
- Speedy, D.B.; Thompson, J.; Rodgers, I.; Collins, M.; Sharwood, K. Oral salt supplementation during ultradistance exercise. Clin. J. Sport Med. 2002, 12, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Edwards, D.G.; Farquhar, W.B. The Influence of Dietary Salt Beyond Blood Pressure. Curr. Hypertens. Rep. 2019, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 2017, 4, CD004022. [Google Scholar] [CrossRef]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; Dagenais, G.; Lear, S.; McQueen, M.; Diaz, R.; Avezum, A.; Lopez-Jaramillo, P.; Lanas, F.; et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: A pooled analysis of data from four studies. Lancet 2016, 388, 465–475. [Google Scholar] [CrossRef]
- Braam, B.; Huang, X.; Cupples, W.A.; Hamza, S.M. Understanding the Two Faces of Low-Salt Intake. Curr. Hypertens. Rep. 2017, 19, 1777. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; O’Donnell, M.J.; Rangarajan, S.; McQueen, M.J.; Poirier, P.; Wielgosz, A.; Morrison, H.; Li, W.; Wang, X.; Di, C.; et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 2014, 371, 601–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, H.; Lee, H.Y.; Jun, D.W.; Lee, S.M. Low salt diet and insulin resistance. Clin. Nutr. Res. 2016, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Tian, M.; Neal, B. Sodium Reduction: How Big Might the Risks and Benefits Be? Heart Lung Circ. 2020, 30, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, L. Dietary sodium and blood pressure: How low should we go? Prog. Cardiovasc. Dis. 2015, 58, 61–68. [Google Scholar] [CrossRef]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; McQueen, M.; Dagenais, G.; Wielgosz, A.; Lear, S.; Ah, S.T.L.; Wei, L.; Diaz, R.; et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: A community-level prospective epidemiological cohort study. Lancet 2018, 392, 496–506. [Google Scholar] [CrossRef]
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; Wang, X.; Liu, L.; Yan, H.; Lee, S.Y.; Mony, P.; Devanatah, A.; et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 2014, 371, 612–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterna, S.; Fasullo, S.; Cannizzaro, S.; Vitrano, G.; Terrazzino, G.; Maringhini, G.; Ganci, F.; Scalzo, S.; Di Pasquale, P.; Parrinello, G.; et al. Short-term effects of hypertonic saline solution in acute heart failure and long-term effects of a moderate sodium restriction in patients with compensated heart failure with New York heart Association Class III (Class C) (SMAC-HF study). Am. J. Med. Sci. 2011, 342, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Paterna, S.; Gaspare, P.; Fasullo, S.; Sarullo, F.; Di Pasquale, P. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: Is sodium an old enemy or a new friend? Clin. Sci. 2008, 114, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Takenaka, T.; Kanno, Y.; Ohno, Y.; Saruta, T. Sodium and Kidney Disease. Nutrition and Kidney Disease: A New Era. In Contribution to Nephrology; Karger: Basel, Switzerland, 2007; Volume 155, pp. 90–101. [Google Scholar] [CrossRef]
- Loh, J.T.; Torres, V.; Cover, T. Regulation of Helicobacter pylori cagA Expression in Response to Salt. Cancer Res. 2007, 67, 4709–4715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Research Fund⁄American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; American Institute for Cancer Research: Washington, DC, USA, 2007. [Google Scholar]
- Bedford, J.L.; Barr, S.I. Higher urinary sodium, a proxy for intake, is associated with increased calcium excretion and lower hip bone density in healthy young women with lower calcium intakes. Nutrients 2011, 3, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Joung, J.Y.; Cho, Y.Y.; Sohn, S.Y.; Hur, K.Y.; Kim, J.H.; Kim, S.W.; Chung, J.H.; Lee, M.K.; Min, Y.K. Effect of high dietary sodium on bone turnover markers and urinary calcium excretion in Korean postmenopausal women with low bone mass. Eur. J. Clin. Nutr. 2015, 69, 361–366. [Google Scholar] [CrossRef]
- Park, Y.; Kwon, S.J.; Ha, Y.C. Association between Urinary Sodium Excretion and Bone Health in Male and Female Adults. Ann. Nutr. Metab. 2016, 68, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Jeon, J.-H.; Choi, Y.-K.; Lee, W.-K.; Hwang, I.-R.; Kim, J.-G.; Lee, I.-K.; Park, K.-G. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008–2011. Endocrine 2015, 49, 791–799. [Google Scholar] [CrossRef]
- O’Donnell, M.; Mente, A.; Yusuf, S. Sodium intake and cardiovascular health. Circ. Res. 2015, 116, 1046–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelton, P.K.; Appel, L.J.; Sacco, R.L.; Anderson, C.A.M.; Antmann, E.M.; Campbell, N.; Bunbar, S.B.; Frohlich, E.D.; Hall, J.E.; Jessup, M.; et al. Sodium, blood pressure, and cardiovascular disease: Further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 2012, 126, 2880–2889. [Google Scholar] [CrossRef] [Green Version]
- Irish Heart Foundation. Salt, Blood Pressure and Heart Disease. 2008. Available online: http://www.irishheart.ie/iopen24/pub/healthpromotionreports/ihfstatement_salt (accessed on 3 March 2022).
- Whelton, P.K.; He, J. Health effects of sodium and potassium in humans. Curr. Opin. Lipidol. 2014, 25, 75–79. [Google Scholar] [CrossRef]
- Sugiura, T.; Takase, H.; Ohte, N.; Dohi, Y. Dietary Salt Intake is a Significant Determinant of Impaired Kidney Function in the General Population. Kidney Blood Press. Res. 2018, 43, 1245–1254. [Google Scholar] [CrossRef]
- Peleteiro, B.; Lopes, C.; Figueiredo, C.; Lunet, N. Salt intake and gastric cancer risk aαccording to Helicobacter pylori infection, smoking, tumour site and histological type. Br. J. Cancer 2010, 104, 198–207. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, L.; Galletti, F.; Strazzullo, P. Dietary Salt Intake and Risk of Gastric Cancer. Cancer Treat. Res. 2013, 159, 83–95. [Google Scholar]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, 1325. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. In Panel on Dietary Reference Intakes for Electrolytes, Water; The National Academies of Sciences Engineering Medicine: Washington, DC, USA, 2005. [Google Scholar]
- US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Amercans, 7th ed.; US Government Printing Office: Washington, DC, USA, December 2010.
- WHO. Guideline Sodium Intake for Adults and Children; WHO Press: Geneva, Switzerland, 2012. [Google Scholar]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flack, J.M.; Adekola, B. Blood Pressure and the New ACC/AHA Hypertension Guidelines. Trends Cardiovasc. Med. 2019, 30, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Oria, M.; Harrison, M.; Stallings, V.A. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium; National Academies Press (US): Washington, DC, USA, 5 March 2019. [Google Scholar]
- Rehrer, N.J. Fluid and electrolyte balance in the ultra-endurance sport. Sports Med. 2001, 31, 701–715. [Google Scholar] [CrossRef]
- Clapp, A.J.; Bishop, P.A.; Smith, J.F.; Mansfield, E.R. Effects of Carbohydrate-Electrolyte Content of Beverages on Voluntary Hydration in a Simulated Industrial Environment. AIHAJ Am. Ind. Hyg. Assoc. 2000, 61, 692–699. [Google Scholar] [CrossRef]
- Valentine, V. The importance of salt in theathlete’s diet. Curr. Sports Med. Rep. 2007, 6, 237–240. [Google Scholar] [PubMed]
- Maughan, R.J.; Shirreffs, S.M. Muscle Cramping During Exercise: Causes, Solutions, and Questions Remaining. Sports Med. 2019, 49, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M.D.; Stuempfle, K.J. Muscle Cramping During a 161-km Ultramarathon: Comparison of Characteristics of Those with and without Cramping. Sports Med. Open 2015, 1, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwellnus, M.P.; Allie, S.; Derman, W.; Collins, M. Increased running speed and pre-race muscle damage as risk factors for exercise-associated muscle cramps in a 56 km ultra-marathon: A prospective cohort study. Br. J. Sports Med. 2011, 45, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.F.; Hou, S.K.; Chiu, Y.H.; Chou, S.L.; Kuo, F.C.; Wang, S.H.; Chen, J.J. Effects of 100-km ultra marathon on acute kidney injury. Clin. J. Sport Med. 2015, 25, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, M.; Kreider, R.B.; Greenwood, L.; Byars, A. Cramping and injury incidence in collegiate football players are reduced by creatine supplementation. J. Athl. Train. 2003, 38, 216–219. [Google Scholar] [PubMed]
- Maddali, S.; Rodeo, S.A.; Barnes, R.; Warren, R.F.; Murrell, G.A. Postexercise increase in nitric oxide in football players with muscle cramps. Am. J. Sports Med. 1998, 26, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.L.; Hew-Butler, T.; Rosner, M.H.; Myers, T.; Lipman, G.S. Wilderness Medical Society Clinical Practice Guidelines for the Management of Exercise-Associated Hyponatremia: 2019 Update. Wilderness Environ. Med. 2020, 31, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGreal, K.; Budhiraja, P.; Jain, N.; Yu, A.S. Current challenges in the evaluation and management of hyponatremia. Kidney Dis. 2016, 2, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T.; Almond, C.; Ayus, J.C.; Dugas, J.; Meeuwisse, W.; Noakes, T.; Weschler, L. Consensus Statement of the 1st International Exercise-Associated Hyponatremia Consensus Development Conference, Cape Town, South Africa 2005. Clin. J. Sport Med. 2005, 15, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T. Exercise-Associated Hyponatremia. Front. Horm. Res. 2019, 52, 178–189. [Google Scholar]
- Rüst, C.A. Higher prevalence of exercise-associated hyponatremia in triple iron ultra-triathletes than reported for ironman triathletes. Chin. J. Physiol. 2012, 55, 147–155. [Google Scholar] [CrossRef]
- Sharwood, K.A.; Collins, M.; Goedecke, J.H.; Wilson, G.; Noakes, T.D. Weight changes, medical complications, and performance during an Ironman triathlon. Br. J. Sports Med. 2004, 38, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Speedy, D.B.; Faris, J.G.; Hamlin, M.; Gallagher, P.G.; Campbell, R.G. Hyponatremia and weight changes in an ultradistance triathlon. Clin. J. Sport Med. 1997, 7, 180–184. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Veniamakis, E.; Rosemann, T.; Knechtle, B. Nutrition in Ultra-Endurance. State of the Art. Nutrients 2018, 10, 1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, W.B.; Bennett, W.; Curelop, S.; Bartter, F.C. A Syndrome of Renal Sodium Loss and Hyponatremia Probably Resulting from Inappropriate Secretion of Antidiuretic Hormone. Am. J. Med. 1957, 23, 529–542. [Google Scholar] [CrossRef]
- Buck, E.; Miles, R.; Schroeder, J.D. Exercise-Associated Hyponatremia; StatPearls Publishing, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572128 (accessed on 3 March 2022).
- Rosner, M.H. Exercise-associated hyponatremia. Physician Sportsmed. 2008, 36, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Twerenbold, R.; Knechtle, B.; Kakebeeke, T.H.; Eser, P.; Müller, G.; Von Arx, P.; Knecht, H.; Rehrer, N.; Speedy, D. Effects of different sodium concentrations in replacement fluids during prolonged exercise in women. Br. J. Sports Med. 2003, 37, 300–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, R.C.; Galer, M.; Bursey, M.M. Found in the Field—A Soldier with Heat Stroke, Exercise-Associated Hyponatremia, and Kidney Injury. Curr. Sports Med. Rep. 2018, 17, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Holtzhausen, L.M.; Noakes, T.D. Collapsed ultraendurance athlete: Proposed mechanisms and an approachto management. Clin. J. Sport Med. 1997, 7, 292–301. [Google Scholar] [CrossRef]
- Hew-Butler, T.; Rosner, M.H.; Fowkes-Godek, S.; Dugas, J.P.; Hoffman, M.; Lewis, D.P.; Maughan, R.J.; Miller, K.C.; Montain, S.J.; Rehrer, N.J.; et al. Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015. Clin. J. Sport Med. 2015, 25, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E. Electrolytes: Performance Perks and Real Food Sources NASM.org. 2017. Available online: https://blog.nasm.org/fitness/electrolytes-performance-perks-and-real-food-sources (accessed on 3 March 2022).
- Takamata, A.; Mack, G.W.; Stachenfeld, N.S.; Nadel, E.R. Body temperature modification of osmotically induced vasopressin secretion and thirst in humans. Am. J. Physiol. 1995, 269, R874–R880. [Google Scholar] [CrossRef] [PubMed]
- Hew, T.D.; Chorley, J.N.; Cianca, J.C.; Divine, J.G. The Incidence, Risk Factors, and Clinical Manifestations of Hyponatremia in Marathon Runners. Clin. J. Sport Med. 2003, 13, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Spano, S.J.; Reagle, Z.; Evans, T. Symptomatic Hypotonic Hyponatremia Presenting at High Altitude. Wilderness Environ. Med. 2014, 25, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, M.; Roth, R.; Davis, D.L.; Larrabe, E.H.; Callaway, C.W. Hyponatremia in runners requiring on-sitemedical treatment at a single marathon. Med. Sci. Sport Exerc. 2002, 34, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Almond, C.S.; Shin, A.Y.; Fortescue, E.B.; Mannix, R.C.; Wypij, D.; Binstadt, B.A.; Duncan, C.N.; Olson, D.P.; Salerno, A.E.; Newburger, J.W. Hyponatremia among runners in the boston marathon. N. Engl. J. Med. 2005, 352, 1550–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorley, J.; Cianca, J.; Divine, J. Risk Factors for Exercise-Associated Hyponatremia in Non-Elite Marathon Runners. Clin. J. Sport Med. 2007, 17, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Mettler, S.; Rusch, C.; Frey, W.O.; Bestmann, L.; Wenk, C.; Colombani, P.C. Hyponatremia among runners inthe zurich marathon. Clin. J. Sport Med. 2008, 18, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.J.; D’Hemecourt, P.; Adner, M.M.; Shirey, T.; Brown, J.L.; Lewandrowski, K.B. Exertional dysnatremiain collapsed marathon runners: A critical role for point-of-care testing to guide appropriate therapy. Am. J. Clin. Pathol. 2009, 132, 336–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipps, C.; Sharma, S.; Pedoe, D.T. The incidence of exercise-associated hyponatraemia in the London marathon. Br. J. Sports Med. 2009, 45, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.K.; Nio, A.Q.; Ang, W.H. First reported cases of exercise-associated hyponatremia in Asia. Int. J. Sports Med. 2011, 32, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, M.D.; Hew-Butler, T.; Stuempfle, K.J. Exercise-associated hyponatremia and hydration status in 161-km ultramarathoners. Med. Sci. Sports Exerc. 2013, 45, 784–791. [Google Scholar] [CrossRef]
- Stuempfle, K.J.; Lehmann, D.R.; Case, H.S.; Bailey, S.; Hughes, S.L.; McKenzie, J.; Evans, D. Hyponatremia in a cold weather ultraendurance race. Alsk. Med. 2002, 44, 51–55. [Google Scholar]
- Lebus, D.K.; Casazza, G.A.; Hoffman, M.D.; Van Loan, M.D. Can Changes in Body Mass and Total Body Water Accurately Predict Hyponatremia After a 161-km Running Race? Clin. J. Sport Med. 2010, 20, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T. Arginine Vasopressin, Fluid Balance and Exercise. Sports Med. 2010, 40, 459–479. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.; Reid, S.; Sikaris, K.; McCrory, P. Hyponatremia is associated with higher nt-probnp thannormonatremia after prolonged exercise. Clin. J. Sport Med. 2012, 22, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Speedy, D.B.; Noakes, T.D.; Rogers, I.R.; Thompson, J.M.; Campbell, R.G.; Kuttner, J.A.; Boswell, D.R.; Wright, S.; Hamlin, M. Hyponatremia in ultradistance triathletes. Med. Sci. Sports Exerc. 1999, 31, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Wharam, P.C.; Speedy, D.B.; Noakes, T.D.; Thompson, J.M.; Reid, S.A.; Holtzhausen, L.-M. NSAID use increases the risk of developing hyponatremia during an Ironman triathlon. Med. Sci. Sports Exerc. 2006, 38, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Urso, C.; Brucculeri, S.; Caimi, G. Physiopathological, epidemiological, clinical and therapeutic aspects of exercise-associated hyponatremia. J. Clin. Med. 2014, 3, 1258–1275. [Google Scholar] [CrossRef] [PubMed]
- Rosner, M.H. Preventing Deaths Due to Exercise-Associated Hyponatremia: The 2015 Consensus Guidelines. Clin. J. Sport Med. 2015, 25, 301–302. [Google Scholar] [CrossRef] [PubMed]
- Bridges, E.; Altherwi, T.; Correa, J.A.; Hew-Butler, T. Oral Hypertonic Saline Is Effective in Reversing Acute Mild-to-Moderate Symptomatic Exercise-Associated Hyponatremia. Clin. J. Sport Med. 2020, 30, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T.; Sharwood, K.; Boulter, J.; Collins, M.; Tucker, R.; Dugas, J.; Noakes, T. Dysnatremia Predicts a Delayed Recovery in Collapsed Ultramarathon Runners. Clin. J. Sport Med. 2007, 17, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, S.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur. J. Endocrinol. 2014, 170, G1–G47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, I.R.; Hook, G.; Stuempfle, K.J.; Hoffman, M.D.; Hew-Butler, T. An intervention study of oralversus intravenous hypertonic saline administration in ultramarathon runners with exercise-associatedhyponatremia: A preliminary randomized trial. Clin. J. Sport Med. 2011, 21, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Sanders, B.; Noakes, T.D.; Dennis, S.C. Sodium replacement and fluid shifts during prolonged exercise in humans. Eur. J. Appl. Physiol. 2001, 84, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Coso, J.D.; Estevez, E.; Baquero, R.A.; Mora-Rodriguez, R. Anaerobic performance when rehydrating with water or commercially available sports drinks during prolonged exercise in the heat. Appl. Physiol. Nutr. Metab. 2008, 33, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Mata-Ordoñez, F.; Sánchez-Oliver, A.J. Nutrición Deportiva Aplicada: Guía para Optimizar el Rendimiento; ICB Editores: Malaga, Spain, 2017. [Google Scholar]
- Zoorob, R.; Parrish, M.-E.E.; O’Hara, H.; Kalliny, M. Sports Nutrition Needs. Primary Care. Clin. Off. Pract. 2013, 40, 475–486. [Google Scholar] [CrossRef]
- Convertino, V.A.; Armstong, L.E.; Coyle, E.F.; Mack, G.W.; Sawka, M.N.; Senay, L.C., Jr.; Sherman, W.M. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 1996, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Jeukendrup, A.E. Optimal Composition of Fluid-Replacement Beverages. Compr. Physiol. 2014, 4, 575–620. [Google Scholar] [PubMed]
- Kenefick, R.W.; Cheuvront, S.N. Hydration for recreational sport and physical activity. Nutr. Rev. 2012, 70, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Parsons, K. The Effects of Hot, Moderate and Cold Environments on Human Health, Comfort and Performance, Human Thermal Environments, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Baker, L.B.; Barnes, K.A.; Anderson, M.L.; Passe, D.H.; Stofan, J.R. Normative data for regional sweat sodiumconcentration and whole-body sweating rate in athletes. J. Sports Sci. 2016, 34, 358–368. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, J.; Calbet, J.A.L.; Nielsen, B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J. Physiol. 1998, 513, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Hydration in Sport and Exercise. In Heat Stress in Sport and Exercise; Springer: Cham, Switzerland, 2019; pp. 113–137. [Google Scholar]
- Cheuvront, S.; Carter, R.; Sawka, M.N. Fluid balance and endurance exercise performance. Curr. Sports Med. Rep. 2003, 2, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Noakes, T.D. Fluid replacement and exercise stress. A brief review of studies on fluid replacement and some guidelines for the athlete. Sports Med. 1991, 12, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Van Rosendal, S.P.; Coombes, J.S. Glycerol Use in Hyperhydration and Rehydration: Scientific Update. Med. Sport Sci. 2012, 59, 104–112. [Google Scholar]
- Cairns, R.S.; Hew-Butler, T. Incidence of Exercise-Associated Hyponatremia and Its Association with Nonosmotic Stimuli of Arginine Vasopressin in the GNW100s Ultra-endurance Marathon. Clin. J. Sport Med. 2015, 25, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine Position Stand. Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [PubMed] [Green Version]
- American Dietetic Association; Dietitians of Canada; American College of Sports Medicine; Rodriguez, N.R.; di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [PubMed] [Green Version]
- Tiller, N.B.; Roberts, J.D.; Beasley, L.; Chapman, S.; Pinto, J.M.; Smith, L.; Wiffin, M.; Russell, M.; Sparks, S.A.; Duckworth, L.; et al. International Society of Sports Nutrition Position Stand: Nutritional considerations for single-stage ultra-marathon training and racing. J. Int. Soc. Sports Nutr. 2019, 16, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2009, 109, 509–527. [Google Scholar]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Périard, J.D. Consensus recommendations on training and competing in the heat. Br. J. Sports Med. 2015, 49, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Taylor, A.J.; Leiper, J.B.; Maughan, R.J. Post-exercise rehydration in man: Effects of volume consumed and drink sodium content. Med. Sci. Sports Exerc. 1996, 28, 1260–1271. [Google Scholar] [CrossRef]
- Grozenski, A.; Kiel, J. Basic Nutrition for Sports Participation, Part 1: Diet Composition, Macronutrients, and Hydration. Curr. Sports Med. Rep. 2020, 19, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Currell, K.; Clarke, J.; Cole, J.; Blannin, A.K. Effect of beverage glucose and sodium content on fluid delivery. Nutr. Metab. 2009, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranchordas, M.K.; Tiller, N.B.; Ramchandani, G.; Jutley, R.; Blow, A.; Tye, J.; Drury, B. Normative data on regional sweat-sodium concentrations of professional male team-sport athletes. J. Int. Soc. Sports Nutr. 2017, 14, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Associated Press. Woman Dies after Water Drinking Contest. NBCnews.com. 2007. Available online: http://www.nbcnews.com/id/16614865/ns/us_news-life/t/woman-dies-after-water-drinking-contest (accessed on 3 March 2022).
- Hoffman, M.D.; Myers, T.M. Case Study: Symptomatic Exercise-Associated Hyponatremia in an Endurance Runner Despite Sodium Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T.; Loi, V.; Pani, A.; Rosner, M.H. Exercise-Associated Hyponatremia: 2017 Update. Front. Med. 2017, 4, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical Condition | n | Average Age (Years) | Average Sodium Intake | Τype of Study | Correlation | References |
---|---|---|---|---|---|---|
Kidney Disease | 1384 | ≥20 | 11.5 gr | Observational | Positive | [44] |
Cancer | 2485 | 18–92 | 9 g | Case-control | Positive | [45] |
Cancer | 634 | 40–49 | 12.8 g | Cross-sectional | Positive | [46] |
Hypertension | 3230 | 22–73 | 9.4 g | Meta-analysis | Positive | [47] |
Hypertension | 10,074 | 20–59 | Serum > 100 mmol/L | Cross-sectional | Positive | [12] |
Osteoporosis | 537 | 58 ± 6 | >2 g/day | Cross-sectional | Positive | [37] |
Osteoporosis | 102 | 24 ± 3.4 | 2.6 ± 1.1 g/day | Cross checked | Positive | [36] |
Sports | Prevalence EAMC | References |
---|---|---|
Ultra-Marathon 166 km | 14% | [58] |
Marathon | 18% | [10] |
Ironman Triathlon | 23% | [59] |
Ultra-Marathon 100 km | 23% | [60] |
Ultra-Marathon 56km | 41% | [59] |
Cycling | 60% | [8] |
American football | 30–53% | [61,62] |
Sports | Trial | Prevalence EAH | References |
---|---|---|---|
Marathon | Marathon | 15% | [82] |
Houston Marathon 2000 | <5% | [80] | |
Boston Marathon | 5% | [83] | |
Houston Marathon 2000–2004 | >20% | [84] | |
Zurich Marathon | <5% | [85] | |
Boston Marathon 2001–2018 | <5% | [86] | |
London Marathon | Up to 22% | [87] | |
Ultra-Marathon | Ultra-marathon in Asia | 38% | [88] |
161 km in North America | 30–51% | [89] [90] [91] | |
Cycling | 109 km | 12% | [92] |
210–250 km | 4.5% (4 to 90 persons) | [93] | |
Triathlon | Ironman-Triathlon | 20% | [69] |
Ironman-Triathlon | 1.8–28% | [94,95] | |
Triple Ironman | 26% | [67] |
Mild | Severe | Clinical Appearance |
---|---|---|
WearinessDizziness | Mental disorder | Heat stroke |
Slow urine production | Ictus, collapse | Hypoglycemia |
Sickness | Oliguria | Stress-related collapse |
Headache | Coma | Muscle cramps |
Weakness | Death | Edema |
Mild Symptoms | Severe (Neurological Symptoms) | In Encephalopathy | Bibliography | |
---|---|---|---|---|
Intravenous isotonic fluids of any type or volume are not recommended | recommended | is not recommended | is not recommended | [100] |
Concentrated oral sodium replacement may be given (with reservation) | recommended | is not recommended | is not recommended | [86] |
Bolus 100 mL of intravenous hypertonic saline (3% sodium chloride) | is not recommended | recommended | recommended | [63] [75] |
Should be treated immediately with intravenous IV bolus infusion or HTS infusion for acute reduction of swelling in the brain | is not recommended | is not recommended | recommended | [58] [101] |
Timing | Dosage | Bibliography |
---|---|---|
Before exercise | 5 to 10 mL/kg body weight | [117] |
Before exercise | 5–7 mL/kg 4 h before exercise and more 3–5 mL/kg, 2 h before competition | [118] |
4 h before exercise | 5–7 mL/kg water or sports drink | [119] |
Before exercise | 400–600 mL cold water or sports drink 20–30 min before exercise | [120] |
Sports | Timing | Dosage | Bibliography |
---|---|---|---|
Ultra-Marathon | During exercise or competition, each 20 min | 150–250 mlliquids | [121] |
Ultra-Marathon Competition | Each 1 h | 300–600 mL | [70] |
Marathon | Each 1 h | 400–800 mL | [118] |
Regardless of sport | During the exercise | 450–675 mL, for every 0.5 kg of body weight lost | [122] |
Sports | Timing | Dosage | Bibliography |
---|---|---|---|
Regardless of sport | After the exercise | 1.25 to 1.5 L liquids for every 1 kg of weight loss | [117] |
General for athletes in a warm climate | After the exercise | 100–120% body mass losses | [123] |
Regardless of sport | For fullrestoration | 450–675 mL for every 0.5 kg of weight loss | [119] |
General for athletes | After the exercise | Liquid with 150% or 200% of weight loss | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veniamakis, E.; Kaplanis, G.; Voulgaris, P.; Nikolaidis, P.T. Effects of Sodium Intake on Health and Performance in Endurance and Ultra-Endurance Sports. Int. J. Environ. Res. Public Health 2022, 19, 3651. https://doi.org/10.3390/ijerph19063651
Veniamakis E, Kaplanis G, Voulgaris P, Nikolaidis PT. Effects of Sodium Intake on Health and Performance in Endurance and Ultra-Endurance Sports. International Journal of Environmental Research and Public Health. 2022; 19(6):3651. https://doi.org/10.3390/ijerph19063651
Chicago/Turabian StyleVeniamakis, Eleftherios, Georgios Kaplanis, Panagiotis Voulgaris, and Pantelis T. Nikolaidis. 2022. "Effects of Sodium Intake on Health and Performance in Endurance and Ultra-Endurance Sports" International Journal of Environmental Research and Public Health 19, no. 6: 3651. https://doi.org/10.3390/ijerph19063651
APA StyleVeniamakis, E., Kaplanis, G., Voulgaris, P., & Nikolaidis, P. T. (2022). Effects of Sodium Intake on Health and Performance in Endurance and Ultra-Endurance Sports. International Journal of Environmental Research and Public Health, 19(6), 3651. https://doi.org/10.3390/ijerph19063651