Intelligent Simulation of Water Temperature Stratification in the Reservoir
Abstract
:1. Introduction
2. Materials
2.1. Investigation Area
2.2. 3D Numerical Model
3. Methodology
3.1. Topological Structure of ISM-RWTS
3.2. Design of Training Samples
3.3. Training of ISM-RWTS
4. Evaluation of Model
5. Verification and Discussion
5.1. Verification on Tankeng Reservoir
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisaturo, G.R.; Righetti, M.; Castellana, C.; Larcher, M.; Menapace, A.; Premstaller, G. A procedure for human safety assessment during hydropeaking events. Sci. Total Environ. 2019, 661, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Sinokrot, B.A.; Stefan, H.G. Stream temperature dynamics: Measurements and modeling. Water Resour. Res. 1993, 29, 2299–2312. [Google Scholar] [CrossRef]
- Buccola, N.L.; Risley, J.C.; Rounds, S.A. Simulating future water temperatures in the North Santiam River. Oregon. J. Hydrol. 2016, 535, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Foley, B.; Jones, I.D.; Maberly, S.C.; Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshw. Biol. 2011, 57, 278–289. [Google Scholar] [CrossRef]
- He, W.; Luo, J.; Xing, L.; Yu, X.; Zhang, J.; Chen, S. Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study. J. Environ. Manag. 2019, 248, 1085–1097. [Google Scholar] [CrossRef]
- Gao, B.; Yang, D.; Yang, H. Impact of the Three Gorges Dam on flow regime in the middle and lower Yangtze River. Quat. Int. 2013, 304, 43–50. [Google Scholar] [CrossRef]
- Taeb, A.; Reager, J.T.; Turmon, M.; Chandrasekaran, V. A statistical graphical model of the California reservoir system. Water Resour. Res. 2017, 53, 9721–9739. [Google Scholar] [CrossRef]
- Zhang, X.E.; Zhou, X.D.; Zang, L. Discussion on research methods for the water temperature in reservoir. J. Water Resour. Water Eng. 2006, 17, 1–4. [Google Scholar]
- Han, C.X.; Yi, X.Y.; Wang, W.; Yue, Z.Y. Prediction of the effect on crops caused by the temperature of water discharged from Wujiazhuang reservoir. Water Conserv. Sci. Technol. Econ. 2002, 8, 155–156. [Google Scholar]
- Jonsson, B.; Jonsson, N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish Biol. 2009, 75, 2381–2447. [Google Scholar] [CrossRef]
- Yang, F.Y.; Zhang, Y.S.; Li, W.K.; Lyu, H.Q.; Luo, J.M. Chiling damage comprehensive assessment methods for rice. Chin. J. Appl. Ecol. 2017, 28, 3281–3288. (In Chinese) [Google Scholar]
- Benyahya, L.; Caissie, D.; St-Hilaire, A.; Ouarda, T.B.; Bobée, B. A review of statistical water temperature models. Can. Water Resour. J. 2007, 32, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A.; Boulos, P.F. Numerical methods for modeling water quality in distribution systems: A comparison. J. Water Resour. Plan. Manag. 1996, 122, 137–146. [Google Scholar] [CrossRef]
- Huber, W.C.; Harleman, D.R.F.; Ryan, P.J. Temperature prediction in stratified reservoirs. J. Hydraul. Div. 1972, 98, 645–666. [Google Scholar] [CrossRef]
- Chen, Y.C.; Zhang, B.X.; Li, Y.L. Study on model for vertical distribution of water temperature in Miyun Reservoir. J. Hydraul. Eng. 1998, 9, 14–20. [Google Scholar]
- Edinger, J.E.; Duttweiler, D.W.; Geyer, J.C. The response of water temperatures to meteorological conditions. Water Resour. Res. 1968, 4, 1137–1143. [Google Scholar] [CrossRef]
- Karpik, S.R.; Raithby, G.D. Laterally averaged hydrodynamics model for reservoir predictions. J. Hydraul. Eng. 1990, 116, 783–798. [Google Scholar] [CrossRef]
- Lee, H.; Chung, S.; Ryu, I.; Choi, J. Three-dimensional modeling of thermal stratification of a deep and dendritic reservoir using ELCOM model. J. Hydro-Environ. Res. 2013, 7, 124–133. [Google Scholar] [CrossRef]
- Sahoo, G.B.; Schladow, S.G.; Reuter, J.E. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 2009, 378, 325–342. [Google Scholar] [CrossRef]
- Diao, W.; Cheng, Y.G.; Zhang, C.Z.; Wu, J.Y. Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation. J. Hydrodyn. 2015, 27, 248–256. [Google Scholar] [CrossRef]
- Jackson, F.L.; Fryer, R.J.; Hannah, D.M.; Millar, C.P.; Malcolm, I.A. A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Sci. Total Environ. 2018, 612, 1543–1558. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.K.; Ojha, C.S.P.; Singh, R.D.; Swamee, P.K. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India. Water Sci. Technol. 2013, 68, 2521–2526. [Google Scholar]
- Linares-Rodriguez, A.; Lara-Fanego, V.; Pozo-Vazquez, D.; Tovar-Pescador, J. One-day-ahead streamflow forecasting using artificial neural networks and a meteorological mesoscale model. J. Hydrol. Eng. 2015, 20, 05015001. [Google Scholar] [CrossRef]
- Lu, J.Q.; Zhang, X.F.; Qiang, J.H.; Mei, Z.H.; Yang, F.L.; Dong, B.J. Numerical model for temperature simulation of water in reservoir. J. Hydroelectr. Eng. 2008, 27, 123–129. (In Chinese) [Google Scholar]
- Wang, H. Study on Flow Field and Water Temperature Distribution in Dahuofang Reservoir. Master’s Thesis, Dalian University of Technology, Dalian, China, 2015. (In Chinese). [Google Scholar]
- DHI. Hydrodynamic Module User Guide: Mike 3 Flow Model FM. 2022. Available online: https://manuals.mikepoweredbydhi.help/latest/Coast_and_Sea/MIKE_FM_HD_3D.pdf (accessed on 10 July 2022).
- Lifeng Liu Onishi, R.; Takahashi, K. The effect of wind on long-term summer water temperature trends in Tokyo Bay, Japan. Ocean Dyn. 2015, 65, 913–930. [Google Scholar]
- Zhenzi Jing Kimio, W.; Jonathan, W.; Toshiyuki, H. A 3-D water/rock chemical interaction model for prediction of HDR/HWR geothermal reservoir performance. Geothermics 2002, 31, 1–28. [Google Scholar]
- Wu, B.; Wang, G.; Liu, C.; Xu, Z. Modeling impacts of highly regulated inflow on thermal regime and water age in a shallow reservoir. J. Hydroinformatics 2013, 15, 1312–1325. [Google Scholar] [CrossRef]
- Awchi, T.A. River discharges forecasting in northern Iraq using different ANN techniques. Water Resour. Manag. 2014, 28, 801–814. [Google Scholar] [CrossRef]
- Ilonen, J.; Kamarainen, J.K.; Lampinen, J. Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 2003, 17, 93–105. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 2015, 530, 829–844. [Google Scholar] [CrossRef]
- Hadzima-Nyarko, M.; Rabi, A.; Šperac, M. Implementation of artificial neural networks in modeling the water-air temperature relationship of the River Drava. Water Resour. Manag. 2014, 28, 1379–1394. [Google Scholar] [CrossRef]
No. | b (m) | B (m) | L (m) | h (m) | H (m) | Inflow (m3/s) | Reservoir Area (km2) | Capacity (×109 m3) |
---|---|---|---|---|---|---|---|---|
1 | 300 | 800 | 0 | 30 | 120 | 120 | 28.60 | 2.3295 |
2 | 400 | 700 | 0 | 30 | 120 | 120 | 28.60 | 2.2143 |
3 | 500 | 600 | 0 | 30 | 120 | 120 | 28.60 | 2.0776 |
4 | 300 | 800 | 13,000 | 30 | 120 | 120 | 31.85 | 2.9951 |
5 | 400 | 700 | 13,000 | 30 | 120 | 120 | 30.55 | 2.7527 |
6 | 500 | 600 | 13,000 | 30 | 120 | 120 | 29.25 | 2.4942 |
7 | 300 | 800 | 26,000 | 30 | 120 | 120 | 35.10 | 3.6607 |
8 | 400 | 700 | 26,000 | 30 | 120 | 120 | 32.50 | 3.2912 |
9 | 500 | 600 | 26,000 | 30 | 120 | 120 | 29.90 | 2.9108 |
10 | 300 | 800 | 39,000 | 30 | 120 | 120 | 38.35 | 4.3264 |
11 | 400 | 700 | 39,000 | 30 | 120 | 120 | 34.45 | 3.8296 |
12 | 500 | 600 | 39,000 | 30 | 120 | 120 | 30.55 | 3.3274 |
13 | 300 | 800 | 26,000 | 30 | 100 | 120 | 35.10 | 3.0839 |
14 | 300 | 800 | 26,000 | 30 | 80 | 120 | 35.10 | 2.5074 |
15 | 300 | 800 | 26,000 | 30 | 100 | 100 | 35.10 | 3.0839 |
16 | 300 | 800 | 26,000 | 30 | 80 | 100 | 35.10 | 2.5074 |
17 | 300 | 800 | 26,000 | 30 | 100 | 80 | 35.10 | 3.0839 |
18 | 300 | 800 | 26,000 | 30 | 80 | 80 | 35.10 | 2.5074 |
Name | DR (m) | AR (km2) | CR (×109 m3) | WI (m3/s) | WD (m) |
---|---|---|---|---|---|
Tankeng Reservoir | 120 | 70.93 | 4.19 | 119 | 10~120 |
MODEL | MAR | MAD | RMSE | RMSE% | R |
---|---|---|---|---|---|
3DNM | 3.630 | 0.803 | 1.110 | 18.97 | 0.915 |
ISM-RWTS (May) | 2.790 | 0.779 | 1.0212 | 8.46 | 0.981 |
ISM-RWTS (Jun) | 1.810 | 0.790 | 0.896 | 7.219 | 0.964 |
ISM-RWTS (July) | 1.650 | 0.618 | 0.710 | 5.179 | 0.983 |
ISM-RWTS (Aug) | 0.620 | 0.378 | 0.401 | 2.984 | 0.986 |
ISM-RWTS (Sep) | 2.710 | 1.018 | 1.263 | 9.132 | 0.975 |
ICM-RWTS | 9.400 | 2.505 | 3.513 | 4.687 | 0.966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Gu, Z.; Li, Y.; Ding, H.; Wang, T. Intelligent Simulation of Water Temperature Stratification in the Reservoir. Int. J. Environ. Res. Public Health 2022, 19, 13588. https://doi.org/10.3390/ijerph192013588
Yao Y, Gu Z, Li Y, Ding H, Wang T. Intelligent Simulation of Water Temperature Stratification in the Reservoir. International Journal of Environmental Research and Public Health. 2022; 19(20):13588. https://doi.org/10.3390/ijerph192013588
Chicago/Turabian StyleYao, Yuan, Zhenghua Gu, Yun Li, Hao Ding, and Tinghui Wang. 2022. "Intelligent Simulation of Water Temperature Stratification in the Reservoir" International Journal of Environmental Research and Public Health 19, no. 20: 13588. https://doi.org/10.3390/ijerph192013588
APA StyleYao, Y., Gu, Z., Li, Y., Ding, H., & Wang, T. (2022). Intelligent Simulation of Water Temperature Stratification in the Reservoir. International Journal of Environmental Research and Public Health, 19(20), 13588. https://doi.org/10.3390/ijerph192013588