The Influence of Childhood Trauma and Family Functioning on Internet Addiction in Adolescents: A Chain-Mediated Model Analysis
Abstract
:1. Introduction
- Adolescents’ childhood trauma and dysfunctional family are high-risk causative factors of IA.
- Adolescents’ anxiety and depression are associated with childhood trauma and family dysfunction.
- Anxiety and depression mediate the relationship between childhood trauma and poor family functioning with IA.
2. Methods
2.1. Participants
2.2. Measures
2.2.1. Demographic Information Sheet
2.2.2. Childhood Trauma Questionnaire-Short Form
2.2.3. Young-Internet Addiction Test
2.2.4. The Self-Rating Scale of Systematic Family Dynamics, Revised Version
2.2.5. Family Assessment Device
2.2.6. Self-Rating Anxiety Scale
2.2.7. Self-Rating Depression Scale
2.3. Statistical Analyses
2.4. Ethics
3. Results
3.1. Differences in the Prevalence of Internet Addiction among Adolescents according to Their Demographic Characteristics
3.2. Internet Addiction in Adolescents with Childhood Trauma, Anxiety, or Depression
3.3. Correlations between Internet Addiction in Adolescents and Other Variables
3.4. Childhood Trauma and Poor Family Functioning as Predictors of IA
4. Discussion
4.1. The Variability of Internet Addiction Prevalence with Different Demographic Characteristics among Adolescents
4.2. Effects of Childhood Trauma on Internet Addiction in Adolescents
4.3. Poor Family Functioning as a Predictor of Adolescent IA
4.4. Limitations and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuss, D.J.; Billieux, J. Technological addictions: Conceptualisation, measurement, etiology and treatment. Addict. Behav. 2017, 64, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Blasco, R.; Robres, A.Q.; Sánchez, A.S. Internet addiction in young adults: A meta-analysis and systematic review. Comput. Hum. Behav. 2022, 130, 107201. [Google Scholar] [CrossRef]
- State Internet Information Office of the People’s Republic of China. The 49th Statistical Report on the Development of the Internet in China. China Internet Network Information Center. 2022. Available online: http://www.cnnic.net.cn/NMediaFile/old_attach/P020220721404263787858.pdf (accessed on 25 February 2022).
- Martins, M.V.; Formiga, A.; Santos, C.; Sousa, D.; Resende, C.; Campos, R.; Nogueira, N.; Carvalho, P.; Ferreira, S. Adolescent internet addiction—Role of parental control and adolescent behaviours. Int. J. Pediatr. Adolesc. Med. 2020, 7, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, N.; Demetrovics, Z.; Stein, D.; Ioannidis, K.; Potenza, M.; Grünblatt, E.; Brand, M.; Billieux, J.; Carmi, L.; King, D.; et al. Manifesto for a European research network into Problematic Usage of the Internet. Eur. Neuropsychopharmacol. 2018, 28, 1232–1246. [Google Scholar] [CrossRef]
- Chen, H.-C.; Wang, J.-Y.; Lin, Y.-L.; Yang, S.-Y. Association of Internet Addiction with Family Functionality, Depression, Self-Efficacy and Self-Esteem among Early Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 8820. [Google Scholar] [CrossRef]
- Chung, S.; Lee, J.; Lee, H.K. Personal Factors, Internet Characteristics, and Environmental Factors Contributing to Adolescent Internet Addiction: A Public Health Perspective. Int. J. Environ. Res. Public Health 2019, 16, 4635. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, D.P.; Stein, J.A.; Newcomb, M.D.; Walker, E.; Pogge, D.; Ahluvalia, T.; Stokes, J.; Handelsman, L.; Medrano, M.; Desmond, D.; et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus. Negl. 2003, 27, 169–190. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Michaelides, M.; Miller, M.L.; Jutras-Aswad, D. Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology 2014, 76, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Ignat, S.; Galutiu, C. Internet Dependence/Social Networks and the Development of Teenage Social Anxiety. Agora Psycho-Pragmatica 2022, 15. Available online: https://www.uav.ro/jour/index.php/app/article/view/1684/1692 (accessed on 26 January 2022).
- Jimeno, M.V.; Ricarte, J.J.; Toledano, A.; Mangialavori, S.; Cacioppo, M.; Ros, L. Role of Attachment and Family Functioning in Problematic Smartphone Use in Young Adults. J. Fam. Issues 2022, 43, 375–391. [Google Scholar] [CrossRef]
- Kanacri, B.P.L.; Pastorelli, C.; Eisenberg, N.; Zuffianò, A.; Castellani, V.; Caprara, G.V. Trajectories of prosocial behavior from adolescence to early adulthood: Associations with personality change. J. Adolesc. 2014, 37, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Kurniasanti, K.S.; Assandi, P.; Ismail, R.I.; Nasrun, M.W.S.; Wiguna, T. Internet addiction: A new addiction? Med. J. Indones. 2019, 28, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Truong, A.; Moukaddam, N.; Toledo, A.; Onigu-Otite, E. Addictive Disorders in Adolescents. Psychiatr. Clin. North Am. 2017, 40, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Dieris-Hirche, J.; Bottel, L.; Bielefeld, M.; Steinbüchel, T.; Kehyayan, A.; Dieris, B.; Wildt, B.T. Media use and Internet addiction in adult depression: A case-control study. Comput. Hum. Behav. 2017, 68, 96–103. [Google Scholar] [CrossRef]
- Khubchandani, J.; Sharma, S.; Price, J.H. COVID-19 Pandemic and the Burden of Internet Addiction in the United States. Psychiatry Int. 2021, 2, 402–409. [Google Scholar] [CrossRef]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet Addiction: A Systematic Review of Epidemiological Research for the Last Decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Kristensen, A.M.; Lopez-Fernandez, O. Internet addictions outside of Europe: A systematic literature review. Comput. Hum. Behav. 2021, 115, 106621. [Google Scholar] [CrossRef]
- Young, K.S.; Rogers, R.C. The Relationship between Depression and Internet Addiction. Cyberpsychol. Behav. 1998, 1, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Kuang, L.; Huang, Y.; Wang, W.; Cao, J.; Xiao, M.-N. Abnormal brain activity in adolescents with Internet addiction who attempt suicide: An assessment using functional magnetic resonance imaging. Neural Regen. Res. 2020, 15, 1554–1559. [Google Scholar] [CrossRef]
- Ma, S.; Huang, Y.; Ma, Y. Childhood Maltreatment and Mobile Phone Addiction among Chinese Adolescents: Loneliness as a Mediator and Self-Control as a Moderator. Front. Psychol. 2020, 11, 813. [Google Scholar] [CrossRef]
- Wei, L.; Han, X.; Yu, X.; Sun, Y.; Ding, M.; Du, Y.; Jiang, W.; Zhou, Y.; Wang, H. Brain controllability and morphometry similarity of internet gaming addiction. Methods 2021, 192, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; O’Brien, C.P. Internet gaming disorder and the DSM-5. Addiction 2013, 108, 1186–1187. [Google Scholar] [CrossRef] [PubMed]
- Gur, K.; Yurt, S.; Bulduk, S.; Atagöz, S. Internet addiction and physical and psychosocial behavior problems among rural secondary school students. Nurs. Health Sci. 2015, 17, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, K.; Halasy, K.; Schoenmaekers, S. A randomized efficacy trial of a cognitive-behavioral group intervention to prevent Internet Use Disorder onset in adolescents: The PROTECT study protocol. Contemp. Clin. Trials Commun. 2017, 6, 64–71. [Google Scholar] [CrossRef]
- Afifi, T.O.; Taillieu, T.; Salmon, S.; Stewart-Tufescu, A.; Struck, S.; Fortier, J.; MacMillan, H.L.; Sareen, J.; Tonmyr, L.; Katz, L.Y. Protective Factors for Decreasing Nicotine, Alcohol, and Cannabis Use Among Adolescents with a History of Adverse Childhood Experiences (ACEs). Int. J. Ment. Health Addict. 2022, 715. [Google Scholar] [CrossRef]
- Geng, J.; Bao, L.; Wang, H.; Wang, J.; Gao, T.; Lei, L. Does childhood maltreatment increase the subsequent risk of problematic smartphone use among adolescents? A two-wave longitudinal study. Addict. Behav. 2022, 129, 107250. [Google Scholar] [CrossRef]
- Stoltenborgh, M.; Bakermans-Kranenburg, M.J.; Alink, L.R.A.; van Ijzendoorn, M.H. The Prevalence of Child Maltreatment across the Globe: Review of a Series of Meta-Analyses. Child Abus. Rev. 2015, 24, 37–50. [Google Scholar] [CrossRef]
- Hagborg, J.M.; Tidefors, I.; Fahlke, C. Gender differences in the association between emotional maltreatment with mental, emotional, and behavioral problems in Swedish adolescents. Child Abus. Negl. 2017, 67, 249–259. [Google Scholar] [CrossRef]
- Wu, C.-H.; Griffin, M.; Parker, S. Developing agency through good work: Longitudinal effects of job autonomy and skill utilization on locus of control. J. Vocat. Behav. 2015, 89, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Shek, D.T.; Yu, L. Adolescent Internet Addiction in Hong Kong: Prevalence, Change, and Correlates. J. Pediatr. Adolesc. Gynecol. 2016, 29, S22–S30. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zhang, W.; Zeng, Y.; Ye, T.; Hu, J.; Li, D. Gratitude, basic psychological needs, and problematic Internet use in adolescence. Psychol. Dev. Educ. 2012, 28, 83–90. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L. Review of Family Functioning. Open J. Soc. Sci. 2015, 3, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Tariq, I.; Majeed, S. Poor Family-Functioning and Lack of Interpersonal Support as Predictors of Online Gaming Addiction in Adolescents. J. Prof. Appl. Psychol. 2022, 3, 53–68. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Yu, X.; Ye, M.; Li, N.; Lu, S.; Wang, J. Childhood Trauma and Psychological Distress: A Serial Mediation Model among Chinese Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 6808. [Google Scholar] [CrossRef]
- Casaló, L.V.; Escario, J.-J. Predictors of excessive internet use among adolescents in Spain: The relevance of the relationship between parents and their children. Comput. Hum. Behav. 2019, 92, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Zhao, F.; Wu, X.-S.; Wang, W.-J.; Li, Y.-F.; Zhang, Z.-H.; Sun, Y.-H. Social Anxiety May Modify the Relationship Between Internet Addiction and Its Determining Factors in Chinese Adolescents. Int. J. Ment. Health Addict. 2019, 17, 1508–1520. [Google Scholar] [CrossRef]
- Lukavská, K.; Vacek, J.; Gabhelík, R. The effects of parental control and warmth on problematic internet use in adolescents: A prospective cohort study. J. Behav. Addict. 2020, 9, 664–675. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zou, H. Family functioning and Internet addiction among Chinese adolescents: The mediating roles of self-esteem and loneliness. Comput. Hum. Behav. 2017, 76, 201–210. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhang, Y.L.; Li, L.F.; Zhou, Y.F.; Li, H.Z.; Yang, S.C. Reliability and validity of the Chinese version of the Childhood Abuse Questionnaire. J. Chin. J. Clin. Rehabilitation. 2005, 9, 105–107. Available online: http://www.cnki.com.cn/Article/CJFDTOTAL-XDKF200520049.htm (accessed on 28 May 2005).
- Shu, Y.M.; Ivan Jacob, A.P.; Zhang, M.X.; Wu, A.M.S. Psychometric validation of the Internet Gaming Disorder-20 Test among Chinese middle school and university students. J. Behav. Addict. 2019, 8, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S. Clinical Assessment of Internet-Addicted Clients. In Internet Addiction: A Handbook and Guide to Evaluation and Treatment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 19–34. [Google Scholar] [CrossRef]
- Dong, X.L. A Study on Internet Addiction and Its Related Factors among High School Students. Master’s Thesis, Fudan University, Shanghai, China, 2008. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2009&filename=2009018992.nh (accessed on 2 June 2008).
- Yu, L.; Zhao, X.D.; Zeng, W.N.; Tan, J.F.; Yu, Y.L.; Zeng, J.Y.; Wan, C.H. Reliability and validity analysis of the revised version of the Systematic Family Dynamics Self-Assessment Scale in a test of Guangdong students. China Health Stat. 2014, 31, 979–981. Available online: http://www.cqvip.com/qk/94022x/201406/663531902.html (accessed on 25 December 2014).
- Wang, X.D.; Wang, X.L.; Ma, H. Handbook of Mental Health Assessment Scales. China J. Ment. Health Beijing 1999, 12. [Google Scholar]
- Wang, F.F. Testing of anxiety self-rating scales in secondary school students. Chin. Sch. Health 1994, 15, 202–203. Available online: http://www.cqvip.com/qk/96360a/199403/1571945.html (accessed on 20 June 1994).
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis; Methodology in the Social Sciences; The Guilford Press: London, UK, 2013; p. 193. [Google Scholar]
- Deng, L.Y.; Wang, Y.Q.; Yang, Y.M.; Zhou, L.; Li, B.L. Parental Anxiety/Depression and Teenagers’ Phone and Tablet Addiction Under the COVID-19: A Chain Mediation Model. Chin. J. Clin. Psychol. 2021, 29, 1230–1236. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C.; Yuan, C.Y.; Zhang, X.H.; Li, Y.J. A gender effect study on the relationship between Internet addiction and adolescent adverse emotional behavior. Chin. J. Clin. Psychol. 2014, 22, 1004–1009. [Google Scholar]
- Gao, T.; Meng, X.; Qin, Z.; Zhang, H.; Gao, J.; Kong, Y.; Hu, Y.; Mei, S. Association between parental marital conflict and Internet addiction: A moderated mediation analysis. J. Affect. Disord. 2018, 240, 27–32. [Google Scholar] [CrossRef]
- Zhang, H.; Spinrad, T.L.; Eisenberg, N.; Luo, Y.; Wang, Z. Young adults’ internet addiction: Prediction by the interaction of parental marital conflict and respiratory sinus arrhythmia. Int. J. Psychophysiol. 2017, 120, 148–156. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, J.; Guo, Y.; Xiong, Q.; Hu, Y.; Shi, S.; Li, C.; Yu, Q. The buffer effect of physical activity: Why does parental marital satisfaction affect adolescents’ problematic Internet use. Addict. Behav. Rep. 2020, 11, 100271. [Google Scholar] [CrossRef]
- Noll, J.G.; Haag, A.-C.; Shenk, C.E.; Wright, M.F.; Barnes, J.E.; Kohram, M.; Malgaroli, M.; Foley, D.J.; Kouril, M.; Bonanno, G.A. An observational study of Internet behaviours for adolescent females following sexual abuse. Nat. Hum. Behav. 2022, 6, 74–87. [Google Scholar] [CrossRef]
- Arslan, G. Psychological maltreatment, forgiveness, mindfulness, and internet addiction among young adults: A study of mediation effect. Comput. Hum. Behav. 2017, 72, 57–66. [Google Scholar] [CrossRef]
- Bland, V.J.; Lambie, I.; Best, C. Does childhood neglect contribute to violent behavior in adulthood? A review of possible links. Clin. Psychol. Rev. 2018, 60, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, R.; Zhornitsky, S.; Le, T.M.; Wang, W.; Li, C.-S.R.; Zhang, S. Depression Mediates the Relationship between Childhood Trauma and Internet Addiction in Female but Not Male Chinese Adolescents and Young Adults. J. Clin. Med. 2021, 10, 5015. [Google Scholar] [CrossRef] [PubMed]
- Ma, X. The Effect of Family Functioning on Depression in Secondary School Students. Master’s Thesis, Tianjin Normal University, Tianjin, China, 2021. [Google Scholar] [CrossRef]
- Marzilli, E.; Cerniglia, L.; Ballarotto, G.; Cimino, S. Internet Addiction among Young Adult University Students: The Complex Interplay between Family Functioning, Impulsivity, Depression, and Anxiety. Int. J. Environ. Res. Public Health 2020, 17, 8231. [Google Scholar] [CrossRef] [PubMed]
Characteristics (Code) | n (N = 3357, %) | IA (n, %) | χ2 | ν | p-Value | r |
---|---|---|---|---|---|---|
Sex | 3323 (99.0) | 870 (26.2) | 0.105 | 1 | 0.746 | 0.006 |
(1) Male | 1681 (50.1) | 436 (25.9) | ||||
(2) Female | 1642 (49.4) | 434 (26.4) | ||||
Single child | 3311 (98.6) | 4.837 | 1 | 0.028 | −0.038 * | |
(1) yes | 2315 (69.9) | 631 (27.3) | ||||
(2) no | 996 (30.1) | 235 (23.6) | ||||
Grade | 3357 (100) | 207.950 | 6 | 0.000 | 0.228 ** | |
6th Grade | 1022 (30.4) | 148 (14.5) | ||||
7th Grade | 598 (17.8) | 139 (23.2) | ||||
8th Grade | 456 (13.6) | 95 (20.8) | ||||
9th Grade | 128 (3.8) | 37 (28.9) | ||||
10th Grade | 760 (22.6) | 309 (40.7) | ||||
11th Grade | 187 (5.6) | 53 (28.3) | ||||
12th Grade | 206 (6.1) | 95 (46.1) | ||||
Living Style | 3219 (95.9) | 5.665 | 3 | 0.129 | 0.031 | |
(1) with parents | 2605 (80.9) | 694 (26.6) | ||||
(2) with grandparents | 232 (7.2) | 67 (28.9) | ||||
(3) with parents and grandparents | 207 (6.4) | 43 (20.8) | ||||
(4) others | 175 (5.4) | 39 (22.3) | ||||
Parental bias | 2759 (82.2) | 14.684 | 2 | 0.001 | 0.072 ** | |
(1) no | 2256 (81.8) | 577 (25.6) | ||||
(2) for Participants | 345 (12.5) | 113 (32.8) | ||||
(3) for siblings | 158 (5.7) | 57 (36.1) | ||||
Education level of the father | 2208 (65.8) | 11.601 | 3 | 0.009 | −0.059 ** | |
(1) 0–9 years | 350 (15.9) | 114 (32.6) | ||||
(2) 10–12 years | 485 (22.0) | 134 (27.6) | ||||
(3) 13–17 years | 1092 (49.5) | 258(23.6) | ||||
(4) over 17 years | 281 (12.7) | 73 (26.0) | ||||
Education level of the mother | 2191 (65.3) | 4.852 | 3 | 0.183 | −0.042 * | |
(1) 0–9 years | 407 (18.6) | 118 (29.0) | ||||
(2) 10–12 years | 450 (20.5) | 119 (26.4) | ||||
(3) 13–17 years | 1123 (51.3) | 290 (25.8) | ||||
(4) over 17 years | 211 (9.6) | 44 (20.9) | ||||
Parental Marriage Quality | 3152 (93.9) | 48.659 | 4 | 0.000 | 0.084 ** | |
(1) Excellent | 2323 (69.2) | 535 (23.0) | ||||
(2) Good | 428 (12.7) | 151 (35.3) | ||||
(3) Conflicted | 105 (3.1) | 44 (41.9) | ||||
(4) Living apart | 58 (1.7) | 19 (32.8) | ||||
(5) Divorce | 238 (7.1) | 75 (31.5) | ||||
Family income | 2493 (74.3) | 2.546 | 3 | 0.467 | 0.001 | |
(1) 0–100 K | 636 (25.5) | 150 (23.6) | ||||
(2) 100–300 K | 1120 (44.9) | 299 (26.7) | ||||
(3) 300–500 K | 447 (17.9) | 108 (24.2) | ||||
(4) More than 500 K | 290 (11.6) | 71 (24.5) | ||||
Satisfaction with household economy | −0.236 ** | |||||
Self-evaluation of network usage troubles | 3265 (97.3) | 287.629 | 2 | 0.000 | ||
(1) no | 1939 (59.4) | 308 (15.9) | ||||
(2) yes | 472 (14.5) | 232 (49.2) | ||||
(3) other Stresses | 854 (26.2) | 317 (37.1) | ||||
Child Trauma | 3357 (100) | 96.801 | 1 | 0.000 | ||
(1) no | 1512 (45.0) | 270 (17.9) | ||||
(2) yes | 1845 (55.0) | 606 (32.8) | ||||
EA | 3357 (100) | 89.244 | 1 | 0.000 | ||
(1) no | 3073 (91.5) | 735 (23.9) | ||||
(2) yes | 284 (8.5) | 141 (49.6) | ||||
PA | 3357 (100) | 54.058 | 1 | 0.000 | ||
(1) no | 3108 (92.6) | 762 (24.5) | ||||
(2) yes | 249 (7.4) | 114 (45.8) | ||||
SA | 3357 (100) | 29.117 | 1 | 0.000 | ||
(1) no | 3162 (94.2) | 793 (25.1) | ||||
(2) yes | 195 (5.8) | 83 (42.6) | ||||
EN | 3357 (100) | 74.498 | 1 | 0.000 | ||
(1) no | 1788 (53.3) | 357 (20.0) | ||||
(2) yes | 1569 (46.7) | 519 (33.1) | ||||
PN | 3357 (100) | 55.046 | 1 | 0.000 | ||
(1) no | 2588 (77.1) | 596 (23.0) | ||||
(2) yes | 769 (22.9) | 280 (36.4) | ||||
Depression | 3350 (99.8) | 209.039 | 1 | 0.000 | ||
(1) no | 2375 (70.9) | 454 (19.1) | ||||
(2) yes | 975 (29.1) | 422 (43.3) | ||||
Anxiety | 3350 (99.8) | 279.150 | 1 | 0.000 | ||
(1) no | 2557 (76.3) | 488 (19.1) | ||||
(2) yes | 793 (23.7) | 388 (48.9) |
IAT-20 | SAS | SDS | EA | PA | SA | EN | PN | FA | IN | SL | IC | SSFD | BC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IAT-20 | ||||||||||||||
SAS | 0.403 ** | |||||||||||||
SDS | 0.383 ** | 0.708 ** | ||||||||||||
EA | 0.312 ** | 0.442 ** | 0.454 ** | |||||||||||
PA | 0.168 ** | 0.269 ** | 0.256 ** | 0.544 ** | ||||||||||
SA | 0.111 ** | 0.177 ** | 0.126 ** | 0.289 ** | 0.394 ** | |||||||||
EN | 0.159 ** | 0.354 ** | 0.488 ** | 0.405 ** | 0.315 ** | 0.107 ** | ||||||||
PN | 0.167 ** | .0322 ** | 0.412 ** | 0.380 ** | 0.313 ** | 0.233 ** | 0.508 ** | |||||||
FA | −0.297 ** | −0.427 ** | −0.545 ** | −0.424 ** | −0.292 ** | −0.086 ** | −0.584 ** | −0.376 ** | ||||||
IN | −0.205 ** | −0.316 ** | −0.433 ** | −0.346 ** | −0.280 ** | −0.093 ** | −0.433 ** | −0.301 ** | 0.703 ** | |||||
SL | −0.170 ** | −0.183 ** | −0.169 ** | −0.201 ** | −0.085 ** | −0.065 ** | −0.120 ** | −0.146 ** | 0.024 | −0.042* | ||||
IC | −0.009 | −0.090 ** | −0.197 ** | −0.093 ** | −0.116 ** | −0.032 | −0.232 ** | −0.178 ** | 0.416 ** | 0.434 ** | −0.285 ** | |||
SSFD | −0.138 ** | −0.253 ** | −0.387 ** | −0.260 ** | −0.228 ** | −0.059 ** | −0.430 ** | −0.273 ** | 0.793 ** | 0.825 ** | −0.405 ** | 0.720 ** | ||
BC | 0.207 ** | 0.244 ** | 0.327 ** | 0.165 ** | 0.100 ** | 0.073 ** | 0.240 ** | 0.187 ** | −0.375 ** | −0.233 ** | −0.121 ** | −0.149 ** | −0.254 ** | |
GF | 0.311 ** | 0.469 ** | 0.585 ** | 0.482 ** | 0.306 ** | 0.078 ** | 0.568 ** | 0.409 ** | −0.723 ** | −0.551 ** | −0.254 ** | −0.236 ** | −0.493 ** | 0.455 ** |
Effect | Effect Model | Coeff | 95% CI [LLCI, ULCI] | Effect Ratio% |
---|---|---|---|---|
Direct Effect | CTQ→IAD | 1.1631 | [−0.2436, 2.5697] | |
Indirect Effect | Ind1 | 1.3544 | [0.8085, 1.9752] | 52.3 |
Ind2 | 0.6410 | [0.2556, 1.0421] | 24.1 | |
Ind3 | 0.6201 | [0.2571, 0.9930] | 23.6 | |
Ind1 minus Ind2 | 0.7134 | [−0.0842, 1.6199] | ||
Ind1 minus Ind3 | 0.7343 | [−0.0387, 1.5964] | ||
Ind2 minus Ind3 | 0.0210 | [−0.1859, 0.2335] | ||
Total Indirect Effect | 2.6155 | [1.9555, 3.3105] | 100 | |
Total Effect | 3.7786 | [2.3780, 5.1792] | 100 |
Effect | Effect Model | Coeff | 95% CI [LLCI, ULCI] | Effect Ratio% |
---|---|---|---|---|
Direct Effect | GF→IAD | 0.2332 | [0.1099, 0.3565] | 45.5 |
Indirect Effect | Ind1 | 0.1627 | [0.0997, 0.2325] | 31.8 |
Ind2 | 0.0652 | [0.0141, 0.1193] | 12.7 | |
Ind3 | 0.0509 | [0.0114, 0.0902] | 10.0 | |
Ind1 minus Ind2 | 0.0975 | [−0.0073, 0.2064] | ||
Ind1 minus Ind3 | 0.1118 | [0.0231, 0.2089] | ||
Ind2 minus Ind3 | 0.0143 | [−0.0011, 0.0376] | ||
Total Indirect Effect | 0.2789 | [0.2068, 0.3544] | 54.5 | |
Total Effect | 0.5121 | [0.4001, 0.6241] | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Xu, L.; Zhu, W.; Zhang, T.; Wang, Q.; Ai, Z.; Zhao, X. The Influence of Childhood Trauma and Family Functioning on Internet Addiction in Adolescents: A Chain-Mediated Model Analysis. Int. J. Environ. Res. Public Health 2022, 19, 13639. https://doi.org/10.3390/ijerph192013639
Hu M, Xu L, Zhu W, Zhang T, Wang Q, Ai Z, Zhao X. The Influence of Childhood Trauma and Family Functioning on Internet Addiction in Adolescents: A Chain-Mediated Model Analysis. International Journal of Environmental Research and Public Health. 2022; 19(20):13639. https://doi.org/10.3390/ijerph192013639
Chicago/Turabian StyleHu, Manji, Lin Xu, Wei Zhu, Tingting Zhang, Qiang Wang, Zisheng Ai, and Xudong Zhao. 2022. "The Influence of Childhood Trauma and Family Functioning on Internet Addiction in Adolescents: A Chain-Mediated Model Analysis" International Journal of Environmental Research and Public Health 19, no. 20: 13639. https://doi.org/10.3390/ijerph192013639
APA StyleHu, M., Xu, L., Zhu, W., Zhang, T., Wang, Q., Ai, Z., & Zhao, X. (2022). The Influence of Childhood Trauma and Family Functioning on Internet Addiction in Adolescents: A Chain-Mediated Model Analysis. International Journal of Environmental Research and Public Health, 19(20), 13639. https://doi.org/10.3390/ijerph192013639