The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment Strategies
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Socio-Demographic and Psychopathological Characteristics of the Sample
3.2. Socio-Demographic and Clinical Predictors of PIU Versus Non-PIU
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De, R.; Pandey, N.; Pal, A. Impact of digital surge during COVID-19 pandemic: A viewpoint on research and practice. Int. J. Inf. Manag. 2020, 55, 102171. [Google Scholar] [CrossRef]
- Digital Economy and Society Index, European Commission. 2022. Available online: https://digital-strategy.ec.europa.eu/en/policies/desi-italy (accessed on 1 November 2022).
- Volpe, U.; Orsolini, L.; Salvi, V.; Albert, U.; Carmassi, C.; Carrà, G.; Cirulli, F.; Dell’Osso, B.; Luciano, M.; Menculini, G.; et al. COVID-19-Related Social Isolation Predispose to Problematic Internet and Online Video Gaming Use in Italy. Int. J. Environ. Res. Public Health 2022, 19, 1539. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Public health implications of excessive use of the internet, computers, smartphones and similar electronic devices: Meeting report. In Proceedings of the Main Meeting Hall, Foundation for Promotion of Cancer Research, National Cancer Research Centre, Tokyo, Japan, 27–29 August 2014. [Google Scholar]
- Fineberg, N.A.; Menchón, J.M.; Hall, N.; Dell’Osso, B.; Brand, M.; Potenza, M.N.; Chamberlain, S.R.; Cirnigliaro, G.; Lochner, C.; Billieux, J.; et al. Advances in problematic usage of the internet research—A narrative review by experts from the European network for problematic usage of the internet. Compr. Psychiatry 2022, 118, 152346. [Google Scholar] [CrossRef]
- Young, K.S. Psychology of computer use: XL. Addictive use of the Internet: A case that breaks the stereotype. Psychol. Rep. 1996, 79, 899–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.S. Internet Addiction: The Emergence of a New Clinical Disorder. CyberPsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Sherer, J.; Levounis, P. Technological Addictions. Psychiatr. Clin. N. Am. 2022, 45, 577–591. [Google Scholar] [CrossRef]
- Pan, Y.-C.; Chiu, Y.-C.; Lin, Y.-H. Systematic review and meta-analysis of epidemiology of internet addiction. Neurosci. Biobehav. Rev. 2020, 118, 612–622. [Google Scholar] [CrossRef]
- Bener, A.; Yildirim, E.; Torun, P.; Çatan, F.; Bolat, E.; Alıç, S.; Akyel, S.; Griffiths, M.D. Internet addiction, fatigue, and sleep problems among adolescent students: A large-scale study. Int. J. Ment. Health Addict. 2018, 17, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Durkee, T.; Kaess, M.; Carli, V.; Parzer, P.; Wasserman, C.; Floderus, B.; Apter, A.; Balazs, J.; Barzilay, S.; Bobes, J.; et al. Prevalence of pathological internet use among adolescents in Europe:demographic and social factors. Addiction 2012, 107, 2210–2222. [Google Scholar] [CrossRef]
- Kotyuk, E.; Magi, A.; Eisinger, A.; Király, O.; Vereczkei, A.; Barta, C.; Griffiths, M.D.; Székely, A.; Kökönyei, G.; Farkas, J.; et al. Co-occurrences of substance use and other potentially addictive behaviors: Epidemiological results from the Psychological and Genetic Factors of the Addictive Behaviors (PGA) Study. J. Behav. Addict. 2020, 9, 272–288. [Google Scholar] [CrossRef]
- Reiner, I.; Tibubos, A.N.; Hardt, J.; Muller, K.; Wolfling, K.; Beutel, M.E. Peer attachment, specific patterns of internet use and problematic internet use in male and female adolescents. Eur. Child Adolesc. Psychiatry 2017, 26, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.M. An overview of problematic internet use. Addict. Behav. 2014, 39, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Scimeca, G.; Cava, L.; Pandolfo, G.; Zoccali, R.A.; Muscatello, M.R. Prevalence of internet addiction in a sample of southern Italian high school students. Int. J. Ment. Health Addict. 2014, 12, 708–715. [Google Scholar] [CrossRef]
- Di Nicola, M.; Ferri, V.R.; Moccia, L.; Panaccione, I.; Strangio, A.M.; Tedeschi, D.; Grandinetti, P.; Callea, A.; De-Giorgio, F.; Martinotti, G.; et al. Gender differences and psychopathological features associated with addictive behaviors in adolescents. Front. Psychiatry 2017, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Pallanti, S.; Bernardi, S.; Quercioli, L. The Shorter PROMIS Questionnaire and the Internet Addiction Scale in the assessment of multiple addictions in a high-school population: Prevalence and related disability. CNS Spectr. 2006, 11, 966–974. [Google Scholar] [CrossRef]
- Vigna-Taglianti, F.; Brambilla, R.; Priotto, B.; Angelino, R.; Cuomo, G.; Diecidue, R. Problematic internet use among high school students: Prevalence, associated factors and gender differences. Psychiatry Res. 2017, 257, 163–171. [Google Scholar] [CrossRef]
- Orsolini, L.; Yılmaz-Karaman, I.G.; Longo, G.; Bellagamba, S.; Kato, T.A.; Volpe, U. Sex-differences in hikikomori traits as predictors of problematic internet use in Italian university students. J. Psychiatr. Res. 2022, 155, 211–218. [Google Scholar] [CrossRef]
- Ko, C.-H.; Hsiao, S.; Liu, G.-C.; Yen, J.-Y.; Yang, M.-J.; Yen, C.-F. The characteristics of decision making, potential to take risks, and personality of college students with Internet addiction. Psychiatry Res. 2010, 175, 121–125. [Google Scholar] [CrossRef]
- Tao, R.; Huang, X.; Wang, J.; Zhang, H.; Zhang, Y.; Li, M. Proposed diagnostic criteria for internet addiction. Addiction 2010, 105, 556–564. [Google Scholar] [CrossRef]
- Orosz, G.; Benyó, M.; Berkes, B.; Nikoletti, E.; Gál, É.; Tóth-Király, I.; Bőthe, B. The personality, motivational, and need-based background of problematic Tinder use. J. Behav. Addict. 2018, 7, 301–316. [Google Scholar] [CrossRef]
- Pettorruso, M.; Valle, S.; Cavic, E.; Martinotti, G.; di Giannantonio, M.; Grant, J.E. Problematic Internet use (PIU), personality profiles and emotion dysregulation in a cohort of young adults: Trajectories from risky behaviors to addiction. Psychiatry Res. 2020, 289, 113036. [Google Scholar] [CrossRef]
- Chundawat, D.S.; Yadav, K.C.; Mudgal, S.K.; Yadav, Y.; Gaur, R.; Malhotra, V. A Study on Psychosomatic Problems Related to the Problematic Internet Use among Adolescents at Selected Schools of Aspur Block, Dungarpur, Rajasthan. Mymensingh Med. J. 2022, 31, 539–546. [Google Scholar] [PubMed]
- El Archi, S.; Barrault, S.; Brunault, P.; Ribadier, A.; Varescon, I. Co-occurrence of Adult ADHD Symptoms and Problematic Internet Use and Its Links with Impulsivity, Emotion Regulation, Anxiety, and Depression. Front. Psychiatry 2022, 13, 792206. [Google Scholar] [CrossRef] [PubMed]
- Lakkunarajah, S.; Adams, K.; Pan, A.Y.; Liegl, M.; Sadhir, M. A Trying Time: Problematic Internet Use (PIU) and its association with depression and anxiety during the COVID-19 Pandemic. Child Adolesc. Psychiatry Ment. Health 2022, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-C. Exploring the Relationship Among Free-Time Management, Leisure Boredom, and Internet Addiction in Undergraduates in Taiwan. Psychol. Rep. 2018, 122, 1651–1665. [Google Scholar] [CrossRef]
- Donati, M.A.; Beccari, C.; Primi, C. Boredom and problematic Facebook use in adolescents: What is the relationship considering trait or state boredom? Addict. Behav. 2021, 125, 107132. [Google Scholar] [CrossRef]
- Wongpakaran, N.; Wongpakaran, T.; Pinyopornpanish, M.; Simcharoen, S.; Kuntawong, P. Loneliness and problematic internet use: Testing the role of interpersonal problems and motivation for internet use. BMC Psychiatry 2021, 21, 447. [Google Scholar] [CrossRef] [PubMed]
- Saadati, H.M.; Mirzaei, H.; Okhovat, B.; Khodamoradi, F. Association between internet addiction and loneliness across the world: A meta-analysis and systematic review. SSM-Popul. Health 2021, 16, 100948. [Google Scholar] [CrossRef]
- Deutrom, J.; Katos, V.; Al-Mourad, M.B.; Ali, R. The Relationships between Gender, Life Satisfaction, Loneliness and Problematic Internet Use during COVID-19: Does the Lockdown Matter? Int. J. Environ. Res. Public Health 2022, 19, 1325. [Google Scholar] [CrossRef]
- Bai, J.; Mo, K.; Peng, Y.; Hao, W.; Qu, Y.; Lei, X.; Yang, Y. The Relationship Between the Use of Mobile Social Media and Subjective Well-Being: The Mediating Effect of Boredom Proneness. Front. Psychol. 2021, 11, 568492. [Google Scholar] [CrossRef]
- Malaeb, D.; Akel, P.M.; Salameh, P.P.; Hallit, S.; Obeid, P.S. Boredom Proneness, Loneliness, and Smartphone Addiction Among Lebanese Young Adults: The Mediating Role of Depression, Anxiety, and Stress. Prim. Care Companion CNS Disord. 2022, 24, 21m03092. [Google Scholar] [CrossRef] [PubMed]
- Jeste, D.V.; Lee, E.E.; Cacioppo, S. Battling the modern behavioral epidemic of loneliness: Suggestions for research and interventions. JAMA Psychiatry 2020, 77, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Weybright, E.H.; Schulenberg, J.; Caldwell, L.L. More Bored Today Than Yesterday? National Trends in Adolescent Boredom From 2008 to 2017. J. Adolesc. Health 2019, 66, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Skues, J.; Williams, B.; Oldmeadow, J.; Wise, L. The effects of boredom, loneliness, and distress tolerance on problem internet use among university students. Int. J. Ment. Health Addict. 2015, 14, 167–180. [Google Scholar] [CrossRef]
- Van Hooft, E.A.J.; van Hooff, M.L.M. The state of boredom: Frustrating or depressing? Motiv. Emot. 2018, 42, 931–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-J.; Liu, Q.-Q.; Lian, S.-L.; Zhou, Z.-K. Are bored minds more likely to be addicted? The relationship between boredom proneness and problematic mobile phone use. Addict. Behav. 2020, 108, 106426. [Google Scholar] [CrossRef] [PubMed]
- Castelpietra, G.; Nicotra, A.; De Leo, D. The Hikikomori Phenomenon: Could Loneliness Be a Choice of Self-Restriction from Society? Open J. Psychiatry 2021, 11, 47–62. [Google Scholar] [CrossRef]
- Yang, M.; Qu, C.; Zhang, Z.; Guo, H.; Guo, X.; Yang, L.; Tian, K.; Hu, W. Relationships between Dark Triad and negative emotions during COVID-19 lockdown: The chain mediating roles of negative coping and state boredom. Curr. Psychol. 2022, 1–13. [Google Scholar] [CrossRef]
- Weiss, E.R.; Todman, M.; Maple, E.; Bunn, R.R. Boredom in a Time of Uncertainty: State and Trait Boredom’s Associations with Psychological Health during COVID-19. Behav. Sci. 2022, 12, 298. [Google Scholar] [CrossRef]
- Anderson, A.J.; McMeen, C.E.; Perone, S.; Weybright, E.H. Sound and Silence: The Effects of Environmental Conditions on State Boredom in an Online Study during the COVID-19 Pandemic. Behav. Sci. 2022, 12, 282. [Google Scholar] [CrossRef]
- Nguyen, T.X.T.; Lal, S.; Abdul-Salam, S.; Yuktadatta, P.; McKinnon, L.; Khan, M.S.R.; Kadoya, Y. Has Smartphone Use Influenced Loneliness during the COVID-19 Pandemic in Japan? Int. J. Environ. Res. Public Health 2022, 19, 10540. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.L.-Y.; Li, J.; Yuen, S.; Lai, A.H.-Y.; Cheung, A.W.-L.; Yau, P.S.-Y.; Yeoh, E.-K. Vulnerable populations during COVID-19 response: Health-related quality of life among Chinese population and its influence due to socio-demographic factors and loneliness. Front. Public Health 2022, 10, 857033. [Google Scholar] [CrossRef] [PubMed]
- Lwanga, S.K.; Lemeshow, S.; World Health Organization. Sample Size Determination in Health Studies: A Practical Manual. Available online: https://apps.who.int/iris/handle/10665/40062 (accessed on 1 November 2022).
- Eysenbach, G. Improving the quality of web surveys: The checklist for reporting results of internet E-surveys (CHERRIES). J. Med Internet Res. 2004, 6, e34. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Caci, B.; D’Amico, A.; Di Blasi, M. Internet addiction disorder: An Italian study. CyberPsychol. Behav. 2007, 10, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Chamberlain, S.R.; Treder, M.S.; Kiraly, F.; Leppink, E.W.; Redden, S.A.; Stein, D.J.; Lochner, C.; Grant, J.E. Problematic internet use (PIU): Associations with the impulsivecompulsive spectrum. An application of machine learning in psychiatry. J. Psychiatr. Res. 2016, 83, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scimeca, G.; Bruno, A.; Crucitti, M.; Conti, C.; Quattrone, D.; Pandolfo, G.; Zoccali, R.A.; Muscatello, M.R.A. Abnormal illness behavior and Internet addiction severity: The role of disease conviction, irritability, and alexithymia. J. Behav. Addict. 2017, 6, 92–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Carlo, F.; Pettorruso, M.; Alessi, M.C.; Picutti, E.; Collevecchio, R.; Migliara, G.; Baroni, G.; Gambi, F.; Cinosi, E.; Martinotti, G.; et al. Characterizing the building blocks of Problematic Use of the Internet (PUI): The role of obsessional impulses and impulsivity traits among Italian young adults. Compr. Psychiatry 2021, 106, 152225. [Google Scholar] [CrossRef]
- Zammuner, V. Italians-Social and Emotional Loneliness: The Results of Five Studies, World Academy of Science, Engineering and Technology. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2008, 2, 416–428. [Google Scholar]
- Craparo, G.; Faraci, P.; Gori, A.; Hunter, J.A.; Hunter, A.; Pileggi, V.; Giulia, C.; Antonella, L.; John, E. Validation of the italian version of the multidimensional state boredom scale (MSBS). Clin. Neuropsychiatry 2017, 14. [Google Scholar]
- Bottesi, G.; Ghisi, M.; Altoè, G.; Conforti, E.; Melli, G.; Sica, C. The Italian version of the Depression Anxiety Stress Scales-21: Factor structure and psychometric properties on community and clinical samples. Compr. Psychiatry 2015, 60, 170–181. [Google Scholar] [CrossRef]
- Li, W.; O’Brien, J.E.; Snyder, S.M.; Howard, M.O. Characteristics of internet addiction/pathological internet use in U.S. university students: A qualitative-method investigation. PLoS ONE 2015, 10, e0117372. [Google Scholar] [CrossRef] [Green Version]
- Tenzin, K.; Dorji, T.; Choeda, T.; Wangdi, P.; Oo, M.M.; Tripathy, J.P.; Tenzin, T.; Tobgay, T. Internet Addiction among Secondary School Adolescents: A Mixed Methods Study. J. Nepal Med. Assoc. 2019, 57, 344–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikulas, W.L.; Vodanovich, S.J. The essence of boredom. Psychol. Rec. 1993, 43, 3–12. [Google Scholar]
- Eastwood, J.D.; Frischen, A.; Fenske, M.J.; Smilek, D. The unengaged mind: Defining boredom in terms of attention. Perspect. Psychol. Sci. 2012, 7, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Belton, T.; Priyadharshini, E. Boredom and schooling: A cross-disciplinary exploration. Camb. J. Educ. 2007, 37, 579–595. [Google Scholar] [CrossRef]
- Struk, A.A.; Carriere, J.S.A.; Cheyne, J.A.; Danckert, J. A short boredom proneness scale: Development and psychometric properties. Assessment 2017, 24, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Malkovsky, E.; Merrifield, C.; Goldberg, Y.; Danckert, J. Exploring the relationship between boredom and sustained attention. Exp. Brain Res. 2012, 221, 59–67. [Google Scholar] [CrossRef]
- Rotunda, R.J.; Kass, S.; Sutton, M.; Leon, D. Internet use and misuse. Preliminary findings from a new assessment instrument. Behav Modif. 2003, 27, 484–504. [Google Scholar] [CrossRef]
- Nichols, L.A.; Nicki, R. Development of a psychometrically sound internet addiction scale: A preliminary step. Psychol. Addict. Behav. 2004, 18, 381–384. [Google Scholar] [CrossRef]
- Chou, W.-J.; Chang, Y.-P.; Yen, C.-F. Boredom proneness and its correlation with Internet addiction and Internet activities in adolescents with attention-deficit/hyperactivity disorder. Kaohsiung J. Med Sci. 2018, 34, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Milyavskaya, M.; Inzlicht, M.; Johnson, T.; Larson, M.J. Reward sensitivity following boredom and cognitive effort: A high-powered neurophysiological investigation. Neuropsychologia 2018, 123, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolniewicz, C.A.; Rozgonjuk, D.; Elhai, J.D. Boredom proneness and fear of missing out mediate relations between depression and anxiety with problematic smartphone use. Hum. Behav. Emerg. Technol. 2019, 2, 61–70. [Google Scholar] [CrossRef]
- Bieleke, M.; Barton, L.; Wolff, W. Trajectories of boredom in self-control demanding tasks. Cogn. Emot. 2021, 35, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, S.-L.; Wu, C.-P. The effects of parental monitoring and leisure boredom on adolescents’ Internet addiction. Adolescence 2009, 44, 993–1004. [Google Scholar]
- Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Westgate, E.C.; Wilson, T.D. Boring thoughts and bored minds: The MAC model of boredom and cognitive engagement. Psychol. Rev. 2018, 125, 689–713. [Google Scholar] [CrossRef]
- Calati, R.; Ferrari, C.; Brittner, M.; Oasi, O.; Olié, E.; Carvalho, A.F.; Courtet, P. Suicidal thoughts and behaviors and social isolation: A narrative review of the literature. J. Affect. Disord. 2019, 245, 653–667. [Google Scholar] [CrossRef]
- Antonelli-Salgado, T.; Monteiro, G.M.C.; Marcon, G.; Roza, T.H.; Zimerman, A.; Hoffmann, M.S.; Cao, B.; Hauck, S.; Brunoni, A.R.; Passos, I.C. Loneliness, but not social distancing, is associated with the incidence of suicidal ideation during the COVID-19 outbreak: A longitudinal study. J. Affect. Disord. 2021, 290, 52–60. [Google Scholar] [CrossRef]
- Haddad, C.; Malaeb, D.; Sacre, H.; Khalil, J.B.; Khansa, W.; Al Hajj, R.; Kheir, N.; Saade, S.; Obeid, S.; Hallit, S. Association of problematic internet use with depression, impulsivity, anger, aggression, and social anxiety: Results of a national study among Lebanese adolescents. Pediatr. Investig. 2021, 5, 255–264. [Google Scholar] [CrossRef]
- Lopes, L.S.; Valentini, J.P.; Monteiro, T.H.; Costacurta, M.C.d.F.; Soares, L.O.N.; Telfar-Barnard, L.; Nunes, P.V. Problematic Social Media Use and Its Relationship with Depression or Anxiety: A Systematic Review. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 691–702. [Google Scholar] [CrossRef]
- Andrade, A.L.M.; Martins, G.D.G.; Scatena, A.; Lopes, F.M.; de Oliveira, W.A.; Kim, H.S.; De Micheli, D. The Effect of Psychosocial Interventions for Reducing Co-occurring Symptoms of Depression and Anxiety in Individuals with Problematic Internet Use: A Systematic Review and Meta-analysis. Int. J. Ment. Health Addict. 2022, 3, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zou, S.; Zhang, D.; Wang, X.; Wu, X. Problematic Internet use and academic engagement during the COVID-19 lockdown: The indirect effects of depression, anxiety, and insomnia in early, middle, and late adolescence. J. Affect. Disord. 2022, 309, 9–18. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Turel, O.; Bechara, A. Association of excessive social media use with abnormal white matter integrity of the corpus callosum. Psychiatry Res. Neuroimaging 2018, 278, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Altbäcker, A.; Plózer, E.; Darnai, G.; Perlaki, G.; Horváth, R.; Orsi, G.; Nagy, S.A.; Bogner, P.; Schwarcz, A.; Kovacs, N.; et al. Problematic internet use is associated with structural alterations in the brain reward system in females. Brain Imaging Behav. 2015, 10, 953–959. [Google Scholar] [CrossRef]
- Yu, F.; Li, J.; Xu, L.; Zheng, X.; Fu, M.; Li, K.; Yao, S.; Kendrick, K.M.; Montag, C.; Becker, B. Opposing associations of Internet Use Disorder symptom domains with structural and functional organization of the striatum: A dimensional neuroimaging approach. J. Behav. Addict. 2022, 11, 1068–1079. [Google Scholar] [CrossRef]
- Solly, J.E.; Hook, R.W.; Grant, J.E.; Cortese, S.; Chamberlain, S.R. Structural gray matter differences in Problematic Usage of the Internet: A systematic review and meta-analysis. Mol. Psychiatry 2021, 27, 1000–1009. [Google Scholar] [CrossRef]
Total Sample | Not-PIU | PIU | p-Value | |
---|---|---|---|---|
Sex | ||||
Males | 514 (31.3%) | 392 (31.3%) | 122 (31.9%) | χ2 = 0.099 p = 0.753 |
Females | 1129 (68.7%) | 869 (68.9%) | 260 (68.1%) | |
Parental legal status | ||||
Married | 1298 (79%) | 1001 (79.4%) | 297 (77.7%) | χ2 = 1.851 p = 0.763 |
Unmarried parents | 22 (1.3%) | 18 (1.4%) | 4 (1.0%) | |
Separated | 121 (7.4%) | 94 (7.5%) | 27 (7.1%) | |
Divorced | 139 (8.5%) | 102 (8.1%) | 37 (9.7%) | |
Widowed | 63 (3.8%) | 46 (3.6%) | 17 (4.5%) | |
Living condition | ||||
With their nuclear family | 1025 (62.3%) | 787 (62.4%) | 238 (62.3%) | χ2 = 3.404 p = 0.845 |
With one of their parents | 156 (9.5%) | 119 (9.4%) | 37 (9.7%) | |
With other relatives (not parents) | 15 (0.9%) | 14 (1.1%) | 1 (0.3%) | |
Alone | 65 (4.0%) | 48 (3.8%) | 17 (4.5%) | |
In a university hostel/boarding school | 42 (2.6%) | 34 (2.7%) | 8 (2.1%) | |
Together with other university classmates | 249 (15.2%) | 188 (14.9%) | 61 (16.0%) | |
With their partner | 48 (2.9%) | 37 (2.9%) | 11 (2.9%) | |
Other | 43 (2.9%) | 34 (2.7%) | 9 (2.4%) | |
Personal psychological distress history | ||||
None | 420 (25.6%) | 359 (28.5%) | 61 (16.0%) | χ2 = 25.207 p < 0.001 |
Yes, without professional support | 658 (41.7%) | 513 (40.7%) | 172 (25.1%) | |
Yes, with professional support | 538 (32.7%) | 389 (30.8%) | 149 (39.0%) | |
Siblings | ||||
Yes | 1347 (82.0%) | 1039 (82.4%) | 308 (80.6%) | χ2 = 0.620 p = 0.431 |
No | 296 (18.0%) | 222 (17.6%) | 74 (19.4%) | |
Relationship status | ||||
Single | 794 (48.3%) | 585 (46.4%) | 209 (54.7%) | χ2 = 8.128 p = 0.004 |
In a relationship | 849 (51.7%) | 676 (53.6%) | 173 (45.3%) |
Total Sample | Not-PIU | PIU | p-Value | |
---|---|---|---|---|
DASS-21 Depression Subscale | ||||
Normal | 548 (33.4%) | 495 (39.3%) | 53 (13.9%) | χ2 = 143.353 p < 0.001 |
Mild | 179 (10.9%) | 37 (11.5%) | 34 (8.9%) | |
Moderate | 281 (17.1%) | 74 (16.4%) | 74 (19.4%) | |
Severe | 310 (18.9%) | 76 (18.6%) | 76 (19.9%) | |
Extremely Severe | 325 (19.8%) | 145 (14.3%) | 145 (38.0%) | |
DASS-21 Anxiety Subscale | ||||
Normal | 839 (51.1%) | 708 (56.1%) | 131 (34.3%) | χ2 = 64.454 p < 0.001 |
Mild | 187 (11.4%) | 125 (9.9%) | 62 (16.2%) | |
Moderate | 248 (15.1%) | 183 (14.5%) | 65 (17.0%) | |
Severe | 224 (13.6%) | 156 (12.4%) | 68 (17.8%) | |
Extremely Severe | 145 (8.8%) | 89 (7.1%) | 56 (14.7%) | |
DASS-21 Stress Subscale | ||||
Normal | 358 (21.8%) | 324 (25.7%) | 34 (8.9%) | χ2 = 86.189 p < 0.001 |
Mild | 172 (10.5%) | 141 (11.2%) | 31 (8.1%) | |
Moderate | 313 (19.1%) | 246 (19.5%) | 67 (17.5%) | |
Severe | 451 (27.4%) | 334 (26.5%) | 117 (30.6%) | |
Extremely Severe | 349 (21.2%) | 216 (17.1%) | 133 (23.3%) |
Total Sample | Not-PIU | PIU | p-Value | |
---|---|---|---|---|
DASS-21 Depression subscale | 21.2 (11.8) | 19.3 (11.5) | 27.6 (10.4) | t = −13.303 p < 0.001 |
DASS-21 Anxiety subscale | 16.1 (11.0) | 15.0 (10.7) | 19.8 (10.8) | t = −7.849 p < 0.001 |
DASS-21 Stress subscale | 23.8 (10.5) | 22.5 (10.4) | 28.3 (9.4) | t = −10.399 p < 0.001 |
DASS-21 Total score | 61.1 (30.0) | 56.7 (29.3) | 75.8 (27.0) | t = −11.848 p < 0.001 |
ILS Social Loneliness | 10.4 (4.1) | 10.1 (4.0) | 11.7 (4.1) | t = −7.115 p < 0.001 |
ILS Emotional Loneliness | 15.0 (4.2) | 14.4 (4.2) | 16.9 (4.0) | t = −10.542 p < 0.001 |
ILS General Loneliness | 16 (5.7) | 15.2 (5.5) | 18.5 (5.4) | t = −10.221 p < 0.001 |
ILS Total score | 47.4 (12.6) | 45.6 (12.3) | 53.5 (11.8) | t = −11.101 p < 0.001 |
MSBS Disengagement | 44.6 (16.0) | 42.0 (15.9) | 53.1 (13.0) | t = −13.858 p < 0.001 |
MSBS High Arousal | 20.2 (8.4) | 19.0 (8.4) | 24.4 (7.3) | t = −12.356 p < 0.001 |
MSBS Inattention | 19.7 (6.7) | 18.5 (6.8) | 23.6 (4.6) | t = −17.098 p < 0.001 |
MSBS Low Arousal | 21.3 (9.2) | 20.0 (9.1) | 25.6 (8.0) | t = −11.477 p < 0.001 |
MSBS Time Perception | 15.7 (9.5) | 15.1 (9.3) | 17.5 (10.0) | t = −4.202 p < 0.001 |
MSBS Total Score | 121.5 (42.3) | 114.6 (42.1) | 144.2 (34.2) | t = −14.004 p < 0.001 |
B | SE | β | t | p-Value | 95%IC Lower Limit | 95%IC Upper Limit | |
---|---|---|---|---|---|---|---|
MSBS Inattention | 0.694 | 0.061 | 0.371 | 11.313 | <0.001 | 0.574 | 0.815 |
ILS Total Score | 0.184 | 0.052 | 0.186 | 3.538 | <0.001 | 0.082 | 0.286 |
MSBS Low Arousal | −0.386 | 0.070 | −0.283 | −5.525 | <0.001 | −0.523 | −0.249 |
DASS-21 Depression Subscale | 0.124 | 0.035 | 0.117 | 3.590 | <0.001 | 0.056 | 0.192 |
MSBS Disengagement | 0.154 | 0.039 | 0.195 | 3.989 | <0.001 | 0.078 | 0.230 |
MSBS Time Perception | −0.083 | 0.034 | −0.062 | −2.442 | 0.015 | −0.149 | −0.016 |
ILS Emotional Loneliness | 0.279 | 0.137 | 0.095 | 2.041 | 0.041 | 0.011 | 0.548 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsolini, L.; Longo, G.; Volpe, U. The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use. Int. J. Environ. Res. Public Health 2023, 20, 4446. https://doi.org/10.3390/ijerph20054446
Orsolini L, Longo G, Volpe U. The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use. International Journal of Environmental Research and Public Health. 2023; 20(5):4446. https://doi.org/10.3390/ijerph20054446
Chicago/Turabian StyleOrsolini, Laura, Giulio Longo, and Umberto Volpe. 2023. "The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use" International Journal of Environmental Research and Public Health 20, no. 5: 4446. https://doi.org/10.3390/ijerph20054446
APA StyleOrsolini, L., Longo, G., & Volpe, U. (2023). The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use. International Journal of Environmental Research and Public Health, 20(5), 4446. https://doi.org/10.3390/ijerph20054446