Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Intervention
2.4. Measurements
2.4.1. Working Memory
2.4.2. Postural Alignment Measurement
2.4.3. Muscle Properties
2.4.4. Blood Velocity
2.4.5. Preference and Discomfort
2.5. Statistical Analysis
3. Results
3.1. 2-Back Task Performance Changes According to VDT Workstations
3.2. Quantitative Changes According to VDT Workstations
3.2.1. CVA
3.2.2. Muscle Properties
3.2.3. Blood Velocity of CCA
3.3. Changes of Preferences According to VDT Workstations
4. Discussion
4.1. 2-Back Task Performance
4.2. Postural Alignment
4.3. Muscle Properties
4.4. Blood Velocity
4.5. Preference and Discomfort
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, N.; Bauman, A.; Brown, W. Too Much Sitting: A Novel and Important Predictor of Chronic Disease Risk? Br. J. Sports Med. 2009, 43, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of Low Energy Expenditure and Sitting in Obesity, Metabolic Syndrome, Type 2 Diabetes, and Cardiovascular Disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [Green Version]
- Kingma, I.; van Dieën, J.H. Static and Dynamic Postural Loadings during Computer Work in Females: Sitting on an Office Chair versus Sitting on an Exercise Ball. Appl. Ergon. 2009, 40, 199–205. [Google Scholar] [CrossRef]
- Visser, B.; van Dieën, J.H. Pathophysiology of Upper Extremity Muscle Disorders. J. Electromyogr. Kinesiol. 2006, 16, 1–16. [Google Scholar] [CrossRef]
- Gustafsson, E.; Thomée, S.; Grimby-Ekman, A.; Hagberg, M. Texting on Mobile Phones and Musculoskeletal Disorders in Young Adults: A Five-Year Cohort Study. Appl. Ergon. 2017, 58, 208–214. [Google Scholar] [CrossRef]
- Patwardhan, A.G.; Havey, R.M.; Khayatzadeh, S.; Muriuki, M.G.; Voronov, L.I.; Carandang, G.; Nguyen, N.-L.; Ghanayem, A.J.; Schuit, D.; Patel, A.A.; et al. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model. Spine 2015, 40, 783–792. [Google Scholar] [CrossRef]
- Bokaee, F.; Rezasoltani, A.; Manshadi, F.D.; Naimi, S.S.; Baghban, A.A.; Azimi, H. Comparison of Cervical Muscle Thickness between Asymptomatic Women with and without Forward Head Posture. Braz. J. Phys. Ther. 2017, 21, 206–211. [Google Scholar] [CrossRef]
- Kocur, P.; Wilski, M.; Goliwąs, M.; Lewandowski, J.; Łochyński, D. Influence of Forward Head Posture on Myotonometric Measurements of Superficial Neck Muscle Tone, Elasticity, and Stiffness in Asymptomatic Individuals With Sedentary Jobs. J. Manip. Physiol. Ther. 2019, 42, 195–202. [Google Scholar] [CrossRef]
- Moon, J.-H.; Jung, J.-H.; Hahm, S.-C.; Oh, H.-K.; Jung, K.-S.; Cho, H.-Y. Effects of Lumbar Lordosis Assistive Support on Craniovertebral Angle and Mechanical Properties of the Upper Trapezius Muscle in Subjects with Forward Head Posture. J. Phys. Ther. Sci. 2018, 30, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, N.F.; Hassan, K.A.; Abdelmajeed, S.F.; Moustafa, I.M.; Silva, A.G. The Relationship Between Forward Head Posture and Neck Pain: A Systematic Review and Meta-Analysis. Curr. Rev. Musculoskelet. Med. 2019, 12, 562–577. [Google Scholar] [CrossRef]
- Bulut, M.D.; Alpayci, M.; Şenköy, E.; Bora, A.; Yazmalar, L.; Yavuz, A.; Gülşen, İ. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis. Med. Sci. Monit. 2016, 22, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkes, C.; Kydd, R.; Sagar, M.; Broadbent, E. Upright Posture Improves Affect and Fatigue in People with Depressive Symptoms. J. Behav. Ther. Exp. Psychiatry 2017, 54, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Carney, D.R.; Cuddy, A.J.C.; Yap, A.J. Power Posing: Brief Nonverbal Displays Affect Neuroendocrine Levels and Risk Tolerance. Psychol. Sci. 2010, 21, 1363–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.G.; Vasavada, A.N.; Wiest, M.M.; Schmitter-Edgecombe, M. Mobility and Upright Posture Are Associated with Different Aspects of Cognition in Older Adults. Front. Aging Neurosci. 2016, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Fujimaki, G.; Mitsuya, R. Study of the Seated Posture for VDT Work. Displays 2002, 23, 17–24. [Google Scholar] [CrossRef]
- Ruivo, R.M.; Pezarat-Correia, P.; Carita, A.I. Effects of a Resistance and Stretching Training Program on Forward Head and Protracted Shoulder Posture in Adolescents. J. Manip. Physiol. Ther. 2017, 40, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dusefante, A.; Flego, A.; Dallan, G.; Cacciatori, B.; Peresson, M.; Larese Filon, F. Tailored Physiotherapeutic Intervention for Musculoskeletal Disorders among Video Display Terminal Users: A Case-Control Study. Med. Lav. 2022, 113, e2022012. [Google Scholar] [CrossRef]
- Lee, K.; Swanson, N.; Sauter, S.; Wickstrom, R.; Waikar, A.; Mangum, M. A Review of Physical Exercises Recommended for VDT Operators. Appl. Ergon. 1992, 23, 387–408. [Google Scholar] [CrossRef]
- Barrett, J.M.; McKinnon, C.; Callaghan, J.P. Cervical Spine Joint Loading with Neck Flexion. Ergonomics 2020, 63, 101–108. [Google Scholar] [CrossRef]
- Konarska, M.; Wolska, A.; Widerszal-Bazyl, M.; Bugajska, J.; Roman-Liu, D.; Aarås, A. The Effect of an Ergonomic Intervention on Musculoskeletal, Psychosocial and Visual Strain of VDT Data Entry Work: The Polish Part of the International Study. Int. J. Occup. Saf. Ergon. 2005, 11, 65–76. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Alonso-Blanco, C.; Luz Cuadrado, M.; Pareja, J.A. Myofascial Trigger Points in the Suboccipital Muscles in Episodic Tension-Type Headache. Man. Ther. 2006, 11, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Çoban, G.; Çöven, İ.; Çifçi, B.E.; Yıldırım, E.; Yazıcı, A.C.; Horasanlı, B. The Importance of Craniovertebral and Cervicomedullary Angles in Cervicogenic Headache. Diagn. Interv. Radiol. 2014, 20, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kang, S.; Cynn, H.; Jeon, H. Effect of Tactile Feedback on Trunk Posture and EMG Activity in People With Postural Kyphosis During VDT Work. Phys. Ther. Korea 2016, 23, 48–56. [Google Scholar] [CrossRef]
- Rempel, D.; Willms, K.; Anshel, J.; Jaschinski, W.; Sheedy, J. The Effects of Visual Display Distance on Eye Accommodation, Head Posture, and Vision and Neck Symptoms. Hum. Factors 2007, 49, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-M.; Park, D.-J.; Kim, S.-Y. Immediate Effects of Dynamic Neck Training Combined with the Hold-Relax Technique for Young College Students with Video Display Terminal Syndrome. Int. J. Athl. Ther. Train. 2016, 21, 50–55. [Google Scholar] [CrossRef]
- Lee, H.J.; You, S.T.; Sung, J.H.; Kim, I.S.; Hong, J.T. Analyzing the Significance of T1 Slope Minus Cervical Lordosis in Patients with Anterior Cervical Discectomy and Fusion Surgery. J. Korean Neurosurg. Soc. 2021, 64, 913–921. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Youssef, A.; Ahbouch, A.; Tamim, M.; Harrison, D.E. Is Forward Head Posture Relevant to Autonomic Nervous System Function and Cervical Sensorimotor Control? Cross Sectional Study. Gait Posture 2020, 77, 29–35. [Google Scholar] [CrossRef]
- Szeto, G.P.Y.; Straker, L.M.; O’Sullivan, P.B. A Comparison of Symptomatic and Asymptomatic Office Workers Performing Monotonous Keyboard Work—2: Neck and Shoulder Kinematics. Man. Ther. 2005, 10, 281–291. [Google Scholar] [CrossRef]
- Yoo, W.; Yi, C.; Cho, S.; Jeon, H.; Cynn, H.; Choi, H. Effects of the Height of Ball-Backrest on Head and Shoulder Posture and Trunk Muscle Activity in VDT Workers. Ind. Health 2008, 46, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; James, C.; Edwards, S.; Snodgrass, S.J. Differences in Posture Kinematics between Using a Tablet, a Laptop, and a Desktop Computer in Sitting and in Standing. Work 2018, 61, 257–266. [Google Scholar] [CrossRef]
- Jang, J.-H.; Kim, T.-H.; Oh, J.-S. Effects of Visual Display Terminal Works on Cervical Movement Pattern in Patients with Neck Pain. J. Phys. Ther. Sci. 2014, 26, 1031–1032. [Google Scholar] [CrossRef] [Green Version]
- Seghers, J.; Jochem, A.; Spaepen, A. Posture, Muscle Activity and Muscle Fatigue in Prolonged VDT Work at Different Screen Height Settings. Ergonomics 2003, 46, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Moroney, S.P.; Schultz, A.B.; Miller, J.A. Analysis and Measurement of Neck Loads. J. Orthop. Res. 1988, 6, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.-J.; Kim, S.-H.; Hahm, S.-C.; Cho, H.-Y. Thermotherapy Plus Neck Stabilization Exercise for Chronic Nonspecific Neck Pain in Elderly: A Single-Blinded Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 5572. [Google Scholar] [CrossRef] [PubMed]
- Viir, R.; Virkus, A.; Laiho, K.; Rajaleid, K.; Selart, A.; Mikkelsson, M. Trapezius Muscle Tone and Viscoelastic Properties in Sitting and Supine Positions. SJWEH Suppl. 2007, 3, 76–80. [Google Scholar]
- Hamilton, L.; Boswell, C.; Fryer, G. The Effects of High-Velocity, Low-Amplitude Manipulation and Muscle Energy Technique on Suboccipital Tenderness. Int. J. Osteopat. Med. 2007, 10, 42–49. [Google Scholar] [CrossRef]
- Hong, J.-H.; Lee, D.-H.; Kim, S.-E.; Seo, D. Correlation between Contraction Ratio, Endurance, and Muscle Tone of Cervical Muscles. Phys. Ther. Rehabilit. Sci. 2020, 9, 302–308. [Google Scholar] [CrossRef]
- Chuang, L.; Wu, C.; Lin, K.; Lur, S. Quantitative Mechanical Properties of the Relaxed Biceps and Triceps Brachii Muscles in Patients with Subacute Stroke: A Reliability Study of the Myoton-3 Myometer. Stroke Res. Treat. 2012, 2012, 617694. [Google Scholar] [CrossRef] [Green Version]
- Straker, L.; Mekhora, K. An Evaluation of Visual Display Unit Placement by Electromyography, Posture, Discomfort and Preference. Int. J. Ind. Ergon. 2000, 3, 389–398. [Google Scholar] [CrossRef]
- Visser, J.L.; Straker, L.M. An Investigation of Discomfort Experienced by Dental Therapists and Assistants at Work. Aust. Dent. J. 1994, 39, 39–44. [Google Scholar] [CrossRef]
- Harland, N.; Ryan, C. “It’s Not Pain It’s Discomfort”: Development and Investigation of a Discomfort Measurement Scale. Pain Rehabilit. J. Physiother. Pain Assoc. 2019, 2019, 19–23. [Google Scholar]
- GAMLj: General Analyses for the Linear Model in Jamovi. Available online: https://gamlj.github.io/ (accessed on 27 September 2022).
- Zirek, E.; Mustafaoglu, R.; Yasaci, Z.; Griffiths, M.D. A Systematic Review of Musculoskeletal Complaints, Symptoms, and Pathologies Related to Mobile Phone Usage. Musculoskelet. Sci. Pract. 2020, 49, 102196. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.S.; Thigpen, C.A.; Mihalik, J.P.; Prentice, W.E.; Padua, D. The Effects of an Exercise Intervention on Forward Head and Rounded Shoulder Postures in Elite Swimmers. Br. J. Sports Med. 2010, 44, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Khan, Z.; Bhati, P.; Hussain, M.E. Influence of Forward Head Posture on Cervicocephalic Kinesthesia and Electromyographic Activity of Neck Musculature in Asymptomatic Individuals. J. Chiropr. Med. 2020, 19, 230–240. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.M.; Brodeur, R.R. Rectus Capitis Posterior Minor: A Small but Important Suboccipital Muscle. J. Bodyw. Mov. Ther. 1999, 3, 30–35. [Google Scholar] [CrossRef]
- Hack, G.D.; Koritzer, R.T.; Robinson, W.L.; Hallgren, R.C.; Greenman, P.E. Anatomic Relation between the Rectus Capitis Posterior Minor Muscle and the Dura Mater. Spine 1995, 20, 2484–2485. [Google Scholar] [CrossRef] [Green Version]
- Werth, A.; Babski-Reeves, K. Effects of Portable Computing Devices on Posture, Muscle Activation Levels and Efficiency. Appl. Ergon. 2014, 45, 1603–1609. [Google Scholar] [CrossRef]
- Shin, S.-J.; Yoo, W.-G. Effects of Overhead Work Involving Different Heights and Distances on Neck and Shoulder Muscle Activity. Work 2015, 51, 321–326. [Google Scholar] [CrossRef]
- Gill, S.K. The Use of MRI for Sternocleidomastoid Muscle Volume Measurement and Its Association with Internal Carotid Artery Velocity in a Healthy Cohort. Master’s Thesis, York University, Toronto, ON, Canada, 2019. [Google Scholar]
- Schöning, M.; Walter, J.; Scheel, P. Estimation of Cerebral Blood Flow through Color Duplex Sonography of the Carotid and Vertebral Arteries in Healthy Adults. Stroke 1994, 25, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Slater, D.; Korakakis, V.; O’Sullivan, P.; Nolan, D.; O’Sullivan, K. “Sit Up Straight”: Time to Re-Evaluate. J. Orthop. Sports Phys. Ther. 2019, 49, 562–564. [Google Scholar] [CrossRef]
Total (n = 34) | Men (n = 18) | Women (n = 16) | |
---|---|---|---|
Age (years) | 22.29 ± 2.02 | 22.72 ± 2.23 | 21.81 ± 1.63 |
Height (cm) | 170.32 ± 7.72 | 176.19 ± 5.25 | 163.27 ± 2.65 |
Weight (kg) | 67.59 ± 11.65 | 74.19 ± 10.07 | 60.17 ± 8.38 |
CVA (°) | 39.13 ± 5.86 | 36.74 ± 5.66 | 41.82 ± 4.83 |
VDT usage time per day (hour) | 8.24 ± 3.25 | 7.50 ± 3.15 | 9.06 ± 3.17 |
Repeated Measure Comparisons | Post Hoc Comparisons (Tukey) | |||||||
---|---|---|---|---|---|---|---|---|
Outcome Variable | Variables | Mean ± SD | F | p | Variables | t | p | |
VDT_C | 673.93 ± 212.21 | VDT_C | VDT_S | −0.65 | 0.796 | |||
RT (ms) | VDT_S | 683.20 ± 233.68 | 5.32 | 0.007 * | VDT_U | 2.64 | 0.033 * | |
VDT_U | 640.45 ± 179.69 | VDT_S | VDT_U | 2.52 | 0.044 * |
Repeated Measure Comparisons | Post Hoc Comparisons (Tukey) | |||||||
---|---|---|---|---|---|---|---|---|
Outcome Variable | Variables | Mean ± SD | F | p | Variables | t | p | |
VDT_C | 39.13 ± 5.86 | VDT_C | VDT_S | −2.75 | 0.026 * | |||
CVA (°) | VDT_S | 41.63 ± 7.00 | 115.30 | <0.001 * | VDT_U | −13.72 | <0.001 * | |
VDT_U | 54.52 ± 4.32 | VDT_S | VDT_U | −10.53 | < 0.001 * | |||
VDT_C | 17.87 ± 1.70 | VDT_C | VDT_S | −2.07 | 0.112 | |||
Tone_R_LS (Hz) | VDT_S | 18.39 ± 1.57 | 9.02 | <0.001 * | VDT_U | 2.36 | 0.062 | |
VDT_U | 17.24 ± 1.50 | VDT_S | VDT_U | 3.91 | 0.001 * | |||
VDT_C | 18.08 ± 1.70 | VDT_C | VDT_S | −3.97 | 0.001 * | |||
Tone_L_LS (Hz) | VDT_S | 18.87 ± 1.52 | 20.41 | <0.001 * | VDT_U | 2.73 | 0.027 * | |
VDT_U | 17.48 ± 1.90 | VDT_S | VDT_U | 6.01 | <0 .001 * | |||
VDT_C | 17.20 ± 1.45 | VDT_C | VDT_S | 4.55 | <0.001 * | |||
Tone_R_SM (Hz) | VDT_S | 16.14 ± 1.56 | 7.53 | 0.001 * | VDT_U | 1.29 | 0.413 | |
VDT_U | 16.79 ± 1.78 | VDT_S | VDT_U | −2.41 | 0.055 | |||
VDT_C | 17.40 ± 1.64 | VDT_C | VDT_S | 2.91 | 0.017 * | |||
Tone_L_SM (Hz) | VDT_S | 16.59 ± 1.71 | 3.92 | 0.025 * | VDT_U | 0.92 | 0.634 | |
VDT_U | 17.07 ± 1.71 | VDT_S | VDT_U | −2.16 | 0.094 | |||
VDT_C | 343.82 ± 60.17 | VDT_C | VDT_S | −4.23 | <0.001 * | |||
Stiffness_L_LS (N/m) | VDT_S | 368.97 ± 56.87 | 11.36 | <0.001 * | VDT_U | 1.23 | 0.445 | |
VDT_U | 334.88 ± 66.83 | VDT_S | VDT_U | 4.11 | <0.001 * | |||
VDT_C | 324.79 ± 44.97 | VDT_C | VDT_S | 3.77 | 0.002 * | |||
Stiffness_R_SM (N/m) | VDT_S | 296.09 ± 46.84 | 6.08 | 0.004 * | VDT_U | 0.24 | 0.968 | |
VDT_U | 322.24 ± 54.33 | VDT_S | VDT_U | −2.93 | 0.016 * | |||
VDT_C | 328.32 ± 48.63 | VDT_C | VDT_S | 3.07 | 0.012 * | |||
Stiffness_L_SM (N/m) | VDT_S | 302.91 ± 56.25 | 5.28 | 0.007 * | VDT_U | 0.40 | 0.916 | |
VDT_U | 324.50 ± 51.73 | VDT_S | VDT_U | −2.95 | 0.016 * | |||
VDT_C | 211.68 ± 27.52 | VDT_C | VDT_S | 0.63 | 0.805 | |||
Stiffness_R_SCM (N/m) | VDT_S | 208.53 ± 31.00 | 3.48 | 0.037 * | VDT_U | 2.95 | 0.016 * | |
VDT_U | 200.29 ± 19.43 | VDT_S | VDT_U | 1.86 | 0.168 | |||
VDT_C | 113.57 ± 16.86 | VDT_C | VDT_S | 1.95 | 0.142 | |||
R_PSV (cm/s) | VDT_S | 109.82 ± 16.37 | 4.80 | 0.012 * | VDT_U | −1.47 | 0.319 | |
VDT_U | 116.40 ± 20.81 | VDT_S | VDT_U | −2.71 | 0.029 * |
Repeated Measure Comparisons | Post Hoc Comparisons (Tukey) | |||||||
---|---|---|---|---|---|---|---|---|
Outcome Variable | Variables | Mean ± SD | F | p | Variables | t | p | |
VDT_C | 4.94 ± 2.00 | VDT_C | VDT_S | 3.29 | 0.007 * | |||
VADS | VDT_S | 3.82 ± 1.85 | 4.48 | 0.015 * | VDT_U | 2.30 | 0.070 | |
VDT_U | 4.00 ± 2.06 | VDT_S | VDT_U | −0.39 | 0.918 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-Y.; Cho, H.-Y.; Kang, C.-K. Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance. Int. J. Environ. Res. Public Health 2022, 19, 14254. https://doi.org/10.3390/ijerph192114254
Jung J-Y, Cho H-Y, Kang C-K. Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance. International Journal of Environmental Research and Public Health. 2022; 19(21):14254. https://doi.org/10.3390/ijerph192114254
Chicago/Turabian StyleJung, Ju-Yeon, Hwi-Young Cho, and Chang-Ki Kang. 2022. "Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance" International Journal of Environmental Research and Public Health 19, no. 21: 14254. https://doi.org/10.3390/ijerph192114254
APA StyleJung, J. -Y., Cho, H. -Y., & Kang, C. -K. (2022). Effects of a Traction Device for Head Weight Reduction and Neutral Alignment during Sedentary Visual Display Terminal (VDT) Work on Postural Alignment, Muscle Properties, Hemodynamics, Preference, and Working Memory Performance. International Journal of Environmental Research and Public Health, 19(21), 14254. https://doi.org/10.3390/ijerph192114254