The Effect of Psychological Burden on Dyslipidemia Moderated by Greenness: A Nationwide Study from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Sampling
2.2. Instrument
2.3. Data Analysis
2.3.1. Multilevel Logistic Regression Description
2.3.2. Model Building and Measure
- (1)
- A null model (Model 0) without any predictors was run first and corresponding intraclass correlation coefficient (ICC) was also calculated [53]. Here, ICC refers to the amount of variance in individual level response that can be explained by city-level properties [54]. In general, ICC greater than 0.059 suggests that multilevel regression is acceptable [55,56].
- (2)
- Model 1 included all individual-level variables to ascertain their association with dyslipidemia.
- (3)
- Model 2 used city-level factors to predict the effect of city-level NDVI on dyslipidemia.
- (4)
- All individual- and city-level predictors were then involved in Model 3 (the full model).
- (5)
- According to the results of Model 3, Model 4 was subsequently constructed with depression status, NDVI, and their interaction terms to examine the moderating effect of city-level NDVI on the depression–dyslipidemia relationship.
3. Results
3.1. Descriptive Analysis
3.2. Correlation Analysis
3.3. Multilevel Logistic Regression
3.3.1. The Moderate Effect across Age Groups
3.3.2. The Moderate Effect across Gender Groups
3.3.3. The Moderate Effect across Residence Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, M.; Wang, H.; Zhu, J.; Chen, W.; Wang, L.; Liu, S.; Li, Y.; Wang, L.; Liu, Y.; Yin, P.; et al. Cause-Specific Mortality for 240 Causes in China during 1990-2013: A Systematic Subnational Analysis for the Global Burden of Disease Study 2013. Lancet 2016, 387, 251–272. [Google Scholar] [CrossRef]
- Gainey, J.; Blum, B.; Bowie, B.; Cooley, K.; Madeline, L.; Ervin, E.L.; Nathaniel, T.I. Stroke and Dyslipidemia: Clinical Risk Factors in the Telestroke versus Non-Telestroke. Lipids Health Dis. 2018, 17, 226. [Google Scholar] [CrossRef] [Green Version]
- Aitbaev, K.A.; Fomin, V.V.; Murkamilov, I.T. Hypolipidemic therapy and chronic kidney disease: Effects on cardiovascular risks and renal dysfunction. Kardiologiya 2018, 59, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.-R.; Gao, R.-L.; Zhao, S.-P.; Lu, G.-P.; Zhao, D.; Li, J.-J. 2016 Chinese guideline for the management of dyslipidemia in adults. Chin. J. Cardiol. 2016, 44, 833–850. [Google Scholar] [CrossRef]
- Song, P.K.; Man, Q.Q.; Li, H.; Pang, S.J.; Jia, S.S.; Li, Y.Q.; He, L.; Zhao, W.H.; Zhang, J. Trends in Lipids Level and Dyslipidemia among Chinese Adults, 2002-2015. Biomed. Environ. Sci. 2019, 32, 559–570. [Google Scholar] [CrossRef]
- Yu, Y. Healthy ageing in urban China: Governing the ageing population. Geogr. J. 2021, 187, 28–38. [Google Scholar] [CrossRef]
- Obsa, M.S.; Ataro, G.; Awoke, N.; Jemal, B.; Tilahun, T.; Ayalew, N.; Woldegeorgis, B.Z.; Azeze, G.A.; Haji, Y. Determinants of Dyslipidemia in Africa: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 8. [Google Scholar] [CrossRef]
- Al-Raddadi, R.; Bahijri, S.M.; Jambi, H.A.; Ferns, G.; Tuomilehto, J. The prevalence of obesity and overweight, associated demographic and lifestyle factors, and health status in the adult population of Jeddah, Saudi Arabia. Ther. Adv. Chronic Dis. 2019, 10, 2040622319878997. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, H.; Zhang, P.; Cheng, M.; Liu, X.; Cao, Z.; Gao, X.; Zhou, L.; Lv, Y.; Huang, J.; et al. Influencing Mechanisms of Lifestyle and Dietary Factors on Chronic Diseases among Community Residents: Updated Evidence in Shanghai, China. Public Health Nutr. 2022, 25, 1233–1245. [Google Scholar] [CrossRef]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef]
- Cockerham, W.C.; Hamby, B.W.; Oates, G.R. The Social Determinants of Chronic Disease. Am. J. Prev. Med. 2017, 52, S5–S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, L.C.; Roesch, S.C.; Fortmann, A.L.; Carnethon, M.R.; Penedo, F.J.; Perreira, K.; Birnbaum-Weitzman, O.; Wassertheil-Smoller, S.; Castañeda, S.F.; Talavera, G.A.; et al. Associations of Chronic Stress Burden, Perceived Stress, and Traumatic Stress with Cardiovascular Disease Prevalence and Risk Factors in the Hispanic Community Health Study/Study of Latinos Sociocultural Ancillary Study. Psychosom. Med. 2014, 76, 468–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.-H.; Zhu, F.; Qin, T.-T. Relationships between Chronic Diseases and Depression among Middle-aged and Elderly People in China: A Prospective Study from CHARLS. Curr. Med. Sci. 2020, 40, 858–870. [Google Scholar] [CrossRef]
- Vancampfort, D.; Correll, C.U.; Wampers, M.; Sienaert, P.; Mitchell, A.J.; de Herdt, A.; Probst, M.; Scheewe, T.W.; de Hert, M. Metabolic Syndrome and Metabolic Abnormalities in Patients with Major Depressive Disorder: A Meta-Analysis of Prevalences and Moderating Variables. Psychol. Med. 2014, 44, 2017–2028. [Google Scholar] [CrossRef] [Green Version]
- Ancelin, M.L.; Carrire, I.; Boulenger, J.P.; Malafosse, A.; Stewart, R.; Cristol, J.P.; Ritchie, K.; Chaudieu, I.; Dupuy, A.M. Gender and Genotype Modulation of the Association between Lipid Levels and Depressive Symptomatology in Community-Dwelling Elderly (The ESPRIT Study). Biol. Psychiatry 2010, 68, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Ding, X.; Tang, W.; Li, Q.; Mao, D.; Wang, Y. Prevalence and Risk Factors Associated with Dyslipidemia in Chongqing, China. Int. J. Environ. Res. Public Health 2015, 12, 13455–13465. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Zha, M.; Yang, X.; Xu, Y.; Wang, H.; Fang, Z.; Yang, X.; Xia, W.; Zeng, C. Socioeconomic and Geographic Variations in the Prevalence, Awareness, Treatment and Control of Dyslipidemia in Middle-Aged and Older Chinese. Atherosclerosis 2019, 282, 57–66. [Google Scholar] [CrossRef]
- Li, L.; Ouyang, F.; He, J.; Qiu, D.; Luo, D.; Xiao, S. Associations of Socioeconomic Status and Healthy Lifestyle with Incidence of Dyslipidemia: A Prospective Chinese Governmental Employee Cohort Study. Front. Public Health 2022, 10, 1606. [Google Scholar] [CrossRef]
- Lee, E.; Choi, J.; Lee, S.; Choi, B. Objectively Measured Built Environments and Cardiovascular Diseases in Middle-Aged and Older Korean Adults. Int. J. Environ. Res. Public Health 2021, 18, 1861. [Google Scholar] [CrossRef]
- Fan, S.; Yang, B.Y.; Xue, Z.; Huang, W.Z.; Zhou, Z.; Yuan, J.; Wang, Y.; Zhong, Y.; Tang, X.; Dong, G.; et al. Associations between Residential Greenness and Blood Lipids in Chinese Uyghur Adults. Environ. Int. 2020, 142, 105903. [Google Scholar] [CrossRef]
- Guo, J.; Wu, J.; Wei, D.; Wang, T.; Hu, Y.; Lin, Y.; Chen, M.; Yang, L.; Wen, Y.; Cai, Y.; et al. Association between Greenness and Dyslipidemia in Patients with Coronary Heart Disease: A Proteomic Approach. Ecotoxicol. Environ. Saf. 2022, 231, 113199. [Google Scholar] [CrossRef]
- Yitshak-Sade, M.; Kloog, I.; Novack, V. Do air pollution and neighborhood greenness exposures improve the predicted cardiovascular risk? Environ. Int. 2017, 107, 147–153. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the Health Benefits of Greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.Y.; Hu, L.W.; Jalaludin, B.; Knibbs, L.D.; Markevych, I.; Heinrich, J.; Bloom, M.S.; Morawska, L.; Lin, S.; Jalava, P.; et al. Association Between Residential Greenness, Cardiometabolic Disorders, and Cardiovascular Disease among Adults in China. JAMA Netw. Open. 2020, 3, e2017507. [Google Scholar] [CrossRef]
- Yang, B.Y.; Markevych, I.; Heinrich, J.; Bloom, M.S.; Qian, Z.; Geiger, S.D.; Vaughn, M.; Liu, S.; Guo, Y.; Dharmage, S.C.; et al. Residential Greenness and Blood Lipids in Urban-Dwelling Adults: The 33 Communities Chinese Health Study. Environ. Pollut. 2019, 250, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Markevych, I.; Bloom, M.S.; Heinrich, J.; Guo, Y.; Morawska, L.; Dharmage, S.C.; Knibbs, L.D.; Jalaludin, B.; Jalava, P.; et al. Community Greenness, Blood Pressure, and Hypertension in Urban Dwellers: The 33 Communities Chinese Health Study. Environ. Int. 2019, 126, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring Pathways Linking Greenspace to Health: Theoretical and Methodological Guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Sarkar, C.; Webster, C.; Gallacher, J. Residential greenness and prevalence of major depressive disorders: A cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2018, 2, e162–e173. [Google Scholar] [CrossRef]
- Liu, H.-H.; Li, J.-J. Aging and dyslipidemia: A review of potential mechanisms. Ageing Res. Rev. 2015, 19, 43–52. [Google Scholar] [CrossRef]
- Tang, S.; Gong, Y.; Yao, L.; Xu, Y.; Liu, M.; Yang, T.; Ye, C.; Bai, Y. Do Medical Treatment Choices Affect the Health of Chronic Patients in Middle and Old Age in China?—Evidence from CHARLS 2018. BMC Public Health 2022, 22, 937. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y.; et al. Divergent Shifts in Peak Photosynthesis Timing of Temperate and Alpine Grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults Zhonghua Xin Xue Guan Bing Za Zhi. Chinese guidelines on prevention and treatment of dyslipidemia in adults. Chin. J. Cardiovasc. Dis. 2007, 35, 390–419. [Google Scholar]
- Li, Y.; Zhao, L.; Yu, D.; Ding, G. The prevalence and risk factors of dyslipidemia in different diabetic progression stages among middle-aged and elderly populations in China. PLoS ONE 2018, 13, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opoku, S.; Gan, Y.; Yobo, E.A.; Tenkorang-Twum, D.; Yue, W.; Wang, Z.; Lu, Z. Awareness, Treatment, Control, and Determinants of Dyslipidemia among Adults in China. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- National Cholesterol Education Program Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Chen, H.; Mui, A.C. Factorial validity of the Center for Epidemiologic Studies Depression Scale short form in older population in China. Int. Psychogeriatr. 2014, 26, 49–57. [Google Scholar] [CrossRef]
- Cheng, H.G.; Chen, S.; McBride, O.; Phillips, M.R. Prospective relationship of depressive symptoms, drinking, and tobacco smoking among middle-aged and elderly community-dwelling adults: Results from the China Health and Retirement Longitudinal Study (CHARLS). J. Affect. Disord. 2016, 195, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, D.; Van Dyck, D. Urban greenspace and mental health in Chinese older adults: Associations across different greenspace measures and mediating effects of environmental perceptions. Health Place 2022, 76, 102856. [Google Scholar] [CrossRef]
- Gascon, M.; Cirach, M.; Martínez, D.; Dadvand, P.; Valentín, A.; Plasència, A.; Nieuwenhuijsen, M.J. Normalized Difference Vegetation Index (NDVI) as a Marker of Surrounding Greenness in Epidemiological Studies: The Case of Barcelona City. Urban For. Urban Green. 2016, 19, 88–94. [Google Scholar] [CrossRef]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagaña, X.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; de Pascual, M.C.; Su, J.; et al. Green Spaces and Cognitive Development in Primary Schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, G.H.; Gatziolis, D.; Longley, I.; Douwes, J. Vegetation diversity protects against childhood asthma: Results from a large New Zealand birth cohort. Nat. Plants 2018, 4, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.H.; Gatziolis, D.; Jakstis, K.; Comess, S. The natural environment and birth outcomes: Comparting 3D exposure metrics derived from LiDAR to 2D metrics based on the normalized difference vegetation index. Health Place 2019, 57, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Helbich, M. Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures: Exploring a Time Series of the Normalized Difference Vegetation Indices. Int. J. Environ. Res. Public Health 2019, 16, 852. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Rokni, K.; Musa, T.A. Normalized difference vegetation change index: A technique for detecting vegetation changes using Landsat imagery. Catena 2019, 178, 59–63. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite—1 Symposium; NASA SP-351; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1974; Volume 1. [Google Scholar]
- Karl, T.; Harley, P.; Emmons, L.; Thornton, B.; Guenther, A.; Basu, C.; Turnipseed, A.; Jardine, K. Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation. Science 2010, 330, 816–819. [Google Scholar] [CrossRef] [Green Version]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Yang, Y.; Zhang, C.-H.; Yin, R.-Y.; Tang, L.; Zhang, F. Prevalence and Patterns of Comorbidity Among Middle-Aged and Elderly People in China: A Cross-Sectional Study Based on CHARLS Data. Int. J. Gen. Med. 2021, 14, 1449–1455. [Google Scholar] [CrossRef]
- An, R.; Xiang, X. Social Vulnerability and Obesity among U.S. Adults. Int. J. Health Sci. 2015, 3, 3. [Google Scholar] [CrossRef]
- Sommet, N.; Morselli, D. Keep Calm and Learn Multilevel Logistic Modeling: A Simplified Three-Step Procedure Using Stata, R, Mplus, and SPSS. Int. Rev. Soc. Psychol. 2017, 30, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Castro, S.L. Data analytic methods for the analysis of multilevel questions. A comparison of intraclass correlation coefficients, rwg(j), hierarchical linear modeling, within- and between-analysis, and random group resampling. Leadersh. Q. 2002, 13, 69–93. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Hillsdale, NJ, USA, 1988; p. 286. [Google Scholar]
- Gelman, A. Multilevel (hierarchical) modeling: What It can and cannot do. Technometrics 2006, 48, 432–435. [Google Scholar] [CrossRef] [Green Version]
- Mayhand, K.N.; Handorf, E.A.; Ortiz, A.G.; Gonzalez, E.T.; Devlin, A.; Sorice, K.A.; Esnaola, N.; Fisher, S.; Lynch, S.M. Effect of Neighborhood and Individual-Level Socioeconomic Factors on Colorectal Cancer Screening Adherence. Int. J. Environ. Res. Public Health 2021, 18, 4398. [Google Scholar] [CrossRef] [PubMed]
- Obasohan, P.E.; Walters, S.J.; Jacques, R.; Khatab, K. Individual and contextual factors associated with malaria among children 6–59 months in nigeria: A multilevel mixed effect logistic model approach. Int. J. Environ. Res. Public Health 2021, 18, 11234. [Google Scholar] [CrossRef] [PubMed]
- Zegeye, B.; El-Khatib, Z.; Ameyaw, E.K.; Seidu, A.A.; Ahinkorah, B.O.; Keetile, M.; Yaya, S. Breaking Barriers to Healthcare Access: A Multilevel Analysis of Individual- and Community-Level Factors Affecting Women’s Access to Healthcare Services in Benin. Int. J. Environ. Res. Public Health 2021, 18, 750. [Google Scholar] [CrossRef]
- Akokuwebe, M.E.; Idemudia, E.S. Multilevel analysis of urban–rural variations of body weights and individual-level factors among women of childbearing age in nigeria and South Africa: A cross-sectional survey. Int. J. Environ. Res. Public Health 2021, 19, 125. [Google Scholar] [CrossRef]
- Kim, J.A.; Choi, S.; Choi, D.; Park, S.M. Pre-existing depression among newly diagnosed dyslipidemia patients and cardiovascular disease risk. Diabetes Metab. J. 2019, 43, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Kargakou, A.; Sachlas, A.; Lyrakos, G.; Zyga, S.; Tsironi, M.; Gil, A.P.R. Does health perception, dietary habits and lifestyle effect optimism? A quantitative and qualitative study. Adv. Exp. Med. Biol. 2017, 988, 49–61. [Google Scholar] [CrossRef]
- Anda, R.F.; Williamson, D.F.; Escobedo, L.G.; Mast, E.E.; Giovino, G.A.; Remington, P.L. Depression and the Dynamics of Smoking: A National Perspective. JAMA 1990, 264, 1541–1545. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.W.J.H.; van Tilburg, T.; Boeke, A.J.P.; Deeg, D.J.H.; Kriegsman, D.M.W.; van Eijk, J.T.M. Effects of social support and personal coping resources on depressive symptoms: Different for various chronic diseases? Health Psychol. 1998, 17, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Cleeman, J.I. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). J. Am. Med. Assoc. 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Dortland, A.K.B.v.; Giltay, E.J.; van Veen, T.; Zitman, F.G.; Penninx, B.W.J.H. Longitudinal relationship of depressive and anxiety symptoms with dyslipidemia and abdominal obesity. Psychosom. Med. 2013, 75, 83–89. [Google Scholar] [CrossRef]
- Jiang, J.; Mao, S.; Xie, Y.; Chen, X.; Abulaiti, K.; Liu, M.; Zheng, J.; Hu, W.; Hou, Z.; Chen, L.; et al. Is Residential Greenness Associated with Dyslipidemia and Lipid Levels in Chinese Rural-Dwelling Adults? The Henan Rural Cohort Study. Environ. Sci. Pollut. Res. 2022, 29, 5852–5862. [Google Scholar] [CrossRef]
- Bonnell, L.N.; Littenberg, B. Nonlinear Relationships among the Natural Environment, Health, and Sociodemographic Characteristics across US Counties. Int. J. Environ. Res. Public Health 2022, 19, 6898. [Google Scholar] [CrossRef]
- Shanahan, D.F.; Fuller, R.A.; Bush, R.; Lin, B.B.; Gaston, K.J. The Health Benefits of Urban Nature: How Much Do We Need? Bioscience 2015, 65, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Chien, J.-W.; Wu, C.; Chan, C.-C. The association of hypertension and prehypertension with greenness and PM2.5 in urban environment. Sci. Total Environ. 2022, 821, 153526. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, W.; Yang, C.; Wang, Y.; Shen, J.; Li, P.; Ma, L.; Wei, F.; Chen, R.; Liang, C.; et al. Residential Greenness and Prevalence of Chronic Kidney Disease: Findings from the China National Survey of Chronic Kidney Disease. Sci. Total Environ. 2022, 806, 150628. [Google Scholar] [CrossRef]
- Fan, J.; Guo, Y.; Cao, Z.; Cong, S.; Wang, N.; Lin, H.; Wang, C.; Bao, H.; Lv, X.; Wang, B.; et al. Neighborhood Greenness Associated with Chronic Obstructive Pulmonary Disease: A Nationwide Cross-Sectional Study in China. Environ. Int. 2020, 144, 106042. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Meng, Y.-Y.; Lam, V.; Ponce, N. Green space and serious psychological distress among adults and teens: A population-based study in California. Health Place 2019, 56, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-S.; Yang, T.-Y.; Muo, C.-H.; Su, H.-L.; Sung, F.-C.; Kao, C.-H. Hyperlipidemia, statin use and the risk of developing depression: A nationwide retrospective cohort study. Gen. Hosp. Psychiatry 2014, 36, 497–501. [Google Scholar] [CrossRef]
- Cho, S.M.J.; Lee, H.J.; Shim, J.-S.; Song, B.M.; Kim, H.C. Associations between age and dyslipidemia are differed by education level: The Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort. Lipids Health Dis. 2020, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Opoku, S.; Gan, Y.; Fu, W.; Chen, D.; Addo-Yobo, E.; Trofimovitch, D.; Yue, W.; Yan, F.; Wang, Z.; Lu, Z. Prevalence and Risk Factors for Dyslipidemia among Adults in Rural and Urban China: Findings from the China National Stroke Screening and Prevention Project (CNSSPP). BMC Public Health 2019, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kilim, S.R.; Chandala, S.R. A comparative study of lipid profile and oestradiol in pre- and post-menopausal women. J. Clin. Diagn. Res. 2013, 7, 1596–1598. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Maldonado, C.; Lopez-Pineda, A.; Orozco-Beltran, D.; Quesada, J.A.; Alfonso-Sanchez, J.L.; Pallarés-Carratalá, V.; Navarro-Perez, J.; Gil-Guillen, V.F.; Martin-Moreno, J.M.; Carratala-Munuera, C. Gender Differences in the Diagnosis of Dyslipidemia: ESCARVAL-GENERO. Int. J. Environ. Res. Public Health 2021, 18, 12419. [Google Scholar] [CrossRef]
- Erem, C.; Hacihasanoglu, A.; Deger, O.; Kocak, M.; Topbas, M. Prevalence of dyslipidemia and associated risk factors among Turkish adults: Trabzon lipid study. Endocrine 2008, 34, 36–51. [Google Scholar] [CrossRef]
- Sun, G.-Z.; Li, Z.; Guo, L.; Zhou, Y.; Yang, H.-M.; Sun, Y.-X. High prevalence of dyslipidemia and associated risk factors among rural Chinese adults. Lipids Health Dis. 2014, 13, 189. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Bai, Y.; Qiu, S.; Li, Y.; Kou, C.; Tao, Y.; Zhen, Q.; Gu, Y.; Yu, Y.; Zhang, K.; et al. Classified Status of Smoking and Quitting Has Different Associations with Dyslipidemia in Residents in Northeast China. Clin. Chim. Acta 2018, 486, 209–213. [Google Scholar] [CrossRef]
- Wakabayashi, I. Cross-sectional relationship between alcohol consumption and prevalence of metabolic syndrome in japanese men and women. J. Atheroscler. Thromb. 2010, 17, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, L.; Liang, H.; He, Y.; Zhang, S.; Wang, Y.; Li, Z.; Ma, Y. The Association between a Combination of Healthy Lifestyles and the Risks of Hypertension and Dyslipidemia among Adults-Evidence from the Northeast of China. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
Variable | Frequency | Percent (%) |
---|---|---|
Dyslipidemia | ||
No | 8706 | 86.87 |
Yes | 1316 | 13.13 |
Gender | ||
Male | 4137 | 41.28 |
Female | 5885 | 58.72 |
Residence | ||
Central of city/town | 1691 | 16.87 |
Urban–rural integration zone | 692 | 6.90 |
Rural | 7639 | 76.22 |
Marital status | ||
Unmarried | 57 | 0.57 |
Married | 8389 | 83.71 |
Separated/divorced/widowed | 1576 | 15.73 |
Smoking | ||
Smoking | 2448 | 24.43 |
Non-smoking | 7574 | 75.57 |
Alcohol use | ||
Drink more than once a month | 2277 | 22.72 |
Drink but less than once a month | 688 | 6.86 |
None of these | 7057 | 70.42 |
Mean | Standard Deviation | |
Depression symptoms | 9.67 | 6.66 |
NDVI | 0.77 | 0.08 |
Age | 63.01 | 9.86 |
Years of education | 5.52 | 3.82 |
Self-reported health status | 2.85 | 0.96 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.00 | ||||||||||
X2 | 0.04 *** | 1.00 | |||||||||
X3 | −0.05 *** | 0.04 *** | 1.00 | ||||||||
X4 | 0.02 | 0.12 *** | −0.01 | 1.00 | |||||||
X5 | −0.08 *** | 0.13 *** | −0.04 *** | −0.03 * | 1.00 | ||||||
X6 | −0.02 | 0.07 *** | 0.02 | 0.13 *** | −0.02 * | 1.00 | |||||
X7 | 0.03 ** | 0.04 *** | −0.03 ** | 0.54 *** | −0.05 *** | 0.06 *** | 1.00 | ||||
X8 | 0.02 * | 0.09 *** | −0.02 | 0.43 *** | 0.01 | 0.08 *** | 0.32 *** | 1.00 | |||
X9 | −0.02 * | −0.04 *** | 0.04 *** | −0.10 *** | 0.01 | 0.31 *** | −0.00 | 0.04 *** | 1.00 | ||
X10 | 0.07 *** | −0.14 *** | −0.01 | −0.28 *** | −0.29 *** | −0.14 *** | −0.12 *** | −0.17 *** | −0.23 *** | 1.00 | |
X11 | −0.11 *** | −0.34 *** | −0.05 *** | 0.00 | −0.08 *** | −0.03 ** | −0.01 | −0.08 *** | −0.05 *** | 0.07 *** | 1.00 |
Variable | Model 0 OR (95% CI) | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) | Model 4 OR (95% CI) |
---|---|---|---|---|---|
Intercept | 0.14 (0.13–0.16) *** | 0.34 (0.12–0.93) * | 2.14 (0.57–8.01) | 1.78 (0.47–6.77) | 4.14 (0.87–19.83) |
NDVI | --- | --- | 0.12 (0.04–0.37) *** | 0.11 (0.04–0.36) *** | 0.04 (0.01–0.18) *** |
Depression symptoms | --- | 1.01 (1.00–1.02) * | --- | 1.01 (1.00–1.02) * | 0.93 (0.85–1.01) |
NDVI * Depression symptoms | --- | --- | --- | --- | 1.12 (1.00–1.24) * |
Gender (Ref: male) | |||||
Female | --- | 1.09 (0.93–1.29) | 1.11 (0.95–1.31) | 1.10 (0.93–1.29) | 1.10 (0.93–1.29) |
Residence (Ref: central of city/town) | |||||
Urban–rural integration zone | --- | 0.90 (0.71–1.16) | 0.90 (0.70–1.15) | 0.90 (0.70–1.15) | 0.89 (0.70–1.14) |
Rural | --- | 0.64 (0.54–0.76) *** | 0.64 (0.54–0.76) *** | 0.63 (0.54–0.75) *** | 0.63 (0.53–0.74) *** |
Marital status (Ref: unmarried) | |||||
Married | --- | 1.22 (0.53–2.79) | 1.20 (0.52–2.73) | 1.22 (0.53–2.78) | 1.21 (0.53–2.77) |
Separated/divorced/widowed | --- | 1.04 (0.45–2.42) | 1.04 (0.45–2.40) | 1.04 (0.45–2.41) | 1.04 (0.45–2.41) |
Age | --- | 1.00 (0.99–1.00) | 1.00 (0.99–1.00) | 1.00 (0.99–1.01) | 1.00 (0.99–1.00) |
Years of education | --- | 1.04 (1.02–1.06) *** | 1.04 (1.02–1.06) *** | 1.04 (1.03–1.06) *** | 1.04 (1.02–1.06) *** |
Smoking status (Ref: smoking) | |||||
Non-smoking | --- | 1.14 (0.96–1.35) | 1.13 (0.95–1.34) | 1.13 (0.95–1.35) | 1.13 (0.95–1.35) |
Alcohol use (Ref: drink more than once a month) | |||||
Drink but less than once a month | --- | 1.13 (0.87–1.46) | 1.13 (0.87–1.47) | 1.12 (0.86–1.46) | 1.12 (0.86–1.45) |
None of these | --- | 1.08 (0.92–1.28) | 1.09 (0.92–1.29) | 1.08 (0.91–1.28) | 1.08 (0.91–1.28) |
Self-reported health status | --- | 0.66 (0.61–0.71) *** | 0.64 (0.60–0.69) *** | 0.66 (0.61–0.71) *** | 0.66 (0.61–0.71) *** |
Log Likelihood | −3844.981 | −3724.783 | −3720.7126 | −3718.382 | −3716.371 |
AIC | 7693.962 | 7477.566 | 7469.425 | 7466.764 | 7464.742 |
BIC | 7708.387 | 7578.541 | 7570.401 | 7574.952 | 7580.143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, Y.; Li, J.; Jin, C.; Zhong, D. The Effect of Psychological Burden on Dyslipidemia Moderated by Greenness: A Nationwide Study from China. Int. J. Environ. Res. Public Health 2022, 19, 14287. https://doi.org/10.3390/ijerph192114287
Liu C, Li Y, Li J, Jin C, Zhong D. The Effect of Psychological Burden on Dyslipidemia Moderated by Greenness: A Nationwide Study from China. International Journal of Environmental Research and Public Health. 2022; 19(21):14287. https://doi.org/10.3390/ijerph192114287
Chicago/Turabian StyleLiu, Chengcheng, Yao Li, Jing Li, Chenggang Jin, and Deping Zhong. 2022. "The Effect of Psychological Burden on Dyslipidemia Moderated by Greenness: A Nationwide Study from China" International Journal of Environmental Research and Public Health 19, no. 21: 14287. https://doi.org/10.3390/ijerph192114287
APA StyleLiu, C., Li, Y., Li, J., Jin, C., & Zhong, D. (2022). The Effect of Psychological Burden on Dyslipidemia Moderated by Greenness: A Nationwide Study from China. International Journal of Environmental Research and Public Health, 19(21), 14287. https://doi.org/10.3390/ijerph192114287