Opioid-Free Anaesthesia Effectiveness in Thoracic Surgery—Objective Measurement with a Skin Conductance Algesimeter: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
- Typical general anaesthesia with opioids (control group);
- OFA and ThPVB (OFA group).
- Immediately after anaesthesia induction, lidocaine (Lidocaine hydrochloride WZF, Polfa Warszawa S.A., Poland) was administered as an i.v. bolus at a dose of 1.5 mg∙kg–1 and ketamine (Ketalar, Pfizer, Poland) in an i.v. bolus of 0.35 mg∙kg–1;
- This was followed by an infusion of lidocaine at 2.0 mg∙kg–1∙h–1 for 2 h, continued at a dose of 1.2 mg∙kg–1∙h–1, and ketamine infusion at 0.2 mg∙kg–1∙h–1 for 2 h, continued at a dose of 0.12 mg∙kg–1∙h–1.
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations and Acronyms | |
ASA | American Society of Anesthesiologists |
BMI | Body Mass Index |
DBP | Diastolic Blood Pressure |
HR | Heart Rate |
MBP | Mean Blood Pressure |
OFA | Opioid-Free Anaesthesia |
SCA | Skin Conductance Algesimeter |
ThPVB | Thoracic Paravertebral Block |
VATS | Video-Assisted Thoracic Surgery |
References
- Gottschalk, A.; Cohen, S.; Yang, S.; Ochroch, A.; Warltier, D. Preventing and Treating Pain After Thoracic Surgery. Anestshiology 2006, 104, 594–600. [Google Scholar] [CrossRef]
- Gotoda, Y.; Kambara, N.; Sakai, T.; Kishi, Y.; Kodama, K.; Koyama, T. The morbidity, time course and predictive factors for persistent post-thoracotomy pain. Eur. J. Pain 2001, 5, 89–96. [Google Scholar] [CrossRef]
- Gerner, P. Postthoracotomy pain management problems. Anesthesiol. Clin. 2008, 26, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, P.; Regnard, J.; Spaggiari, L.; Levi, J.F.; Magdeleinat, P.; Guibert, L.; Levasseur, P. Immediate and long-term results after surgical treatment of primary spontaneous pneumothorax by VATS. Ann. Thorac. Surg. 1996, 61, 1641–1645. [Google Scholar] [CrossRef]
- De la Gala, F.; Piñeiro, P.; Reyes, A.; Vara, E.; Olmedilla, L.; Cruz, P.; Garutti, I. Postoperative pulmonary complications, pulmonary and systemic inflammatory responses after lung resection surgery with prolonged one-lung ventilation. Randomized controlled trial comparing intravenous and inhalational anaesthesia. Br. J. Anaesth. 2017, 119, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Mathiesen, O.; Thomsen, B.A.; Kitter, B.; Dahl, J.B.; Kehlet, H. Need for improved treatment of postoperative pain. Dan. Med. J. 2012, 59, A4401. [Google Scholar]
- Ochroch, J.; Usman, A.; Kiefer, J.; Pulton, D.; Shah, R.; Grosh, T.; Patel, S.; Vernick, W.; Gutsche, J.T.; Raiten, J. Reducing Opioid Use in Patients Undergoing Cardiac Surgery-Preoperative, Intraoperative, and Critical Care Strategies. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2155–2165. [Google Scholar] [CrossRef]
- Allegri, M.; Grossi, P. Management of postoperative pain: How accurate and successful is our acute pain management? Minerva Anestesiol. 2012, 78, 1–3. [Google Scholar]
- Wallden, J.; Halliday, T.A.; Hultin, M.; Sundqvist, J. PONV in bariatric surgery: Time for opioid-free anaesthesia. Acta Anaesthesiol. Scand. 2017, 61, 858. [Google Scholar] [CrossRef]
- Gomez-Menendez, J.; Caballero-Lozada, F.; Barahona-Cabrera, F.; Urueta-Gaviria, V.; Zorrilla-Vaca, A. Erector spinae plane block for postoperative analgesia in thoracoscopic lobectomy in a paediatric patient. Anaesthesiol. Intensive Ther. 2019, 51, 171–172. [Google Scholar] [CrossRef]
- Aronsohn, J.; Orner, G.; Palleschi, G.; Gerasimov, M. Opioid-free total intravenous anaesthesia with ketamine as part of an enhanced recovery protocol for bariatric surgery patients with sleep disordered breathing. J. Clin. Anesth. 2019, 52, 65–66. [Google Scholar] [CrossRef]
- Manso, A.; Bustamante-Domínguez, C.; Escalona-Belmonte, J.J.; Cruz-Mañas, J.; Guerrero-Orriach, J.L. Laparotomy in a patient under opioid free anesthesia. An. Sist. Sanit. Navar. 2018, 41, 259–262. [Google Scholar]
- Ghee, C.; Fortes, D.; Liu, C.; Khandhar, S. A Randomized Controlled Trial of Continuous Subpleural Bupivacaine After Thoracoscopic Surgery. Semin. Thorac. Cardiovasc. Surg. 2018, 30, 240–249. [Google Scholar] [CrossRef]
- Van de Ven, T.; John Hsia, H. Causes and prevention of chronic postsurgical pain. Curr. Opin. Crit. Care 2012, 18, 366–371. [Google Scholar] [CrossRef]
- Katz, J.; Jackson, M.; Kavanagh, B.; Sandler, A. Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. Clin. J. Pain 1996, 12, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Storm, H.; Boglino-Hörlin, A.; Le Guen, M.; Gayat, E.; Fischler, M. Skin conductance as a pain assessment tool during chest tube removal: An observational study. Eur. J. Pain 2017, 21, 987–996. [Google Scholar] [CrossRef]
- Julien-Marsollier, F.; Rachdi, K.; Caballero, M.-J.; Ayanmanesh, F.; Vacher, T.; Horlin, A.-L.; Skhiri, A.; Brasher, C.; Michelet, D.; Dahmani, S. Evaluation of the analgesia nociception index for monitoring intraoperative analgesia in children. Br. J. Anaesth. 2018, 121, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Chanques, G.; Tarri, T.; Ride, A.; Prades, A.; De Jong, A.; Carr, J.; Molinari, N.; Jaber, S. Analgesia nociception index for the assessment of pain in critically ill patients: A diagnostic accuracy study. Br. J. Anaesth. 2017, 119, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Ledowski, T. Objective monitoring of nociception: A review of current commercial solutions. Br. J. Anaesth. 2019, 123, e312–e321. [Google Scholar] [CrossRef]
- Gjerstad, A.; Wagner, K.; Henrichsen, T.; Storm, H. Skin conductance versus the modified COMFORT sedation score as a measure of discomfort in artificially ventilated children. Pediatrics 2008, 122, e848–e853. [Google Scholar] [CrossRef] [Green Version]
- Six, S.; Laureys, S.; Poelaert, J.; Bilsen, J.; Theuns, P.; Musch, L.; Deschepper, R. Should we include monitors to improve assessment of awareness and pain in unconscious palliatively sedated patients? A case report. Palliat. Med. 2019, 33, 712–716. [Google Scholar] [CrossRef]
- Six, S.; Laureys, S.; Poelaert, J.; Bilsen, J.; Theuns, P.; Deschepper, R. Comfort in palliative sedation (Compas): A transdisciplinary mixed method study protocol for linking objective assessments to subjective experiences. BMC Palliat. Care 2018, 17, 62. [Google Scholar] [CrossRef] [Green Version]
- Passariello, A.; Montaldo, P.; Palma, M.; Cirillo, M.; Di Guida, C.; Esposito, S.; Caruso, M.; Pugliese, M.; Giliberti, P. Neonatal painful stimuli: Skin conductance algesimeter index to measure efficacy 24% of sucrose oral solution. J. Matern. Fetal Neonatal Med. 2019, 20, 3596–3601. [Google Scholar] [CrossRef]
- Karpe, J.; Misiołek, A.; Daszkiewicz, A.; Misiolek, H. Objective assessment of pain-related stress in mechanically ventilated newborns based on skin conductance fluctuations. Anaesthesiol. Intensive Ther. 2013, 45, 134–137. [Google Scholar] [CrossRef]
- Khanna, P.; Chandralekha, C.; Pandey, R.; Sharma, A. Pain assessment in the critically ill mechanically ventilated adult patients: Comparison between skin conductance algesimeter index and physiologic indicators. Saudi J. Anaesth. 2018, 12, 204–208. [Google Scholar]
- Paleczny, J.; Łoniewska-Paleczny, E.; Pysz, M.; Hura, G. Thoracic paravertebral block versus general anaesthesia in breast surgery. Anaesthesiol. Intensive Ther. 2005, 1, 12–16. [Google Scholar]
- Lohser, J.; Slinger, P. Lung injury after one-lung ventilation: A review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth. Analg. 2015, 121, 302–318. [Google Scholar] [CrossRef]
- Vozoris, N.; Pequeno, P.; Li, P.; Austin, P.; O’Donnell, D.; Gershon, A. Predictors of Opioid-related Adverse Pulmonary Events among Older Adults with Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2020, 17, 965–973. [Google Scholar] [CrossRef]
Variables | OFA Group (n = 25) | Control Group (n = 25) | p-Value |
---|---|---|---|
Age (years) | 60 ± 5 | 58 ± 6 | 0.268 |
Male/female (n) | 11/14 | 10/15 | 0.572 |
BMI (kg∙m–2) | 27.5 ± 4.9 | 26.9 ± 4.9 | 0.319 |
Height (m) | 1.69 ± 0.07 | 1.66 ± 0.08 | 0.13 |
Weight (kg) | 83 ± 16 | 81 ± 14 | 0.60 |
ASA class, I/II/III (n) | 1/15/9 | 1/14/10 | 0.49 |
Surgery time (min) | 148 ± 45 | 145 ± 37 | 0.68 |
SBP (mm Hg) | 136.5 ± 20.5 | 142.9 ± 22.1 | 0.146 |
DBP (mm Hg) | 81.0 ± 10.5 | 83.8 ± 10.6 | 0.172 |
MBP (mm Hg) | 102.0 ± 14.2 | 109.2 ± 14.4 | 0.043 |
HR (beats∙min–1) | 70 ± 11 | 69 ± 10 | 0.67 |
Group | Yes | No | p-Value | |
---|---|---|---|---|
Hypertension | Control | 16 | 9 | 0.387 |
OFA | 14 | 11 | ||
Coronary artery disease | Control | 7 | 18 | 0.500 |
OFA | 8 | 17 | ||
Diabetes mellitus | Control | 1 | 24 | 0.174 |
OFA | 4 | 21 | ||
Lung cancer | Control | 20 | 5 | 0.025 |
OFA | 25 | 0 | ||
Nicotinism | Control | 5 | 20 | 0.371 |
OFA | 7 | 18 | ||
Chronic obstructive pulmonary disease | Control | 2 | 23 | 0.209 |
OFA | 5 | 20 | ||
Neurological disorders | Control | 1 | 24 | 0.305 |
OFA | 3 | 22 |
Type of Surgery | OFA Group (n = 25) | Control Group (n = 25) |
---|---|---|
Lobectomy | 13 | 15 |
Double lobectomy | 6 | 5 |
Lung parenchymal resection | 6 | 5 |
Study Phase | Group | Mean | SD | p-Value |
---|---|---|---|---|
B | Control | 0.010 | 0.017 | 0.4225 |
OFA | 0.010 | 0.017 | ||
I | Control | 0.140 | 0.122 | 0.0325 |
OFA | 0.205 | 0.125 | ||
O | Control | 0.088 | 0.087 | 0.0036 |
OFA | 0.026 | 0.037 | ||
D | Control | 0.029 | 0.051 | 0.0253 |
OFA | 0.009 | 0.025 | ||
C | Control | 0.022 | 0.047 | 0.4867 |
OFA | 0.029 | 0.057 | ||
A | Control | 0.018 | 0.033 | 0.1179 |
OFA | 0.006 | 0.014 |
Control Group | |||||||
---|---|---|---|---|---|---|---|
OFA group | B | I | O | D | C | A | |
B | <0.001 | 0.004 | 1.000 | 1.000 | 1.000 | ||
I | <0.001 | 1.000 | 0.003 | <0.001 | <0.001 | ||
O | 1.000 | <0.001 | 0.049 | 0.003 | 0.007 | ||
D | 1.000 | <0.001 | 0.441 | 1.000 | 1.000 | ||
C | 1.000 | <0.001 | 1.000 | 1.000 | 1.000 | ||
A | 1.000 | <0.001 | 0.309 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska, D.; Bialka, S.; Palaczynski, P.; Czyzewski, D.; Smereka, J.; Szelka-Urbanczyk, A.; Misiolek, H. Opioid-Free Anaesthesia Effectiveness in Thoracic Surgery—Objective Measurement with a Skin Conductance Algesimeter: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14358. https://doi.org/10.3390/ijerph192114358
Sadowska D, Bialka S, Palaczynski P, Czyzewski D, Smereka J, Szelka-Urbanczyk A, Misiolek H. Opioid-Free Anaesthesia Effectiveness in Thoracic Surgery—Objective Measurement with a Skin Conductance Algesimeter: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(21):14358. https://doi.org/10.3390/ijerph192114358
Chicago/Turabian StyleSadowska, Dominika, Szymon Bialka, Piotr Palaczynski, Damian Czyzewski, Jacek Smereka, Anna Szelka-Urbanczyk, and Hanna Misiolek. 2022. "Opioid-Free Anaesthesia Effectiveness in Thoracic Surgery—Objective Measurement with a Skin Conductance Algesimeter: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 21: 14358. https://doi.org/10.3390/ijerph192114358
APA StyleSadowska, D., Bialka, S., Palaczynski, P., Czyzewski, D., Smereka, J., Szelka-Urbanczyk, A., & Misiolek, H. (2022). Opioid-Free Anaesthesia Effectiveness in Thoracic Surgery—Objective Measurement with a Skin Conductance Algesimeter: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(21), 14358. https://doi.org/10.3390/ijerph192114358