Effects of Recreational Physical Activity on Abdominal Obesity in Obese South Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Materials
2.3.1. Assessment of Obesity
2.3.2. Classification of Health Behavior
2.4. Data Analysis
3. Results
3.1. Comparison of Physical Activity by General Characteristics
3.2. Comparison of Health Behaviors According to Waist Circumferences
3.3. Risk Analysis Regarding the Impacts of Recreational Physical Activity on Waist Circumference
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 June 2021).
- Hannah, R.; Max, R. Obesity. 2017. Available online: https://ourworldindata.org/obesity (accessed on 18 November 2021).
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, K.M. Prevalence of Overweight and Obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention. Adult Obesity Facts. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 18 November 2021).
- National Health Statistics. Obesity Rate. 2022. Available online: https://www.index.go.kr/unify/idx-info.do?idxCd=8021. (accessed on 28 January 2022).
- Ghee, L.K.; Kooi, C.W. A review of metabolic syndrome research in Malaysia. Med. J. Malays. 2016, 71, 20–28. [Google Scholar]
- Li, T.Y.; Rana, J.S.; Manson, J.E.; Willett, W.C.; Stampfer, M.J.; Colditz, G.A.; Rexrode, K.M.; Hu, F.B. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation 2006, 113, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (US). Expert Panel on Detection, Treatment of High Blood Cholesterol in Adults. Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). The Program; NIH Catalyst: Bethesda, MD, USA, 2002. [Google Scholar] [CrossRef]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Welborn, T.A.; Dhaliwal, S.S. Preferred clinical measures of central obesity for predicting mortality. Eur. J. Clin. Nutr. 2007, 61, 1373–1379. [Google Scholar] [CrossRef]
- Czernichow, S.; Kengne, A.; Stamatakis, E.; Hamer, M.; Batty, G.D. Body mass index, waist circumference and waist-hip ratio: Which is the better discriminator of cardiovascular disease mortality risk? Evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes. Rev. 2011, 12, 680–687. [Google Scholar] [CrossRef]
- Paterson, D.H.; Warburton, D.E. Physical activity and functional limitations in older adults: A systematic review related to Canada′s physical activity guidelines. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Brien, S.E.; Katzmarzyk, P.T. Physical activity and the metabolic syndrome in Canada. Appl. Physiol. Nutr. Metab. 2006, 31, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lakka, T.A.; Laaksonen, D.E. Physical activity in prevention and treatment of the metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007, 32, 76–88. [Google Scholar] [CrossRef]
- Yang, X.; Telama, R.; Hirvensalo, M.; Mattsson, N.; Viikari, J.; Raitakari, O. The longitudinal effects of physical activity history on metabolic syndrome. Med. Sci. Sports Exerc. 2008, 40, 1424. [Google Scholar] [CrossRef] [PubMed]
- Rennie, K.L.; McCarthy, N.; Yazdgerdi, S.; Marmot, M.; Brunner, E. Association of the metabolic syndrome with both vigorous and moderate physical activity. Int. J. Epidemiol. 2003, 32, 600–606. [Google Scholar] [CrossRef] [Green Version]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Korean Society for the Study of Obesity. Common Sense of Obesity. Available online: http://general.kosso.or.kr/html/?pmode=obesityDiagnosis (accessed on 11 January 2022).
- The Korea Nutrition Society. 2015 Korean Dietary Reference Intake Standards (KDRIs); Han A-reum: Seoul, Korea, 2016. [Google Scholar]
- Korean National Health and Nutrition Survey. 2021. Available online: https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 25 January 2022).
- WHO. Global Physical Activity Questionnaire (GPAQ). 2021. Available online: https://www.who.int/publications/m/item/global-physical-activity-questionnaire (accessed on 12 November 2021).
- GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental, and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet 2017, 390, 1345. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity and Overweight. In Health at a Glance: Asia/Pacific 2020: Measuring Progress Towards Universal Health Coverage; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- Blüher, S.; Molz, E.; Wiegand, S.; Otto, K.P.; Sergeyev, O.E.; Tuschy, S.; L′Allemand-Jander, D.; Kiess, W.; Holl, R.W.; Adiposity Patients Registry Initiative. German Competence Net Obesity. Body mass index, waist circumference, and waist-to-height ratio as predictors of cardiometabolic risk in childhood obesity depending on pubertal development. J. Clin. Endocrinol. Metab. 2013, 98, 3384–3393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.K.; Hong YS Sung, Y.A.; Lee, H.J. Waist circumference and mortality or cardiovascular events in a general Korean population. PLoS ONE 2022, 17, e0267597. [Google Scholar] [CrossRef]
- Lean, M.; Han, T.S.; Morrison, C.E. Waist circumference as a measure for indicating need for weight management. BMJ 1995, 311, 158–161. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, S.Y.; Oh, K.W. Changes in Health Behaviors and Chronic Diseases after the COVID-19 Outbreak. National Health Statistics Plus. Issue Report. Korea Centers for Disease Control and Prevention. 2021:No 12. Available online: https://knhanes.kdca.go.kr/knhanes/sub04/sub04_04_02.do (accessed on 9 January 2022).
- Gearon, E.; Tanamas, S.K.; Stevenson, C.; Loh, V.H.; Peeters, A. Changes in waist circumference independent of weight: Implications for population level monitoring of obesity. Prev. Med. 2018, 111, 378–383. [Google Scholar] [CrossRef]
- Hu HWang, J.; Han, X.; Li, Y.; Wang, F.; Yuan, J.; Miao, X.; Yang, H.; He, M. BMI, Waist Circumference and All-Cause Mortality in a Middle-Aged and Elderly Chinese Population. J. Nutr. Health Aging 2018, 22, 975–981. [Google Scholar] [CrossRef]
- Kim, D.; Hou, W.; Wang, F.; Arcan, C. Peer reviewed: Factors affecting obesity and waist circumference among US adults. Prev. Chronic Dis. 2019, 16, E02. [Google Scholar] [CrossRef] [Green Version]
- WHO. Physical Activity. Updated 26 November 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 9 January 2022).
- Shibata, A.I.; Oka, K.; Sugiyama, T.; Salmon, J.O.; Dunstan, D.W.; Owen, N. Physical Activity, Television Viewing Time, and 12-Year Changes in Waist Circumference. Med. Sci. Sport. Exerc. 2016, 48, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Buman, M.P.; Winkler, E.A.; Kurka, J.M.; Hekler, E.B.; Baldwin, C.M.; Owen, N.; Ainsworth, B.E.; Healy, G.N.; Gardiner, P.A. Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. Am. J. Epidemiol. 2014, 179, 323–334. [Google Scholar] [CrossRef]
- Hammond, B.P.; Stotz, P.J.; Brennan, A.M.; Lamarche, B.; Day, A.G.; Ross, R. Individual Variability in Waist Circumference and Body Weight in Response to Exercise. Med. Sci. Sport. Exerc. 2019, 51, 315–322. [Google Scholar] [CrossRef]
- Howard, B.; Winkler, E.A.; Sethi, P.; Carson, V.; Ridgers, N.D.; Salmon, J.O.; Healy, G.N.; Owen, N.; Dunstan, D.W. Associations of low-and high-intensity light activity with cardiometabolic biomarkers. Med. Sci. Sports Exerc. 2015, 47, 2093–2101. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Lee, H.; Cardinal, B.J. Dose response association between physical activity and biological, demographic, and perceptions of health variables. Obesity Facts. 2013, 6, 380–392. [Google Scholar] [CrossRef]
- Robson, J.; Janssen, I. Intensity of bouted and sporadic physical activity and the metabolic syndrome in adults. PeerJ. 2015, 3, e1437. [Google Scholar] [CrossRef]
Male | Female | ||||
---|---|---|---|---|---|
<90 cm | ≥90 cm | <85 cm | ≥85 cm | ||
Age | Years (M ± SE) 1 | 39.62 ± 0.68 | 39.84 ± 0.45 | 41.32 ± 0.80 | 45.09 ± 0.61 |
p | 0.786 | <0.001 | |||
Marital status | Single | 157 (40.3) | 230 (59.7) | 74 (50.5) | 72 (49.5) |
Married (living together) | 308 (34.6) | 598 (65.4) | 261 (34.6) | 488 (65.4) | |
Married (living apart) | 16 (44.5) | 26 (55.5) | 37 (37.4) | 68 (62.6) | |
p | 0.123 | 0.004 | |||
Household income | Q1 | 116 (40.5) | 178 (59.5) | 103 (34.3) | 190 (65.7) |
Q2 | 109 (35.3) | 213 (64.7) | 97 (36.1) | 182 (63.9) | |
Q3 | 133 (38) | 233 (62) | 97 (41.8) | 149 (58.2) | |
Q4 | 123 (34.5) | 228 (65.5) | 75 (42.9) | 106 (57.1) | |
p | 0.471 | 0.221 | |||
Employment | Employed | 371 (36.5) | 663 (63.5) | 219 (41.6) | 311 (58.4) |
Unemployed | 69 (36.7) | 130 (63.3) | 125 (32.5) | 286 (67.5) | |
p | 0.955 | 0.019 | |||
Education level | Elementary school | 16 (38.4) | 24 (61.6) | 32 (27.1) | 92 (72.9) |
Junior high school | 25 (42.9) | 34 (57.1) | 25 (23.4) | 71 (76.6) | |
High school | 165 (39.7) | 270 (60.3) | 151 (39.9) | 224 (60.1) | |
University | 237 (34.1) | 467 (65.9) | 136 (41.4) | 209 (58.6) | |
p | 0.257 | 0.007 | |||
Menopause | No | - | - | 232 (41) | 342 (59) |
Yes | - | - | 110 (31.7) | 245 (68.3) | |
p | - | - | 0.013 |
Male | Female | ||||
---|---|---|---|---|---|
<90 cm | ≥90 cm | <85 cm | ≥85 cm | ||
Smoking | Current smoker | 168 (35.6) | 315 (64.4) | 16 (36.6) | 38 (63.4) |
Former smoker | 176 (36.9) | 312 (63.1) | 28 (42.5) | 45 (57.5) | |
Never smoker | 130 (37.8) | 220 (62.2) | 320 (37.1) | 542 (62.9) | |
p | 0.827 | 0.757 | |||
Drinking | Non-drinker (under once a month) | 105 (39.9) | 182 (60.1) | 175 (35.5) | 318 (64.5) |
Drinker (over once a month) | 369 (35.8) | 665 (64.2) | 189 (39.1) | 308 (60.9) | |
p | 0.223 | 0.305 | |||
Hours of sleep | <7 h | 194 (38.3) | 342 (61.7) | 141 (36.4) | 250 (63.6) |
7–8 h | 150 (35.2) | 267 (64.8) | 110 (40.8) | 173 (59.2) | |
≥8 h | 99 (35.9) | 183 (64.1) | 93 (36) | 174 (64) | |
p | 0.645 | 0.517 | |||
Energy intake | Inadequate | 276 (37.9) | 461 (62.1) | 260 (40.4) | 405 (59.6) |
Adequate | 205 (35.5) | 393 (64.5) | 112 (33.1) | 224 (66.9) | |
p | 0.423 | 0.044 | |||
Work PA | No | 357 (36.4) | 647 (63.6) | 317 (38.6) | 527 (61.4) |
<600 Mets/wk | 18 (30) | 49 (70) | 10 (22.1) | 25 (77.9) | |
≥600 Mets/wk | 67 (41) | 98 (59) | 16 (30.4) | 45 (69.6) | |
p | 0.352 | 0.105 | |||
Recreational PA | No | 185 (33.6) | 381 (66.4) | 209 (33.8) | 405 (66.2) |
<600 Mets/wk | 73 (30.2) | 167 (69.8) | 51 (37.7) | 97 (62.3) | |
≥600 Mets/wk | 184 (43.7) | 246 (56.3) | 83 (49.4) | 95 (50.6) | |
p | 0.001 | 0.002 | |||
Transport PA | No | 150 (42.1) | 232 (57.9) | 51 (44.6) | 75 (55.4) |
<600 Mets/wk | 275 (34.3) | 536 (65.7) | 283 (37.2) | 498 (62.8) | |
≥600 Mets/wk | 18 (39.5) | 25 (60.5) | 8 (23.3) | 24 (76.7) | |
p | 0.071 | 0.095 | |||
Sedentary behavior | <240 min | 84(46.5) | 104(53.5) | 60(37.3) | 106(62.7) |
<480 min | 173(38.4) | 292(61.6) | 134(33.5) | 270(66.5) | |
≥480 min | 186(32.7) | 398(67.3) | 149(41.7) | 219(58.3) | |
p | 0.007 | 0.131 |
Male | Female | |||
---|---|---|---|---|
None vs. <600 Mets/wk | None vs. ≥600 Mets/wk | None vs. <600 Mets/wk | None vs. ≥600 Mets/wk | |
Model 1 | 1.17 (0.82–1.67) | 0.65 (0.49–0.87) | 0.85 (0.55–1.30) | 0.52 (0.36–0.75) |
Model 2 | - | - | 0.92 (0.60–1.43) | 0.57 (0.39–0.83) |
Model 3 | 1.09 (0.75–1.57) | 0.60 (0.45–0.81) | 0.94 (0.61–1.45) | 0.57 (0.39–0.84) |
Model 4 | 1.24 (0.84–1.83) | 0.67 (0.50–0.90) | 1.01 (0.63–1.61) | 0.61 (0.40–0.94) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Kwak, S.; Shin, J. Effects of Recreational Physical Activity on Abdominal Obesity in Obese South Korean Adults. Int. J. Environ. Res. Public Health 2022, 19, 14634. https://doi.org/10.3390/ijerph192214634
Lee Y, Kwak S, Shin J. Effects of Recreational Physical Activity on Abdominal Obesity in Obese South Korean Adults. International Journal of Environmental Research and Public Health. 2022; 19(22):14634. https://doi.org/10.3390/ijerph192214634
Chicago/Turabian StyleLee, Yoonmi, Sungjung Kwak, and Jieun Shin. 2022. "Effects of Recreational Physical Activity on Abdominal Obesity in Obese South Korean Adults" International Journal of Environmental Research and Public Health 19, no. 22: 14634. https://doi.org/10.3390/ijerph192214634
APA StyleLee, Y., Kwak, S., & Shin, J. (2022). Effects of Recreational Physical Activity on Abdominal Obesity in Obese South Korean Adults. International Journal of Environmental Research and Public Health, 19(22), 14634. https://doi.org/10.3390/ijerph192214634