The Association between Video Game Time and Adolescent Mental Health: Evidence from Rural China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Location and Sampling
2.3. Measures
2.4. Analysis
3. Results
3.1. Summary Statistics
3.2. Prevalence of Video Game Time and Mental Health Outcomes
3.3. Association between Video Game Time and Mental Health Symptoms
3.4. The Association between Video Game Time and Mental Health by Student Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Obs. | Percentage of Sample | |
---|---|---|
None | 1194 | 74.49 |
<30 min. | 302 | 18.84 |
30–60 min. | 73 | 4.55 |
>60 min. | 34 | 2.12 |
Depression Scores | Anxiety Scores | Stress Scores | Depression Symptoms | Anxiety Symptoms | Stress Symptoms | |
---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
During weekdays: Video game time | 2.70 ** | 2.25 * | 1.61 | 0.06 | 0.12 ** | 0.09 * |
hours/day | (1.26) | (1.23) | (1.27) | (0.06) | (0.05) | (0.05) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.261 | 0.227 | 0.208 | 0.236 | 0.188 | 0.174 |
During weekends: Video game time | 1.31 ** | 0.99 * | 0.86 * | 0.06 *** | 0.02 | 0.04 ** |
hours/day | (0.48) | (0.51) | (0.50) | (0.01) | (0.03) | (0.02) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.260 | 0.226 | 0.208 | 0.239 | 0.185 | 0.173 |
Variables | Depression Scores | Anxiety Scores | Stress Scores | Depression Symptoms | Anxiety Symptoms | Stress Symptoms |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Video game time, hours/day | 0.47 *** | 0.37 ** | 0.30 * | 0.01 *** | 0.01 * | 0.02 ** |
(0.15) | (0.15) | (0.16) | (0.01) | (0.01) | (0.01) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.265 | 0.231 | 0.211 | 0.239 | 0.191 | 0.175 |
References
- Kieling, C.; Baker-Henningham, H.; Belfer, M.; Conti, G.; Ertem, I.; Omigbodun, O.; Rohde, L.A.; Srinath, S.; Ulkuer, N.; Rahman, A. Child and adolescent mental health worldwide: Evidence for action. Lancet 2011, 378, 1515–1525. [Google Scholar] [CrossRef]
- McLeod, J.D.; Uemura, R.; Rohrman, S. Adolescent Mental Health, Behavior Problems, and Academic Achievement. J. Health Soc. Behav. 2012, 53, 482–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohrnberger, J.; Fichera, E.; Sutton, M. The relationship between physical and mental health: A mediation analysis. Soc. Sci. Med. 2017, 195, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Bubonya, M.; Cobb-Clark, D.A.; Wooden, M. Mental health and productivity at work: Does what you do matter? Labour Econ. 2017, 46, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Kim-Cohen, J.; Caspi, A.; Moffitt, T.E.; Harrington, H.; Milne, B.J.; Poulton, R. Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort. Arch. Gen. Psychiatry 2003, 60, 709–717. [Google Scholar] [CrossRef]
- Dierker, L.C.; Albano, A.M.; Clarke, G.N.; Heimberg, R.G.; Kendall, P.C.; Merikangas, K.R.; Lewinsohn, P.M.; Offord, D.R.; Kessler, R.; Kupfer, D.J. Screening for anxiety and depression in early adolescence. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 929–936. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Population Prospects. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2017_world_population_prospects-2017_revision_databooklet.pdf (accessed on 21 June 2017).
- Patel, V.; Saxena, S.; Lund, C.; Thornicroft, G.; Baingana, F.; Bolton, P.; Chisholm, D.; Collins, P.Y.; Cooper, J.L.; Eaton, J.; et al. The Lancet Commission on global mental health and sustainable development. Lancet 2018, 392, 1553–1598. [Google Scholar] [CrossRef] [Green Version]
- Rathod, S.; Pinninti, N.; Irfan, M.; Gorczynski, P.; Rathod, P.; Gega, L.; Naeem, F. Mental Health Service Provision in Low- and Middle-Income Countries. Health Serv. Insights 2017, 10, 1178632917694350. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.; Flisher, A.J.; Nikapota, A.; Malhotra, S. Promoting child and adolescent mental health in low and middle income countries. J. Child Psychol. Psychiatry Allied Discip. 2008, 49, 313–334. [Google Scholar] [CrossRef]
- Makhnach, A.V.; Laktionova, A.I.; Postylyakova, Y.V.; Gorkovaya, I.A.; Miklyaeva, A.V.; Sarayeva, N.M.; Sukhanov, A.A.; Theron, L.; Ungar, M. Comparative analysis of youth resilience from regions with different cultural, social and environmental conditions of life. Psikhologicheskii Zhurnal 2021, 42, 16–27. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Kramer, M.; Schwedler, A.; Lincoln, T.M.; Kammerl, R. Internet gaming disorder in early adolescence: Associations with parental and adolescent mental health. Eur. Psychiatry 2017, 43, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Online gaming addiction in children and adolescents: A review of empirical research. J. Behav. Addict. 2012, 1, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, A.M.; Goolkasian, P. Video Games and Stress: How Stress Appraisals and Game Content Affect Cardiovascular and Emotion Outcomes. Front. Psychol. 2019, 10, 967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APA. Internet Gaming Disorder. In DSM-5. Available online: https://www.psychiatry.org/File%20Library/Psychiatrists/Practice/DSM/APA_DSM-5-Internet-Gaming-Disorder.pdf (accessed on 22 May 2013).
- Kovess-Masfety, V.; Keyes, K.; Hamilton, A.; Hanson, G.; Bitfoi, A.; Golitz, D.; Koç, C.; Kuijpers, R.; Lesinskiene, S.; Mihova, Z.; et al. Is time spent playing video games associated with mental health, cognitive and social skills in young children? Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Barr, M. Copeland-Stewart, A. Playing video games during the COVID-19 pandemic and effects on players’ well-being. Games Cult. 2022, 17, 122–139. [Google Scholar] [CrossRef]
- Araya, R.; Arias Ortiz, E.; Bottan, N.L.; Cristia, J. Does gamification in education work? Experimental evidence from Chile (Working Paper IDB-WP-982). In IDB Working Paper Series; Inter-American Development Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Hew, K.F.; Huang, B. Does gamification improve student learning outcome? Evidence from a meta-analysis and synthesis of qualitative data in educational contexts. Educ. Res. Rev. 2020, 30, 100322. [Google Scholar] [CrossRef]
- Metwally, A.H.S.; Nacke, L.E.; Chang, M.; Wang, Y.; Yousef, A.M.F. Revealing the hotspots of educational gamification: An umbrella review. Int. J. Educ. Res. 2021, 109, 101832. [Google Scholar] [CrossRef]
- Oberle, E.; Ji, X.R.; Kerai, S.; Guhn, M.; Schonert-Reichl, K.A.; Gadermann, A.M. Screen time and extracurricular activities as risk and protective factors for mental health in adolescence: A population-level study. Prev. Med. 2020, 141, 106291. [Google Scholar] [CrossRef]
- Jiang, Q.; She, X.; Dill, S.-E.; Sylvia, S.; Singh, M.K.; Wang, H.; Boswell, M.; Rozelle, S. Depressive and Anxiety Symptoms among Children and Adolescents in Rural China: A Large-Scale Epidemiological Study. Int. J. Environ. Res. Public Health 2022, 19, 5026. [Google Scholar] [CrossRef]
- CNNIC. National Report on Internet Usage of Minors in 2020. Available online: https://pic.cyol.com/img/20210720/img_960114c132531c521023e29b6c223e438461.pdf (accessed on 21 July 2021).
- NPPA. National Press and Publication Administration-Notice-Notice of the National Press and Publication Administration on further strict management and effectively preventing minors from indulging in online games. Available online: https://www.nppa.gov.cn/nppa/contents/279/98792.shtml (accessed on 30 August 2021).
- Xiang, Y.-T.; Jin, Y.; Zhang, L.; Li, L.; Ungvari, G.S.; Ng, C.H.; Zhao, M.; Hao, W. An Overview of the Expert Consensus on the Prevention and Treatment of Gaming Disorder in China (2019 Edition). Neurosci. Bull. 2020, 36, 825–828. [Google Scholar] [CrossRef]
- Wu, X.-S.; Zhang, Z.-H.; Zhao, F.; Wang, W.-J.; Li, Y.-F.; Bi, L.; Qian, Z.-Z.; Lu, S.-S.; Feng, F.; Hu, C.-Y.; et al. Prevalence of Internet addiction and its association with social support and other related factors among adolescents in China. J. Adolesc. 2016, 52, 103–111. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. UNICEF Welcomes State Council Guideline on the Protection of Left Behind Children. Available online: https://www.unicef.cn/en/press-releases/unicef-welcomes-state-council-guideline-protection-left-behind-children (accessed on 22 February 2018).
- Tras, Z. Internet Addiction and Loneliness as Predictors of Internet Gaming Disorder in Adolescents. Educ. Res. Rev. 2019, 14, 465–473. [Google Scholar]
- Liao, Z.; Huang, Q.; Huang, S.; Tan, L.; Shao, T.; Fang, T.; Chen, X.; Lin, S.; Qi, J.; Cai, Y.; et al. Prevalence of Internet Gaming Disorder and Its Association with Personality Traits and Gaming Characteristics Among Chinese Adolescent Gamers. Front. Psychiatry 2020, 11, 598585. [Google Scholar] [CrossRef] [PubMed]
- NBSC. China Statistical Yearbook 2019. National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 22 July 2020).
- Mellor, D.; Vinet, E.; Xu, X.; Mamat, N.H.; Richardson, B.; Roman, F. Factorial invariance of the DASS-21 among adolescents in four countries. Eur. J. Psychol. Assess. 2015, 31, 138. [Google Scholar] [CrossRef]
- Scholten, S.; Velten, J.; Bieda, A.; Zhang, X.C.; Margraf, J. Testing measurement invariance of the Depression, Anxiety, and Stress Scales (DASS-21) across four countries. Psychol. Assess. 2017, 29, 1376–1390. [Google Scholar] [CrossRef]
- Canty-Mitchell, J.; Zimet, G.D. Psychometric Properties of the Multidimensional Scale of Perceived Social Support in Urban Adolescents. Am. J. Community Psychol. 2000, 28, 391–400. [Google Scholar] [CrossRef]
- Chou, K.-L. Assessing Chinese adolescents’ social support: The multidimensional scale of perceived social support. Personal. Individ. Differ. 2000, 28, 299–307. [Google Scholar] [CrossRef]
- Zimet, G.D.; Dahlem, N.W.; Zimet, S.G.; Farley, G.K. The Multidimensional Scale of Perceived Social Support. J. Personal. Assess. 1988, 52, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.W.I.; Cheung, W.M.; Au, D.W.H.; Tsang, H.W.H.; So, W.W.Y.; Zhu, Y. An International Reading Literacy Study: Factor Structure of the Chinese Version of the Student Questionnaire (PIRLS-SQCV 2011). Educ. Res. Int. 2016, 2016, e4165089. [Google Scholar] [CrossRef] [Green Version]
- Mullis, I.V.S.; Martin, M.O.; Foy, P.; Drucker, K.T. PIRLS 2011 International Results in Reading. In International Association for the Evaluation of Educational Achievement; International Association for the Evaluation of Educational Achievement: Amsterdam, The Netherlands, 2012; Available online: https://eric.ed.gov/?id=ED544362 (accessed on 22 July 2020).
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Desai, R.A.; Krishnan-Sarin, S.; Cavallo, D.; Potenza, M.N. Video game playing in high school students: Health correlates, gender differences and problematic gaming. Pediatrics 2010, 126, e1414–e1424. [Google Scholar] [CrossRef]
- Allahverdipour, H.; Bazargan, M.; Farhadinasab, A.; Moeini, B. Correlates of video games playing among adolescents in an Islamic country. BMC Public Health 2010, 10, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pine, R.; Fleming, T.; McCallum, S.; Sutcliffe, K. The Effects of Casual Videogames on Anxiety, Depression, Stress, and Low Mood: A Systematic Review. Games Health J. 2020, 9, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, C.J. Do Angry Birds Make for Angry Children? A Meta-Analysis of Video Game Influences on Children’s and Adolescents’ Aggression, Mental Health, Prosocial Behavior, and Academic Performance. Perspect. Psychol. Sci. 2016, 10, 646–666. [Google Scholar] [CrossRef] [PubMed]
- Hygen, B.W.; Skalická, V.; Stenseng, F.; Belsky, J.; Steinsbekk, S.; Wichstrøm, L. The co-occurrence between symptoms of internet gaming disorder and psychiatric disorders in childhood and adolescence: Prospective relations or common causes? J. Child Psychol. Psychiatry 2020, 61, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Pontes, H.M.; Nie, Q.; Griffiths, M.D.; Guo, C. Depression and anxiety symptoms associated with internet gaming disorder before and during the COVID-19 pandemic: A longitudinal study. J. Behav. Addict. 2021, 10, 169–180. [Google Scholar] [CrossRef]
- Elliott, L.; Golub, A.; Ream, G.; Dunlap, E. Video Game Genre as a Predictor of Problem Use. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 155–161. [Google Scholar] [CrossRef]
- Fleming, T.; Cheek, C.; Merry, S.; Thabrew, H.; Bridgman, H.; Stasiak, K.; Shepherd, M.; Perry, Y.; Hetrick, S. Serious games for the treatment or prevention of depression: A systematic review. Rev. Psicopatologíay Psicol. Clínica 2014, 19, 227–242. [Google Scholar] [CrossRef]
- DeRosier, M.E.; Thomas, J.M. Video Games and Their Impact on Teens’ Mental Health. In Technology and Adolescent Mental Health; Moreno, M.A., Radovic, A., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 237–253. [Google Scholar] [CrossRef]
- Li, X.; Vanderloo, L.M.; Keown-Stoneman, C.D.G.; Cost, K.T.; Charach, A.; Maguire, J.L.; Monga, S.; Crosbie, J.; Burton, C.; Anagnostou, E.; et al. Screen Use and Mental Health Symptoms in Canadian Children and Youth During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2140875. [Google Scholar] [CrossRef]
- Hartanto, A.; Lua, V.Y.Q.; Quek, F.Y.X.; Yong, J.C.; Ng, M.H.S. A critical review on the moderating role of contextual factors in the associations between video gaming and well-being. Comput. Hum. Behav. Rep. 2021, 4, 100135. [Google Scholar] [CrossRef]
- Ohannessian, C.M. Video game play and anxiety during late adolescence: The moderating effects of gender and social context. J. Affect. Disord. 2018, 226, 216–219. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, L.; Yuan, Y. Rural-urban migration and mental health of Chinese migrant children: Systematic review and meta-analysis. J. Affect. Disord. 2019, 257, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Tang, Q.; Liu, D.; Zhao, L.; Wang, F.; Xie, H. Mental health literacy about depression among rural left-behind children in China: A comparative and cross-sectional study. J. Ment. Health 2021, 30, 263–270. [Google Scholar] [CrossRef] [PubMed]
- National Press and Publication Administration. Notice about Further Increasing Strict Enforcement to Prevent the Internet Addiction among Minors. Available online: http://www.gov.cn/zhengce/zhengceku/2021-09/01/content_5634661.htm (accessed on 30 August 2021).
- Borak, M. Facial Recognition in Video Games Comes with Security Risks, Chinese Industry Group Warns|South China Morning Post. SCMP. Available online: https://www.scmp.com/abacus/tech/article/3105702/facial-recognition-video-games-comes-security-risks-chinese-industry (accessed on 22 July 2020).
- Deng, I. Unlicensed Video Games in China Banned from Live-Streaming Platforms. South China Morning Post. Available online: https://www.scmp.com/tech/policy/article/3174401/china-bans-live-streaming-unauthorised-video-games-tightening (accessed on 15 April 2022).
Obs. | Mean | Std. Dev. | |
---|---|---|---|
Demographic and family characteristics | |||
Female, 1 = Yes | 1603 | 0.45 | 0.50 |
Age, years | 1603 | 11.54 | 1.62 |
Board at school, 1 = Yes | 1603 | 0.15 | 0.36 |
Junior high school, 1 = Yes | 1603 | 0.41 | 0.49 |
Number of siblings | 1603 | 1.15 | 0.84 |
Father has >9 years education, 1 = Yes | 1603 | 0.24 | 0.43 |
Mother has >9 years education, 1 = Yes | 1603 | 0.15 | 0.35 |
Left-behind child, 1 = Yes (both parents out migrant) | 1603 | 0.20 | 0.40 |
Family asset index | 1603 | −0.01 | 1.24 |
Low social support, 1 = Yes | 1603 | 0.11 | 0.31 |
Being bullied monthly or more, 1 = Yes | 1603 | 0.43 | 0.49 |
Often attends group activities at school, 1 = Yes | 1603 | 0.70 | 0.46 |
Have a computer at home | 1603 | 0.30 | 0.46 |
Measures of independent variables | |||
Video game time, hours/week | 1603 | 0.69 | 1.98 |
Measures of outcome variables | |||
Depression scores (DASS-21) | 1603 | 7.69 | 8.55 |
Anxiety scores (DASS-21) | 1603 | 9.53 | 8.37 |
Stress scores (DASS-21) | 1603 | 10.88 | 8.60 |
Depression symptoms, 1 = Yes | 1603 | 0.33 | 0.47 |
Anxiety symptoms, 1 = Yes | 1603 | 0.51 | 0.50 |
Stress symptoms, 1 = Yes | 1603 | 0.29 | 0.45 |
Social-Environmental and Demographic Factors | Video Game Time (Hours) | ||||
---|---|---|---|---|---|
Obs. | Mean | Difference | p-Value | ||
Gender | Female | 715 | 0.382 | −0.557 *** | 0.000 |
Male | 888 | 0.939 | |||
Age, years | ≥11 | 852 | 0.972 | 0.600 *** | 0.000 |
<11 | 751 | 0.372 | |||
Boards at school | Yes | 240 | 0.839 | 0.175 | 0.207 |
No | 1363 | 0.664 | |||
Junior high school | Yes | 658 | 1.041 | 0.594 *** | 0.000 |
No | 945 | 0.447 | |||
Bullied monthly or more | Yes | 683 | 0.896 | 0.357 *** | 0.000 |
No | 920 | 0.538 | |||
Father’s education level > 9 years | Yes | 385 | 0.677 | −0.018 | 0.875 |
No | 1218 | 0.695 | |||
Mother’s education level > 9 years | Yes | 233 | 0.788 | 0.114 | 0.418 |
No | 1370 | 0.674 | |||
Left-behind child (both parents migrate) | Yes | 316 | 0.645 | −0.056 | 0.651 |
No | 1287 | 0.702 | |||
Family asset index | Top 25% | 397 | 0.865 | 0.234 | 0.111 |
Bottom 25% | 442 | 0.631 | |||
Only child | Yes | 219 | 0.463 | −0.263 | 0.067 |
No | 1384 | 0.726 | |||
Often attends group | Yes | 1118 | 0.675 | −0.052 | 0.626 |
activities at school | No | 485 | 0.727 | ||
Low social support | Yes | 175 | 1.118 | 0.480 *** | 0.002 |
No | 1428 | 0.638 |
Depression Scores | Anxiety Scores | Stress Scores | Depression Symptoms | Anxiety Symptoms | Stress Symptoms | |
---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
Video game time, hours/week | 0.41 *** | 0.33 ** | 0.26 | 0.01 ** | 0.01 * | 0.01 ** |
(0.15) | (0.16) | (0.16) | (0.01) | (0.01) | (0.01) | |
Female, 1 = Yes | 0.72 * | 0.48 | 0.47 | 0.05 ** | 0.03 | 0.03 |
(0.38) | (0.31) | (0.34) | (0.02) | (0.02) | (0.02) | |
Age, years | 0.39 | 0.13 | 0.16 | 0.02 | 0.02 | 0.02 |
(0.38) | (0.36) | (0.38) | (0.02) | (0.02) | (0.02) | |
Board at school, 1 = Yes | 0.81 | −0.58 | −0.68 | 0.05 | −0.06 | −0.01 |
(0.65) | (0.77) | (0.78) | (0.03) | (0.04) | (0.05) | |
Junior high school, 1 = Yes | −11.28 *** | −10.93 *** | −5.70 *** | −0.53 *** | −0.49 *** | −0.29 *** |
(1.14) | (0.96) | (0.94) | (0.06) | (0.05) | (0.05) | |
Father has >9 years education, 1 = Yes | 0.11 | −0.67 | −0.07 | −0.00 | −0.05 | −0.02 |
(0.66) | (0.66) | (0.68) | (0.04) | (0.04) | (0.04) | |
Mother has >9 years education, 1 = Yes | −0.42 | 0.00 | 0.29 | −0.01 | 0.02 | 0.03 |
(0.72) | (0.78) | (0.78) | (0.04) | (0.05) | (0.03) | |
Left-behind child, 1 = Yes | 0.25 | 0.50 | 0.18 | −0.00 | 0.05 | 0.03 |
(0.57) | (0.68) | (0.62) | (0.04) | (0.03) | (0.03) | |
Family asset index | −0.59 ** | −0.40 | −0.51 ** | −0.02 | −0.02 | −0.02 * |
(0.22) | (0.24) | (0.22) | (0.02) | (0.01) | (0.01) | |
Number of siblings | 0.48 ** | 0.55 *** | 0.07 | 0.01 | 0.01 | 0.00 |
(0.22) | (0.16) | (0.25) | (0.01) | (0.01) | (0.01) | |
Low social support, 1 = Yes | 2.87 *** | −0.16 | −0.36 | 0.12 ** | −0.05 | 0.02 |
(0.85) | (0.67) | (0.65) | (0.04) | (0.04) | (0.04) | |
Being bullied monthly or more, 1 = Yes | 6.28 *** | 6.12 *** | 6.12 *** | 0.33 *** | 0.29 *** | 0.26 *** |
(0.57) | (0.59) | (0.57) | (0.03) | (0.04) | (0.03) | |
Often attends group activities at school, | −1.28 ** | −1.16 ** | −0.97 * | −0.06 ** | −0.08 ** | −0.05 * |
1 = Yes | (0.49) | (0.47) | (0.53) | (0.03) | (0.03) | (0.02) |
Constant | 6.73 | 12.10 *** | 10.83 ** | 0.34 | 0.46 * | 0.11 |
(4.17) | (3.76) | (4.21) | (0.25) | (0.24) | (0.22) | |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1603 | 1603 | 1603 | 1603 | 1603 | 1603 |
R-squared | 0.263 | 0.228 | 0.209 | 0.238 | 0.187 | 0.174 |
Depression Scores | Anxiety Scores | Stress Scores | Depression Symptoms | Anxiety Symptoms | Stress Symptoms | |
---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
Panel A, by student sex | ||||||
Female students | ||||||
Video game time, hours/week | 0.15 | 0.15 | 0.17 | −0.00 | 0.02 | 0.02 |
(0.24) | (0.21) | (0.35) | (0.02) | (0.01) | (0.02) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.381 | 0.303 | 0.304 | 0.334 | 0.269 | 0.273 |
Male students | ||||||
Video game time, hours/week | 0.44 ** | 0.38 ** | 0.27 * | 0.02 *** | 0.01 | 0.01 ** |
(0.17) | (0.18) | (0.16) | (0.00) | (0.01) | (0.01) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.271 | 0.254 | 0.218 | 0.254 | 0.197 | 0.188 |
Panel B, by student left-behind status | ||||||
Left-behind students | ||||||
Video game time, hours/week | 0.03 | 0.03 | 0.02 | −0.01 | 0.02 | 0.00 |
hours/week | (0.25) | (0.37) | (0.50) | (0.01) | (0.02) | (0.02) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.451 | 0.408 | 0.407 | 0.440 | 0.394 | 0.325 |
Non-left-behind students | ||||||
Video game time, hours/week | 0.49 ** | 0.40 ** | 0.32 * | 0.02 *** | 0.01 | 0.02 ** |
(0.19) | (0.17) | (0.18) | (0.01) | (0.01) | (0.01) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.276 | 0.247 | 0.222 | 0.262 | 0.201 | 0.202 |
Panel C, by student family social economic status | ||||||
Family asset index top 50% | ||||||
Video game time, hours/week | 0.43 ** | 0.38 * | 0.36 | 0.01 * | 0.01 | 0.02 ** |
(0.21) | (0.22) | (0.23) | (0.01) | (0.01) | (0.01) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.331 | 0.295 | 0.284 | 0.327 | 0.259 | 0.258 |
Family asset index bottom 50% | ||||||
Video game time, hours/week | 0.47 * | 0.41 | 0.28 | 0.02 * | 0.02 ** | 0.01 |
(0.23) | (0.27) | (0.20) | (0.01) | (0.01) | (0.01) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Class fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.296 | 0.281 | 0.255 | 0.276 | 0.236 | 0.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Abbey, C.; Wang, H.; Zhu, A.; Shao, T.; Dai, D.; Jin, S.; Rozelle, S. The Association between Video Game Time and Adolescent Mental Health: Evidence from Rural China. Int. J. Environ. Res. Public Health 2022, 19, 14815. https://doi.org/10.3390/ijerph192214815
Li L, Abbey C, Wang H, Zhu A, Shao T, Dai D, Jin S, Rozelle S. The Association between Video Game Time and Adolescent Mental Health: Evidence from Rural China. International Journal of Environmental Research and Public Health. 2022; 19(22):14815. https://doi.org/10.3390/ijerph192214815
Chicago/Turabian StyleLi, Lili, Cody Abbey, Huan Wang, Annli Zhu, Terry Shao, Daisy Dai, Songqing Jin, and Scott Rozelle. 2022. "The Association between Video Game Time and Adolescent Mental Health: Evidence from Rural China" International Journal of Environmental Research and Public Health 19, no. 22: 14815. https://doi.org/10.3390/ijerph192214815
APA StyleLi, L., Abbey, C., Wang, H., Zhu, A., Shao, T., Dai, D., Jin, S., & Rozelle, S. (2022). The Association between Video Game Time and Adolescent Mental Health: Evidence from Rural China. International Journal of Environmental Research and Public Health, 19(22), 14815. https://doi.org/10.3390/ijerph192214815