Spatial Distribution, Source Identification, and Potential Ecological Risk Assessment of Heavy Metal in Surface Sediments from River-Reservoir System in the Feiyun River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Laboratory Analysis and Quality Control
2.3. Data Statistical Analysis
2.3.1. Geo-Accumulation Index
2.3.2. Enrichment Factor
2.3.3. Evaluation of Potential Ecological Risk Index
2.3.4. Principal Component Analysis (PCA)
3. Results and Discussion
3.1. Detection and Variation Characteristics of Heavy Metals in Surface Sediments
3.2. Spatial Distribution Characteristics of Heavy Metals in Surface Sediments
3.3. Characteristics and Ecological Risk Assessment of Heavy Metal Pollution in Surface Sediments
3.3.1. Evaluation by the Geo-Accumulation Index (Igeo)
3.3.2. Evaluation by Potential Ecological Risk Index (RI)
3.3.3. Evaluation by Enrichment Factor (EF)
3.4. Correlation and Source Analysis of Heavy Metals in Surface Sediments
3.5. Comparison of Heavy Metal Concentrations in Sediments from Other Rivers
3.6. Relationships between Heavy Metal Pollution and Internal Nutrients Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zohra, B.S.; Habib, A. Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ. Sci. Pollut. Res. 2016, 23, 13954–13963. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; Cao, H.; Xu, M.; Xu, L. Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere 2019, 219, 538–545. [Google Scholar] [CrossRef]
- Calmano, W.; Hong, J.; Förstner, U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. Technol. 1993, 28, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Abuduwaili, J.; Jiang, F.Q. Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China. Environ. Monit. Assess. 2015, 187, 33. [Google Scholar] [CrossRef]
- Zhang, H.; Huo, S.; Yeager, K.M.; Xi, B.; Zhang, J.; He, Z.; Ma, C.; Wu, F. Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication: Impacts of sources and climate change. Ecol. Indic. 2018, 93, 771–780. [Google Scholar] [CrossRef]
- Rao, K.; Tang, T.; Zhang, X.; Wang, M.; Liu, J.F.; Wu, B.; Wang, P.; Ma, Y.L. Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere 2021, 282, 131041. [Google Scholar] [CrossRef] [PubMed]
- Chabukdhara, M.; Nema, A.K. Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere 2012, 87, 945–953. [Google Scholar] [CrossRef]
- Kilunga, P.I.; Sivalingam, P.; Laffite, A.; Grandjean, D.; Mulaji, C.K.; de Alencastro, L.F.; Mpiana, P.T.; Pote, J. Accumulation of toxic metals and organic micro-pollutants in sediments from tropical urban rivers, Kinshasa, Democratic Republic of the Congo. Chemosphere 2017, 179, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Xiao, M.; Zhang, J.; Liu, C.; Qiu, Z.; Cai, Y. Spatial distribution, chemical fraction and fuzzy comprehensive risk assessment of heavy metals in surface sediments from the Honghu Lake, China. Int. J. Environ. Res. Public Health 2018, 15, 207. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Mostefa, B.; Bernard, A.; Olivier, R. Levels and ecological risk assessment of heavy metals in surface sediments of fishing grounds along Algerian coast. Mar. Pollut. Bull. 2018, 136, 322–333. [Google Scholar] [CrossRef]
- Wei, J.; Duan, M.; Li, Y.; Nwankwegu, A.S.; Ji, Y.; Zhang, J. Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci. Rep. 2019, 9, 13100. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chai, L.; Yang, Z.; Yang, W.; Liao, Q.; Cao, Z.; Peng, Y. Systematic assessment of health risk from metals in surface sediment of the Xiangjiang River, China. Int. J. Environ. Res. Public Health 2020, 17, 1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Huang, F.; Cai, A. Spatiotemporal Trends, Sources and Ecological Risks of Heavy Metals in the Surface Sediments of Weitou Bay, China. Int. J. Environ. Res. Public Health 2021, 18, 9562. [Google Scholar] [CrossRef]
- Acharjee, A.; Ahmed, Z.; Kumar, P.; Alam, R.; Rahman, M.S.; Simal-Gandara, J. Assessment of the ecological risk from heavy metals in the surface sediment of River Surma, Bangladesh: Coupled approach of Monte Carlo simulation and multi-component statistical analysis. Water 2022, 14, 180. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, B.; Du, J.; Wang, T.; Shi, H.; Wang, F. Distribution, assessment, and source of heavy metals in sediments of the Qinjiang River, China. Int. J. Environ. Res. Public Health 2022, 19, 9140. [Google Scholar] [CrossRef] [PubMed]
- Mwanamoki, P.M.; Devarajan, N.; Thevenon, F.; Birane, N.; De Alencastro, L.F.; Grandjean, D.; Mpiana, P.T.; Prabakar, K.; Mubedi, J.I.; Kabele, C.G. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects. Chemosphere 2014, 111, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wan, Z.; Ding, M.; Wang, P.; Xu, X.; Jiang, Y. Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China. Ecotoxicol. Environ. Saf. 2018, 165, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Sojka, M.; Siepak, M.; Jaskuła, J.; Wicher-Dysarz, J. Heavy Metal Transport in a River-Reservoir System: A Case Study from Central Poland. Pol. J. Environ. Stud. 2018, 27, 1725–1734. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Chen, H.-Y.; Sun, W.-C. Environmental Characteristics and Source Apportionment of Heavy Metals in the Sediments of a River-Lake System. Environ. Sci. 2020, 41, 2646–2652. [Google Scholar]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef]
- Jiang, X.; Xiong, Z.; Liu, H.; Liu, G.; Liu, W. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river–reservoir system. Environ. Sci. Pollut. Res. 2017, 24, 436–444. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Yu, K.; Gin, K.Y.-H.; Hassan, M.; He, Y. Heavy metals in a typical city-river-reservoir system of East China: Multi-phase distribution, microbial response and ecological risk. J. Environ. Sci. 2022, 112, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Sun, Z.; Zhou, X.; Xia, Y.; Li, L.; He, Z.; Wang, R.; Xie, H. Impacts of coastal reclamation on tidal and sediment dynamics in the Rui’an coast of China. Ocean. Dyn. 2021, 71, 323–341. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Z.; Pan, Q.; Lu, R.; Zeng, G.; Ke, A.; Huang, Z.; Ye, S. Ecological risk evaluation of heavy metals in surface sediment in coastal area of Feiyun River. Acta Agric. Zhejiangensis 2017, 29, 1706–1711. [Google Scholar]
- Xu, H.; Xu, X.; Wang, L. Spatial Distribution and Risk Assessment of Six Heavy Metals in Rivers Flowing into Sea at Wenzhou, Zhejiang Province. J. Hydroecol. 2021, 42, 42–48. [Google Scholar]
- Zhang, M.; Yang, L.; Ren, X.; Zhang, C.; Zhang, T.; Zhang, J.; Shi, X. Field model experiments to determine mechanisms of rainstorm-induced shallow landslides in the Feiyunjiang River basin, China. Eng. Geol. 2019, 262, 105348. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Fan, Y.; Wang, Y. Background characteristics of soil elements in four plains of Zhejiang province. Geophys. Geochem. Explor. 2009, 33, 132–134. [Google Scholar]
- Zheng, C.J. Atlas of Soil Environment Background Values of the People’s Republic of China; China Environmental Science Press: Beijing, China, 1994. [Google Scholar]
- Sutherland, R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Hu, Z. The effects of the Qinghai–Tibet railway on heavy metals enrichment in soils. Sci. Total Environ. 2012, 439, 240–248. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Han, Y.M.; Du, P.X.; Cao, J.J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- Liu, K.; Li, C.; Tang, S.; Shang, G.; Yu, F.; Li, Y. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere 2020, 251, 126415. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, Y.; Luo, G.; Chen, X.; Yang, X.; Hall, M.H.; Guo, R.; Wang, H.; Cui, J.; et al. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 2013, 192, 50–58. [Google Scholar] [CrossRef]
- Kuang, H.; Hu, C.; Wu, G.; Chen, M. Combination of PCA and PMF to apportion the sources of heavy metals in surface sediments from Lake Poyang during the wet season. J. Lake Sci. 2020, 32, 964–976. [Google Scholar]
- Li, M.; Zhang, Q.; Sun, X.; Karki, K.; Zeng, C.; Pandey, A.; Rawat, B.; Zhang, F. Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: Distribution, source identification and pollution assessment. Chemosphere 2020, 244, 10. [Google Scholar] [CrossRef]
- Kähkönen, M.A.; Pantsar-Kallio, M.; Manninen, P.K. Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two boreal lakes in southern Finland. Chemosphere 1997, 35, 2645–2656. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Gupta, A.; Garg, J. Evaluation of Heavy Metal Contamination Using Environmetrics and Indexing Approach for River Yamuna, Delhi Stretch, India. Water Sci. 2017, 31, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Liang, B.; Gao, F.; Bao, J.; Meng, Q.; Sun, Q. Concentration distribution and pollution assessment of heavy metals in surface sediments in Hangzhou bay. Mar. Environ. Sci. 2021, 40, 555–561. [Google Scholar]
- Che, J.; Yu, S.; Zhang, X.; Qi, P.; Liang, L.; Yu, J. Pollution characteristics, sources and potential ecological risk of heavy metals in surface sediment from the Lower Ou River. Ecol. Sci. 2017, 36, 176–184. [Google Scholar]
- Yang, Q.; Liu, M.; Han, Y.; Yu, Z.; Shen, X. Source identification and ecological risk assessment of heavy metals in sediments of Qiantang River. Environ. Sci. Technol. 2017, 40, 278–283. [Google Scholar]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification of heavy metals in surface sediments of East Tiaoxi River. Ecol. Sci. 2021, 40, 67–74. [Google Scholar]
- Chen, M.; Liao, Y.; Zheng, X.; Li, F.; Wang, J. Assessment of heavy metal pollution in sediments of the Ganjiang River: Using pollution assessments and multivariate statistical techniques. Environ. Chem. 2021, 40, 3861–3874. [Google Scholar]
- Guo, J.; Wang, K.; Yu, Q.; Duan, X.; Liu, S.; Chen, D. Pollution characteristics of the heavy metals and their potential ecological risk assessment in nearshore sediments of the middle reaches of the Yangtze River. Acta Sci. Circumstantiae 2021, 41, 4625–4636. [Google Scholar]
- Ren, J.; Bai, L.; Li, J.; Hu, J.; Liu, X. Pollution Evaluation and Source Apportionment of Heavy Metals in Surface Sediments of the Taihu Lake. Earth Environ. 2021, 49, 416–427. [Google Scholar]
- Yin, Y.; Peng, G.; Xie, Y.; Mo, Y.; Li, F.; Ouyang, M.; Huang, D. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake. Environ. Chem. 2021, 40, 2399–2409. [Google Scholar]
- Pan, K.; Li, M.; Liu, L.; Yang, J.L.; Zhao, H.J. Evaluation and Source Analysis of Heavy Metal Pollution in Sediments of the Yellow River Basin Based on Monte Carlo Simulation and PMF Model. Environ. Sci. 2022, 43, 4008–4017. [Google Scholar]
- Suresh, G.; Ramasamy, V.; Sundarrajan, M.; Paramasivam, K. Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India. Mar. Pollut. Bull. 2015, 91, 389–400. [Google Scholar] [CrossRef]
- Wang, H.T.; Zhang, J.H.; Ding, S.F.; Guo, T.; Fu, X. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng. Acta Sci. Circumstantiae 2016, 36, 4520–4530. [Google Scholar]
- Zhang, Q.; Dong, X.; Chen, Y.; Yang, X.; Xu, M.; Davidson, T.A.; Jeppesen, E. Hydrological alterations as the major driver on environmental change in a floodplain Lake Poyang (China): Evidence from monitoring and sediment records. J. Great Lakes Res. 2018, 44, 377–387. [Google Scholar] [CrossRef]
- Lv, J.; Li, C.; Jia, K.; Zhang, S.; Shi, X.; Zhao, S.; Sun, B. Impacts of Salinity Change on the Effectiveness of Heavy Metals in the Sediment of Wuliangsuhai. Ecol. Environ. Sci. 2017, 26, 1547–1553. [Google Scholar]
- Cheng, S.; Shen, X.; Chai, M.; Li, R. Assessment of Heavy Metals Contamination in Three Kinds of Habitat of Futian Mangrove Forest in Shenzhen Bay. Acta Sci. Nat. Univ. Pekin. 2018, 54, 415–425. [Google Scholar]
- Ouedraogo, N.P.; Becquart, F.; Benzerzour, M.; Abriak, N.E. Environmental assessment, mechanical behavior, and chemical properties of self-compacting mortars (SCMs) with harbor dredged sediments to be used in construction. Environ. Sci. Pollut. Res. 2021, 28, 55003–55013. [Google Scholar] [CrossRef] [PubMed]
Potential Ecological Risk Coefficient (Eri) | Ecological Risk Index (RI) | Potential Ecological Risk Level Classification |
---|---|---|
<40 | <150 | Low risk |
40~80 | 150~300 | Medium risk |
80~160 | 300~600 | Considerable risk |
160~320 | >600 | High risk |
>320 | — | Very high risk |
Heavy Metal | Min | Median | Max | Mean | SD | CV (%) | ZB 1 | CB 2 |
---|---|---|---|---|---|---|---|---|
Cr | 0.00 | 11.90 | 66.31 | 16.62 | 16.75 | 100.78 | 54.34 | 65.65 |
Ni | 0.56 | 6.25 | 28.25 | 8.61 | 6.83 | 79.33 | 19.59 | 29.88 |
Cu | 4.51 | 7.78 | 17.58 | 9.19 | 3.68 | 40.05 | 23.21 | 28.27 |
Zn | 74.41 | 152.55 | 1934.82 | 323.53 | 505.55 | 156.26 | 83.52 | 109.57 |
As | 5.66 | 103.45 | 728.11 | 212.64 | 236.64 | 111.29 | 6.39 | 7.19 |
Cd | 0.16 | 0.33 | 6.62 | 1.03 | 1.83 | 177.67 | 0.17 | 0.23 |
Pb | 16.43 | 27.59 | 102.99 | 41.88 | 27.50 | 65.66 | 33.24 | 44.37 |
Mn | 353.03 | 676.67 | 5637.75 | 1026.24 | 1197.22 | 116.66 | 759.00 | 767.74 |
V | 21.44 | 31.79 | 60.25 | 35.19 | 11.32 | 32.17 | 109.00 | 71.39 |
Co | 3.07 | 4.60 | 8.35 | 5.20 | 1.65 | 31.73 | 14.86 | 11.57 |
Mo | 1.80 | 3.42 | 13.82 | 4.14 | 2.45 | 59.18 | 0.66 | 0.99 |
Sb | 0.59 | 1.66 | 21.56 | 4.89 | 5.85 | 119.63 | 0.71 | 0.76 |
W | 0.82 | 1.41 | 3.89 | 1.64 | 0.68 | 41.46 | 1.95 | 2.72 |
Fe | 11,817.94 | 16,601.61 | 23,407.23 | 16,660.26 | 3503.46 | 21.03 | — 3 | — |
Se | 0.00 | 0.00 | 2.37 | 0.53 | 0.72 | 135.85 | — | — |
Heavy Metal | Cr | Ni | Cu | Zn | As | Cd | Pb | V | Co | Mo | Sb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Igeo | Mean | −2.2 | −2.2 | −2.0 | 0.6 | 3.3 | 0.9 | −0.5 | −0.6 | −2.3 | −2.2 | 1.9 |
RS | −2.3 | −2.3 | −2.2 | 0.6 | 3.1 | 0.8 | −0.6 | −0.5 | −2.4 | −2.3 | 2.0 | |
RZ | −2.0 | −2.6 | −1.9 | 1.1 | 2.8 | 1.6 | −0.1 | −0.9 | −2.2 | −1.9 | 1.5 | |
MS | −2.1 | −1.7 | −1.5 | −0.1 | 4.6 | 0.7 | −0.4 | −0.6 | −1.9 | −1.8 | 1.9 | |
Pollution risk | WB | — | — | — | Class 1 | Class 4 | Class 1 | — | — | — | — | Class 2 |
RS | — | — | — | Class 1 | Class 4 | Class 1 | — | — | — | — | Class 3 | |
RZ | — | — | — | Class 2 | Class 3 | Class 2 | — | — | — | — | Class 2 | |
MS | — | — | — | — | Class 5 | Class 1 | — | — | — | — | Class 2 | |
Eri | Mean | 0.6 | 2.2 | 2.0 | 3.9 | 332.8 | 181.7 | 6.3 | 1.4 | 0.6 | 1.7 | 94.0 |
RS | 0.6 | 2.2 | 1.8 | 4.4 | 331.4 | 206.6 | 5.8 | 1.5 | 0.6 | 1.6 | 101.5 | |
RZ | 0.3 | 1.3 | 2.1 | 3.6 | 138.0 | 158.6 | 8.3 | 0.8 | 0.7 | 2.0 | 65.7 | |
MS | 0.8 | 3.1 | 2.9 | 1.5 | 534.3 | 80.1 | 6.9 | 1.0 | 0.9 | 2.3 | 84.7 | |
Potential ecological risk | WB | — | — | — | — | V | H | — | — | — | — | C |
RS | — | — | — | — | V | H | — | — | — | — | C | |
RZ | — | — | — | — | C | C | — | — | — | — | M | |
MS | — | — | — | — | V | C | — | — | — | — | C |
Element | PC1 | PC2 |
---|---|---|
Cu | 0.841 | −0.302 |
V | 0.826 | −0.419 |
Co | 0.807 | −0.450 |
Sb | 0.801 | 0.138 |
Ni | 0.765 | −0.423 |
As | 0.729 | 0.561 |
Cr | 0.722 | −0.206 |
Pb | 0.648 | 0.580 |
Cd | 0.273 | 0.894 |
Zn | 0.236 | 0.883 |
Mo | 0.106 | 0.829 |
Eigenvalue | 4.880 | 3.628 |
% of Total Variance | 44.368 | 32.981 |
Cumulative % | 44.368 | 77.349 |
River | Year | Cr | Ni | Cu | Zn | As | Cd | Pb | Mn | V | Co | Mo | Sb | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FRB (this study) | 2021 | 16.62 | 8.61 | 9.19 | 323.53 | 212.64 | 1.03 | 41.88 | 1026.24 | 35.19 | 5.20 | 4.14 | 4.89 | 1.64 |
Oujiang River | 2014 | 177.9 | 63.2 | 64.5 | 194.3 | 11 | — | 53.3 | — | — | 51.1 | — | — | — |
Qiantangjiang River | 2017 | 73.16 | — | 103.73 | 223.76 | 11.91 | 2.50 | 46.58 | 736.4 | — | — | — | — | — |
Dongtiaoxi River | 2016 | 67.88 | 39.18 | 47.87 | 200.62 | 48.49 | 1.08 | 47.13 | 951.20 | — | 24.1 | — | — | — |
Taihu Lake | 2015 | 82.3 | 43.9 | 32.8 | 109 | — | 0.55 | 35.1 | 886 | — | 15.8 | 0.62 | 2.37 | — |
Ganjiang River | 2019 | 4.7 | — | 84.3 | 362 | 31.5 | 2.3 | 52.8 | 980.8 | — | — | — | — | 25.7 |
Dongting Lake | 2018 | 93.47 | 34.47 | 37.98 | 147.19 | 21.23 | 1.91 | 36.05 | — | — | — | — | — | — |
Yangtze River | 2020 | 83.99 | — | 36.45 | 124.21 | 11.20 | 0.77 | 36.40 | — | — | — | — | — | — |
Yellow River | 2021 | 73.36 | 31.13 | 24.96 | 87.17 | 11.78 | 0.58 | 26.92 | — | — | — | — | — | — |
Nutrients | Cr | Ni | Cu | Zn | As | Cd | Pb | Mn | V | Co | Mo | Sb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OM | −0.18 | −0.22 | −0.44 * | −0.05 | −0.08 | −0.04 | −0.12 | 0.08 | −0.40 | −0.38 | −0.06 | −0.09 |
TN | −0.27 | −0.34 | −0.68 ** | 0.03 | −0.13 | 0.03 | −0.12 | 0.20 | −0.62 ** | −0.59 ** | 0.11 | −0.18 |
TP | 0.33 | 0.27 | 0.36 | −0.27 | −0.09 | −0.25 | 0.05 | −0.41 | 0.44 * | −0.45 * | −0.17 | 0.22 |
Temp | −0.10 | 0.13 | 0.32 | −0.31 | −0.26 | −0.32 | −0.20 | −0.31 | 0.38 | 0.40 | −0.45 * | −0.10 |
ORP | 0.05 | 0.15 | 0.28 | −0.22 | 0.04 | −0.18 | −0.11 | −0.23 | 0.27 | 0.20 | −0.15 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Dong, Z.; Yang, B.; Zeng, G.; Liu, Y.; Zhou, Y.; Meng, J.; Wu, S.; Shao, Y.; Yang, J.; et al. Spatial Distribution, Source Identification, and Potential Ecological Risk Assessment of Heavy Metal in Surface Sediments from River-Reservoir System in the Feiyun River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 14944. https://doi.org/10.3390/ijerph192214944
Zhu S, Dong Z, Yang B, Zeng G, Liu Y, Zhou Y, Meng J, Wu S, Shao Y, Yang J, et al. Spatial Distribution, Source Identification, and Potential Ecological Risk Assessment of Heavy Metal in Surface Sediments from River-Reservoir System in the Feiyun River Basin, China. International Journal of Environmental Research and Public Health. 2022; 19(22):14944. https://doi.org/10.3390/ijerph192214944
Chicago/Turabian StyleZhu, Shengnan, Zengchuan Dong, Bohua Yang, Guangen Zeng, Yupeng Liu, Yuejiao Zhou, Jinyu Meng, Shujun Wu, Yiqing Shao, Junfei Yang, and et al. 2022. "Spatial Distribution, Source Identification, and Potential Ecological Risk Assessment of Heavy Metal in Surface Sediments from River-Reservoir System in the Feiyun River Basin, China" International Journal of Environmental Research and Public Health 19, no. 22: 14944. https://doi.org/10.3390/ijerph192214944
APA StyleZhu, S., Dong, Z., Yang, B., Zeng, G., Liu, Y., Zhou, Y., Meng, J., Wu, S., Shao, Y., Yang, J., & Guo, X. (2022). Spatial Distribution, Source Identification, and Potential Ecological Risk Assessment of Heavy Metal in Surface Sediments from River-Reservoir System in the Feiyun River Basin, China. International Journal of Environmental Research and Public Health, 19(22), 14944. https://doi.org/10.3390/ijerph192214944