A Recognition Method of Truck Drivers’ Braking Patterns Based on FCM-LDA2vec
Abstract
:1. Introduction
2. Data
2.1. Data Collection
2.2. Extraction and Dimensionality Reduction of Characteristic Parameters
3. Methods
3.1. Frame Model
3.2. Braking Behavior Clustering Method
Algorithm 1: Cluster Algorithms |
Step 1: CH scores determine the number of categories |
Step 2: FCM algorithm for cluster analysis |
Input: Truck braking behavior data , number of categories K, and threshold terminating iterations . |
Initialization: Take the random value of [0, 1] to initialize membership degree matrix U0; assume that the initial value of the number of iterations is h = 1. |
Iterations: Solve the cluster center based on Equation (1). |
Solve the new membership degree based on Equation (2). |
Solve the objective function based on Equation (3). |
h = h + 1. |
Conditions for terminating iterations: , where is usually 0.0000001. |
Output: Cluster results |
3.3. LDA2vec Model to Identify Braking Patterns
4. Results
4.1. Braking Behaviors Cluster
4.2. Braking Pattern Recognition
4.3. Model Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, W.; Kamga, C.; Yang, X.F.; Ma, J.Q.; Thorson, E.; Zhong, M.; Wu, C.Z. Driver injury severity study for truck involved accidents at highway-rail grade crossings in the United States. Transp. Res. Part F 2016, 43, 379–386. [Google Scholar] [CrossRef]
- Lemp, J.D.; Kockelman, K.M.; Unnikrishnan, A. Analysis of large truck crash severity using heteroskedastic ordered probit models. Accid. Anal. Prev. 2011, 43, 370–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liwei, H.; Linyu, L.; Hanyan, G.; Jiang, X.; Xuewei, L.; Chengyu, H. Driving risk factors identification in long downhill sections of mountain area. J. Chang. Univ. 2019, 39, 116–126. [Google Scholar]
- Shibo, Z.; Yunxiao, F.; Zhenming, L. Causal Factors of Truck Traffic Accidents Based on HFACS Model. Saf. Environ. Eng. 2020, 27, 133–139. [Google Scholar]
- Jingliang, D.; Li, R.; Hou, L.; Wang, W.; Li, G.; Li, S.E.; Cheng, B.; Gao, H. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts. Accid. Anal. Prev. 2017, 108, 74–82. [Google Scholar]
- Hou, L.; Duan, J.L.; Wang, W.J.; Li, R.J.; Li, G.F.; Chen, B. Drivers’ Braking Behaviors in Different Motion Patterns of Vehicle-Bicycle Conflicts. J. Adv. Transp. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Baldo, N.; Marini, A.; Miani, M. Drivers’ Braking Behavior Affected by Cognitive Distractions: An Experimental Investigation with a Virtual Car Simulator. Behav. Sci. 2020, 10, 150. [Google Scholar] [CrossRef]
- Francesco, B.; Silvestri, M. Driver’s braking behavior approaching pedestrian crossings: A parametric duration model of the speed reduction times. J. Adv. Transp. 2016, 50, 630–646. [Google Scholar]
- Every, J.L.; Salaani, M.K.; Barickman, F.S.; Elsasser, D.H.; Guenther, D.A.; Heydinger, G.J.; Rao, S.J. Braking behavior of truck drivers in crash imminent scenarios. SAE Int. J. Commer. Veh. 2014, 7, 487–499. [Google Scholar] [CrossRef]
- Bin, W.; Zhu, X.; Shen, J. Driver Emergency Braking Behavior Based on Naturalistic Driving Data. J. Tongji Univ. 2018, 46, 1514–1519. [Google Scholar]
- De Vries, J.; De Koster, R.; Rijsdijk, S.; Roy, D. Determinants of safe and productive truck driving: Empirical evidence from long-haul cargo transport. Transp. Res. Part E Logist. Transp. Rev. 2017, 97, 113–131. [Google Scholar] [CrossRef]
- Chen, S.; Xue, Q.; Zhao, X.; Xing, Y.; Lu, J.J. Risky Driving Behavior Recognition Based on Vehicle Trajectory. Int. J. Environ. Res. Public Health 2021, 18, 12373. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, X. Clustering of Freight Vehicle Driving Behavior Based on Vehicle Networking Data Mining. Front. Comput. 2018, 464, 12–23. [Google Scholar]
- Suxian, C.; Chaokan, D.; Siyi, Z.; Yafei, W. Fatigue Driving State Detection Based on Vehicle Running Data. J. Transp. Syst. Eng. Inf. Technol. 2020, 20, 77–82. [Google Scholar]
- Jianjun, Z.; Jian, S.; Changxi, Y.; Xinqiao, Y. Wavelet de-noising method with threshold selection rules based on SNR evaluations. J. Tsinghua Univ. 2014, 54, 259–263. [Google Scholar]
- Pirttikangas, S.; Fujinami, K.; Nakajima, T. Feature selection and activity recognition from wearable sensors. Int. Symp. Ubiquitious Comput. Syst. 2006, 2006, 516–527. [Google Scholar]
- Hofmann, T. Probabilistic Latent Semantic Indexing. In Proceedings of the SIGIR, Berkeley, CA, USA, 15–19 August 1999; pp. 50–57. [Google Scholar]
- Blei David, M.; Andrew, Y.N.; Michael, J. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 66, 993–1022. [Google Scholar]
- Church Kenneth, W. Word2Vec. Nat. Lang. Eng. 2017, 23, 155–162. [Google Scholar] [CrossRef]
- Theodoridis, S.; Konstantinos, K. Pattern Recognition. IEEE Trans. Neural Netw. 2008, 19, 376. [Google Scholar]
- Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Fulin, X.; Yihao, D.; Xiaosheng, T. The Architecture of Word2vec and Its Applications. J. Nanjing Norm. Univ. 2015, 15, 43–48. [Google Scholar]
- Zhong, J. Application of Huffman Tree Principle and its Mathematical Proof. Sci. Technol. Sq. 2016, 2, 20–25. [Google Scholar]
- Wei, C.; Shan, C.; de Haan, G. Optimal Regularization Parameter Estimation for Spectral Regression Discriminant Analysis. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 1921–1926. [Google Scholar]
- David, M.; Wallach, H.M.; Talley, E. Optimizing Semantic Coherence in Topic Models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Scotland, UK, 27–31 July 2011; Volume 2011, pp. 262–272. [Google Scholar]
Data Item | Data Item |
---|---|
Vehicle ID | Longitudinal acceleration |
License plate number | Target distance |
Time | Relative target speed |
System alarm level | Dangerous target ID |
Braking force level | Left turn indicator status |
Braking pedal status | Current position |
Heading angle | Longitude |
Speed | Latitude |
Yaw angle | Number of satellites |
Lateral acceleration |
Characteristic Parameter Item | Definition of Parameters | Characteristic Parameter Item | Definition of Parameters | ||
---|---|---|---|---|---|
Speed | Mean | v-mean | Longitudinal acceleration | Mean | az-mean |
Median | v-median | Median | az-median | ||
Maximum value | v-max | Maximum value | az-max | ||
Minimum value | v-min | Minimum value | az-min | ||
Variance | v-s2 | Variance | az-s2 | ||
Lateral acceleration | Mean | ah-mean | Angular speed | Mean | w-mean |
Median | ah-median | Median | w-median | ||
Maximum value | ah-max | Maximum value | w-max | ||
Minimum value | ah-min | Minimum value | w-min | ||
Variance | ah-s2 | Variance | w-s2 | ||
Target distance | Maximum value | od-max | Relative target speed | Maximum value | rs-max |
Minimum value | od-min | Minimum value | rs-min | ||
Duration of braking | t |
Parameters | Components | ||||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
v-mean | −0.048 | 0.258 | −0.022 | 0.004 | −0.025 | −0.013 | 0.023 |
v-median | −0.043 | 0.248 | −0.019 | −0.002 | −0.009 | −0.024 | 0.016 |
v-max | −0.052 | 0.222 | −0.049 | −0.001 | 0.084 | 0.054 | 0.059 |
v-min | −0.047 | 0.272 | −0.008 | 0.029 | −0.176 | −0.073 | −0.004 |
v-s2 | −0.012 | −0.041 | −0.102 | −0.069 | 0.322 | 0.208 | 0.222 |
ah-mean | 0.206 | −0.102 | −0.009 | 0.066 | −0.071 | 0.181 | 0.040 |
ah-median | 0.199 | −0.103 | −0.014 | 0.075 | −0.044 | 0.138 | −0.005 |
ah-max | 0.105 | −0.053 | 0.198 | 0.029 | −0.105 | 0.121 | −0.124 |
ah-min | 0.077 | −0.022 | −0.232 | −0.006 | 0.062 | 0.022 | 0.268 |
ah-s2 | 0.029 | −0.015 | 0.293 | −0.030 | −0.256 | 0.078 | −0.143 |
az-mean | −0.043 | 0.022 | 0.003 | 0.438 | −0.038 | −0.041 | −0.029 |
az-median | −0.024 | −0.001 | −0.023 | 0.406 | 0.033 | −0.062 | 0.075 |
az-max | −0.045 | −0.012 | 0.223 | 0.181 | 0.065 | −0.094 | 0.088 |
az-min | −0.025 | 0.046 | −0.199 | 0.150 | −0.160 | 0.037 | −0.164 |
az-s2 | 0.014 | −0.036 | 0.222 | −0.036 | 0.091 | −0.086 | 0.427 |
w-mean | −0.195 | −0.014 | 0.017 | 0.073 | −0.045 | 0.106 | −0.023 |
w-median | −0.198 | −0.004 | 0.023 | 0.073 | −0.056 | 0.099 | −0.034 |
w-max | −0.173 | −0.010 | 0.023 | 0.049 | −0.046 | 0.379 | −0.024 |
w-min | −0.155 | −0.031 | −0.004 | 0.074 | −0.021 | −0.093 | 0.000 |
w-s2 | 0.049 | −0.004 | −0.014 | −0.071 | −0.071 | 0.539 | 0.055 |
od-max | −0.034 | 0.017 | −0.007 | 0.019 | 0.291 | −0.085 | −0.065 |
od-min | −0.003 | 0.041 | −0.014 | 0.053 | −0.006 | 0.102 | 0.578 |
rs-max | 0.071 | −0.086 | −0.046 | −0.052 | 0.379 | −0.195 | 0.070 |
rs-min | 0.085 | −0.088 | −0.020 | −0.085 | −0.183 | −0.051 | 0.047 |
t | −0.017 | −0.014 | 0.039 | 0.059 | 0.162 | 0.049 | −0.229 |
Braking Pattern Type | Recognition Accuracy | |
---|---|---|
LDA Model | LDA2vec Model | |
Impulse braking | 80.29% | 85.23% |
Smooth braking | 83.98% | 86.45% |
Gentle braking | 81.34% | 88.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, J.; Zhao, Y.; Li, Z.; Jiang, Y.; Feng, W.; Ding, T. A Recognition Method of Truck Drivers’ Braking Patterns Based on FCM-LDA2vec. Int. J. Environ. Res. Public Health 2022, 19, 15959. https://doi.org/10.3390/ijerph192315959
Xi J, Zhao Y, Li Z, Jiang Y, Feng W, Ding T. A Recognition Method of Truck Drivers’ Braking Patterns Based on FCM-LDA2vec. International Journal of Environmental Research and Public Health. 2022; 19(23):15959. https://doi.org/10.3390/ijerph192315959
Chicago/Turabian StyleXi, Jianfeng, Yunhe Zhao, Zhiqiang Li, Yizhou Jiang, Wenwen Feng, and Tongqiang Ding. 2022. "A Recognition Method of Truck Drivers’ Braking Patterns Based on FCM-LDA2vec" International Journal of Environmental Research and Public Health 19, no. 23: 15959. https://doi.org/10.3390/ijerph192315959
APA StyleXi, J., Zhao, Y., Li, Z., Jiang, Y., Feng, W., & Ding, T. (2022). A Recognition Method of Truck Drivers’ Braking Patterns Based on FCM-LDA2vec. International Journal of Environmental Research and Public Health, 19(23), 15959. https://doi.org/10.3390/ijerph192315959