Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Pollution Data
2.2. The Weibo Data
2.2.1. Data Collection
2.2.2. Data Pre-Processing
2.2.3. Data Annotation
2.3. Statistical Analysis
3. Results
3.1. General Description
3.1.1. Frequency of Keywords
3.1.2. Spatiotemporal Characteristics of Air Pollution
3.1.3. Spatiotemporal Characteristics of Weibo
3.2. Influence of Pollutants on Air Pollution and Health Related Weibos
3.2.1. Public’s Sensitivity to Different Pollutants
3.2.2. Factors Influencing Relationship between Air Pollution and Related Weibos
3.3. Air Pollution and Related Weibos: Temporal Variation
3.3.1. PARs with Significant and Positive Correlations
3.3.2. Socioeconomic Factors Influencing APR or HR Weibo Postings
3.4. Air Pollution and Related Weibos: Spatial Distribution
3.4.1. Distribution of PARs with Number of Years in Significant and Positive Correlation
3.4.2. Categories of PARs with Different Level of Air Pollution
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.W.; Ho, C.S.; Fang, P.; Lu, Y.; Ho, R.C. Usage of social media and smartphone application in assessment of physical and psychological well-being of individuals in times of a major air pollution crisis. JMIR Mhealth and Uhealth 2014, 2, e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szyszkowicz, M.; Kousha, T.; Castner, J.; Dales, R. Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study. Environ. Res. 2018, 163, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wei, H.; Kuo, H. Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environ. Res. 2009, 109, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Acito, M.; Fatigoni, C.; Villarini, M.; Moretti, M. Cytogenetic effects in children exposed to air pollutants: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 6736. [Google Scholar] [CrossRef] [PubMed]
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Bos, R.; Neira, M. Preventing Disease through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; World Health Organization Press: Geneva, Switzerland, 2016. [Google Scholar]
- Sajani, S.Z.; Ricciardelli, I.; Trentini, A.; Bacco, D.; Maccone, C.; Castellazzi, S.; Lauriola, P.; Poluzzi, V.; Harrison, R.M. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components. Atmos. Environ. 2015, 103, 307–320. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Rohde, R.A.; Muller, R.A. Air pollution in China: Mapping of concentrations and sources. PLoS ONE 2015, 10, e0135749. [Google Scholar] [CrossRef]
- Wang, H.; Dwyer-Lindgren, L.; Lofgren, K.T.; Rajaratnam, J.K.; Marcus, J.R.; Levin-Rector, A.; Levitz, C.E.; Lopez, A.D.; Murray, C.J.L. Age-specific and sex-specific mortality in 187 countries, 1970–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2071–2094. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Krapivin, V.F. A new model for the spread of COVID-19 and the improvement of safety. Saf. Sci. 2020, 132, 104962. [Google Scholar] [CrossRef]
- Contini, D.; Costabile, F. Does air pollution influence COVID-19 outbreaks? Atmosphere 2020, 11, 377. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.C.; Zhang, M.W.; Ho, C.S.; Pan, F.; Lu, Y.; Sharma, V.K. Impact of 2013 south Asian haze crisis: Study of physical and psychological symptoms and perceived dangerousness of pollution level. BMC Psychiatry 2014, 14, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Ng, C.F.S.; Chung, Y.; Kim, H.; Honda, Y.; Guo, Y.L.; Lim, Y.; Chen, B.; Page, L.A.; Hashizume, M. Air pollution and suicide in 10 cities in Northeast Asia: A time-stratified case-crossover analysis. Environ. Health Perspect. 2018, 126, 037002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Zhang, S.; Xing, J.; Wang, Y.; Chen, W.; Ding, D.; Wu, Y.; Wang, S.; Duan, L.; Hao, J. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization. Engineering 2020, 6, 1423–1431. [Google Scholar] [CrossRef]
- Wang, P. China’s air pollution policies: Progress and challenges. Curr. Opin. Environ. Sci. Health 2021, 19, 100227. [Google Scholar] [CrossRef]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The impact of the control measures during the COVID-19 outbreak on air pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Chen, B.; Song, Y.; Kwan, M.; Huang, B.; Xu, B. How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. Environ. Pollut. 2018, 238, 874–883. [Google Scholar] [CrossRef]
- Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes twitter users: Real-time event detection by social sensors. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010. [Google Scholar]
- Sasahara, K.; Hirata, Y.; Toyoda, M.; Kitsuregawa, M.; Aihara, K. Quantifying collective attention from tweet stream. PLoS ONE 2013, 8, e61823. [Google Scholar] [CrossRef]
- Mei, S.; Li, H.; Fan, J.; Zhu, X.; Dyer, C.R. Inferring air pollution by sniffing social media. In Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Beijing, China, 17–20 August 2014. [Google Scholar]
- Wang, S.; Paul, M.J.; Dredze, M. Social media as a sensor of air quality and public response in China. J. Med. Internet Res. 2015, 17, e22. [Google Scholar] [CrossRef] [PubMed]
- Gurajala, S.; Dhaniyala, S.; Matthews, J.N. Understanding public response to air quality using tweet analysis. Soc. Media + Soc. 2019, 5, 205630511986765. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Wang, J.; Meng, B.; Cao, Z.; Yang, T.; Zhi, G.; Chen, S.; Wang, S.; Zhang, J. Research on adaption to air pollution in Chinese cities: Evidence from social media-based health sensing. Environ. Res. 2022, 210, 112762. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, Y.; Tsou, M.; Fu, X. Using social media to detect outdoor air pollution and monitor air quality index (AQI): A geo-targeted spatiotemporal analysis. PLoS ONE 2015, 10, e0141185. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Matsumoto, K. Effects of socioeconomic and natural factors on air pollution in China: A spatial panel data analysis. Sci. Total Environ. 2020, 740, 140155. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, F.; Hsieh, H. U-Air: When urban air quality inference meets big data. In Proceedings of the 19th SIGKDD conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013. [Google Scholar]
- Ma, Y.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Su, B. The spatial impacts of air pollution and socio-economic status on public health: Empirical evidence from China. Socio-Econ. Plan. Sci. 2022, 83, 101167. [Google Scholar] [CrossRef]
- Ni, X.; Huang, H.; Du, W. Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos. Environ. 2017, 150, 146–161. [Google Scholar] [CrossRef]
- Hswen, Y.; Qin, Q.; Brownstein, J.S.; Hawkins, J.B. Feasibility of using social media to monitor outdoor air pollution in London, England. Prev. Med. 2019, 121, 86–93. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Liang, T.; Wang, L.; Wang, L. Analysis of spatio-temporal distribution characteristics and socioeconomic drivers of urban air quality in China. Chemosphere 2022, 291, 132799. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, X.; Wang, T.; Zhang, X.; Yu, X.; Wang, S.; Lin, W.; Chen, Y.; Jiang, Y.; An, X. Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007–2008. Atmos. Environ. 2010, 44, 2625–2631. [Google Scholar] [CrossRef]
- Ren, L.; Yang, W.; Bai, Z. Characteristics of Major Air Pollutants in China. In Ambient Air Pollution and Health Impact in China. Advances in Experimental Medicine and Biology, 1st ed.; Dong, G., Ed.; Springer: Singapore, 2017; Volume 1070, pp. 7–26. [Google Scholar]
- Yin, X.; Kang, S.; de Foy, B.; Cong, Z.; Luo, J.; Zhang, L.; Ma, Y.; Zhang, G.; Rupakheti, D.; Zhang, Q. Surface ozone at Nam Co in the inland Tibetan Plateau: Variation, synthesis comparison and regional representativeness. Atmos. Chem. Phys. 2017, 17, 11293–11311. [Google Scholar] [CrossRef]
- Peng, M.; Zhang, H.; Evans, R.D.; Zhong, X.; Yang, K. Actual air pollution, environmental transparency, and the perception of air pollution in China. J. Environ. Dev. 2019, 28, 78–105. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Wang, S.; Jiang, J.; Fu, Q.; Chen, C.; Xu, B.; Yu, J.; Fu, X.; Hao, J. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut. 2013, 182, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Díaz, R.V.; Dominguez, E.R. Health risk by inhalation of PM2.5 in the metropolitan zone of the City of Mexico. Ecotoxicol. Environ. Saf. 2009, 72, 866–871. [Google Scholar] [CrossRef]
- Matus, K.; Nam, K.; Selin, N.E.; Lamsal, L.N.; Reilly, J.M.; Paltsev, S. Health damages from air pollution in China. Glob. Environ. Chang. 2012, 22, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Satsangi, P.G.; Yadav, S.; Pipal, A.S.; Kumbhar, N. Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmos. Environ. 2014, 92, 384–393. [Google Scholar] [CrossRef]
- Chauhan, A.J.; Krishna, M.T.; Frew, A.J.; Holgate, S.T. Exposure to nitrogen dioxide (NO2) and respiratory disease risk. Rev. Environ. Health 1998, 13, 73–90. [Google Scholar]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, J.; Ballester, F.; Tertre, A.L.; Atkinson, R.; Ayres, J.G.; Forastiere, F.; Forsberg, B.; Vonk, J.M.; Bisanti, L.; Tenías, J.M.; et al. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-II study). Eur. Heart J. 2003, 24, 752–760. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, Q.; Sarkar, S.; Mao, J.; Hang, J.; Chen, W.; Wang, X.; Yuan, L.; Yang, L.; Ye, G.; et al. Size-segregated deposition of atmospheric elemental carbon (EC) in the human respiratory system: A case study of the Pearl River Delta, China. Sci. Total Environ. 2020, 708, 134932. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Kokas, A.; Zhang, R.; Cohan, D.S.; Wallach, D. Inferring atmospheric particulate matter concentrations from Chinese social media data. PLoS ONE 2016, 11, e0161389. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Chou, W.S.; Hunt, Y.M.; Beckjord, E.B.; Moser, R.P.; Hesse, B.W. Social media use in the United States: Implications for health communication. J. Med. Internet Res. 2009, 11, e48. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Emebo, O.; Varde, A.; Tandon, N.; Chowdhury, S.N.; Weikum, G. Air quality assessment from social media and structured data pollutants and health impacts in urban planning. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering Workshops, Helsinki, Finland, 16–20 May 2016. [Google Scholar]
- Bell, M.L.; Ebisu, K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ. Health Perspect. 2012, 120, 1699–1740. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.L.; Edwards, S.E.; Keating, M.H.; Paul, C.J. Making the environmental justice grade: The relative burden of air pollution exposure in the United States. Int. J. Environ. Res. Public Health 2011, 8, 1755–1771. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Reames, T.G.; Bravo, M.A. People, place and pollution: Investigating relationships between air quality perceptions, health concerns, exposure, and individual- and area-level characteristics. Environ. Int. 2019, 122, 244–255. [Google Scholar] [CrossRef]
- Althoff, P.; Greig, W.H. Environmental pollution control: Two views from the general population. Environ. Behav. 1977, 9, 441–456. [Google Scholar] [CrossRef]
- King, K.E. Chicago residents’ perceptions of air quality: Objective pollution, the built environment, and neighborhood stigma theory. Popul. Environ. 2015, 37, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Dong, F.; He, D.; Zhao, X.; Zhang, W.; Yao, Q.; Liu, H. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 2013, 13, 4631–4644. [Google Scholar] [CrossRef]
- Montag, C.; Becker, B.; Gan, C. The multipurpose application WeChat: A review on recent research. Front. Psychol. 2018, 9, 2247. [Google Scholar] [CrossRef] [PubMed]
- Sunhare, R.; Shaikh, Y. Study of security vulnerabilities in social networking websites. Int. J. Manag. IT Eng. 2019, 9, 278–291. [Google Scholar]
- Kahil, B.; Alobidyeen, B. Social media apps as a tool for procedural learning during COVID-19: Analysis of Tiktok users. J. Digit. Inf. Syst. 2021, 1, 81–95. [Google Scholar] [CrossRef]
- Chen, Z.; He, Q.; Mao, Z.; Chung, H.; Maharjan, S. A study on the characteristics of douyin short videos and implications for edge caching. In Proceedings of the ACM Turing Celebration Conference-China, Chengdu, China, 17–19 May 2019. [Google Scholar]
- Varotsos, C.A.; Cracknell, A.P. Remote Sensing Letters contribution to the success of the Sustainable Development Goals-UN 2030 agenda. Remote Sens. Lett. 2020, 11, 715–719. [Google Scholar] [CrossRef]
Category | Examples of Health-Related Keywords |
---|---|
General Health-Related Words | “健康” (health), “身体” (body), “病” (disease), “生命” (life), and “医院” (hospital) |
Body Parts | “肺” (lung), “支气管” (bronchus), “嗓子” (throat), “鼻子” (nose), and “心脏” (heart) |
Prevention and Treatment | “口罩” (mask), “疫苗” (vaccine), “药” (medicine), and “抗生素” (antibiotic) |
Diseases and Symptoms |
|
| |
| |
| |
|
PAR | APR Weibos | HR Weibos | Correlation Coefficient | PAR | APR Weibos | HR Weibos | Correlation Coefficient |
---|---|---|---|---|---|---|---|
Anhui | 9675 | 2652 | 0.786 ** | Jiangxi | 5867 | 1639 | 0.768 ** |
Beijing | 81,749 | 18,338 | 0.865 ** | Inner Mongolia | 4601 | 1251 | 0.814 ** |
Chongqing | 7259 | 2139 | 0.780 ** | Liaoning | 13,236 | 3282 | 0.861 ** |
Fujian | 11,073 | 3548 | 0.854 ** | Ningxia | 3457 | 928 | 0.872 ** |
Gansu | 3961 | 1057 | 0.866 ** | Qinghai | 2093 | 471 | 0.670 ** |
Guangdong | 46,827 | 14,140 | 0.845 ** | Shandong | 37,250 | 7528 | 0.807 ** |
Guangxi | 6156 | 1807 | 0.662 ** | Shanxi | 9532 | 2444 | 0.843 ** |
Guizhou | 4697 | 988 | 0.340 ** | Shaanxi | 16,508 | 4243 | 0.941 ** |
Hainan | 2579 | 678 | 0.776 ** | Shanghai | 28,777 | 8542 | 0.848 ** |
Hebei | 18,916 | 4586 | 0.867 ** | Sichuan | 22,387 | 5837 | 0.869 ** |
Henan | 22,785 | 6580 | 0.754 ** | Tibet | 808 | 172 | 0.783 ** |
Heilongjiang | 7034 | 2137 | 0.864 ** | Tianjin | 11,241 | 2778 | 0.752 ** |
Hubei | 14,587 | 3834 | 0.723 ** | Xinjiang | 3314 | 817 | 0.813 ** |
Hunan | 10,274 | 2883 | 0.731 ** | Yunnan | 5362 | 1679 | 0.840 ** |
Jilin | 5612 | 1547 | 0.845 ** | Zhejiang | 24,143 | 6972 | 0.822 ** |
Jiangsu | 27,935 | 7603 | 0.801 ** |
Type of Weibo | Year | CO | NO2 | O3 | PM2.5 | PM10 | SO2 |
---|---|---|---|---|---|---|---|
APR Weibos | 2017 | 0.150 ** | 0.426 ** | −0.137 ** | 0.312 ** | 0.174 ** | −0.059 |
2018 | −0.074 | 0.292 ** | 0.043 | 0.157 ** | 0.071 | −0.196 ** | |
2019 | 0.113 * | 0.402 ** | −0.078 | 0.315 ** | 0.206 ** | −0.112 * | |
2020 | 0.093 | 0.267 ** | −0.086 | 0.273 ** | 0.107 * | −0.195 ** | |
2021 | 0.041 | 0.272 ** | −0.064 | 0.266 ** | 0.191 ** | −0.233 ** | |
HR Weibos | 2017 | 0.124 * | 0.402 ** | −0.150 ** | 0.265 ** | 0.126 ** | −0.087 |
2018 | −0.089 | 0.302 ** | 0.039 | 0.143 ** | 0.059 | −0.202 ** | |
2019 | −0.015 | 0.209 ** | 0.040 | 0.119 * | 0.006 | −0.194 ** | |
2020 | 0.085 | 0.159 ** | −0.081 | 0.242 ** | 0.055 | −0.183 ** | |
2021 | 0.024 | 0.215 ** | −0.038 | 0.219 ** | 0.156 ** | −0.238 ** |
Population | GDP Per Capita | Schooling Years Per Capita | APR Weibos | HR Weibos | |
---|---|---|---|---|---|
Population | 1 | ||||
GDP per capita | 0.060 ** | 1 | |||
Schooling years per capita | 0.001 | 0.680 ** | 1 | ||
APR Weibos | 0.331 ** | 0.555 ** | 0.464 ** | 1 | |
HR Weibos | 0.354 ** | 0.533 ** | 0.434 ** | 0.901 ** | 1 |
Population | GDP Per Capita | Schooling Years Per Capita | r1 | r2 | |
---|---|---|---|---|---|
Population | 1 | ||||
GDP per capita | 0.064 | 1 | |||
Schooling years per capita | 0.001 | 0.680 ** | 1 | ||
r1 | 0.071 | 0.082 | 0.206 * | 1 | |
r2 | 0.046 | 0.053 | 0.243 ** | 0.814 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, B.; Krishnan, P.; Jia, S. Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations. Int. J. Environ. Res. Public Health 2022, 19, 16115. https://doi.org/10.3390/ijerph192316115
Ye B, Krishnan P, Jia S. Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations. International Journal of Environmental Research and Public Health. 2022; 19(23):16115. https://doi.org/10.3390/ijerph192316115
Chicago/Turabian StyleYe, Binbin, Padmaja Krishnan, and Shiguo Jia. 2022. "Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations" International Journal of Environmental Research and Public Health 19, no. 23: 16115. https://doi.org/10.3390/ijerph192316115
APA StyleYe, B., Krishnan, P., & Jia, S. (2022). Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations. International Journal of Environmental Research and Public Health, 19(23), 16115. https://doi.org/10.3390/ijerph192316115