Prevention of Hypothermia in the Aftermath of Natural Disasters in Areas at Risk of Avalanches, Earthquakes, Tsunamis and Floods
Abstract
:1. Introduction
‘Only human beings can recognize catastrophes, provided they survive them; nature recognizes no catastrophes.’Max Frisch, Man in the Holocene. 1979.
2. Hypothermia Caused by Avalanches
2.1. History and Epidemiology
2.2. Mechanisms of Avalanche Burial
2.3. Prevention and Mitigation of Avalanche Burial
2.4. Pathophysiology of Avalanche Burial with a Focus on Accidental Hypothermia
2.5. Rescue and Treatment
2.6. Outcome
3. Hypothermia Caused by Earthquakes and Tsunamis
3.1. Key Challenges of Large Earthquakes
3.1.1. Irpinia Earthquake 1980
3.1.2. Kashmir Earthquake 2005
3.1.3. Great East Japan Earthquake 2011
4. Hypothermia Caused by Flooding
5. Treatment of Hypothermia after a Natural Disaster
6. Prevention and Mitigation
6.1. Earthquakes
6.2. Tsunamis
6.3. Floods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blancher, M.; Albasini, F.; Elsensohn, F.; Zafren, K.; Hölzl, N.; McLaughlin, K.; Wheeler, A.R.; Roy, S.; Brugger, H.; Greene, M.; et al. Management of Multi-Casualty Incidents in Mountain Rescue: Evidence-Based Guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). High Alt. Med. Biol. 2018, 19, 131–140. [Google Scholar] [CrossRef]
- Schweizer, J.; Bartelt, P.; van Herwijnen, A. Snow Avalanches. In Snow and Ice-Related Hazards, Risks, and Disasters, 2nd ed.; Haeberli, W., Whiteman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 377–416. ISBN 978-0-12-817129-5. [Google Scholar]
- The 10 Worst Snow Disasters in History. Available online: https://www.scientificamerican.com/article/the-10-worst-snow-disaste/ (accessed on 21 October 2021).
- Sauermoser, S. Lawinenkundliche Analyse der Lawinenereignisse an der Italienfront im Ersten Weltkrieg 1915–1918; Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Science: Vienna, Austria, 2021. [Google Scholar]
- Bernhard, G.K.L. Lawinenhandbuch, 7th ed.; Tyrolia: Innsbruck, Austria, 2000. [Google Scholar]
- Evans, S.G.; Bishop, N.F.; Fidel Smoll, L.; Valderrama Murillo, P.; Delaney, K.B.; Oliver-Smith, A. A Re-Examination of the Mechanism and Human Impact of Catastrophic Mass Flows Originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Eng. Geol. 2009, 108, 96–118. [Google Scholar] [CrossRef]
- Turkey Avalanches Feb 1992 UNDRO Information Report 1-2—Turkey. Available online: https://reliefweb.int/report/turkey/turkey-avalanches-feb-1992-undro-information-report-1-2 (accessed on 21 October 2021).
- Lorenzoni, N.; Raich, M. Long-Term Impact of the Galtuer Avalanche on the Public Health System. J. Emerg. Manag. 2021, 19, 197–208. [Google Scholar] [CrossRef]
- Avalanches Caused by Heavy Snow Kill at Least 124 People in Afghanistan. The Guardian. 2015. Available online: https://en.wikipedia.org/w/index.php?title=2012_Afghanistan_avalanches&oldid=1040450566 (accessed on 21 October 2021).
- 2012 Afghanistan Avalanches. Available online: https://en.wikipedia.org/wiki/2012_Afghanistan_avalanches (accessed on 21 October 2021).
- Braun, T.; Frigo, B.; Chiaia, B.; Bartelt, P.; Famiani, D.; Wassermann, J. Seismic Signature of the Deadly Snow Avalanche of January 18, 2017, at Rigopiano (Italy). Sci. Rep. 2020, 10, 18563. [Google Scholar] [CrossRef] [PubMed]
- Zafren, K.; Brants, A.; Tabner, K.; Nyberg, A.; Pun, M.; Basnyat, B.; Brodmann Maeder, M. Wilderness Mass Casualty Incident (MCI): Rescue Chain after Avalanche at Everest Base Camp (EBC) in 2015. Wilderness Environ. Med. 2018, 29, 401–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainer, B.; Frimmel, C.; Sumann, G.; Brugger, H.; Kinzl, J.F.; Lederer, W. Correlation between Avalanche Emergencies and Avalanche Danger Forecast in the Alpine Region of Tyrol. Eur. J. Emerg. Med. 2008, 15, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, J.; Lütschg, M. Characteristics of Human-Triggered Avalanches. Cold Reg. Sci. Technol. 2001, 33, 147–162. [Google Scholar] [CrossRef]
- Stethem, C.; Jamieson, B.; Schaerer, P.; Liverman, D.; Germain, D.; Walker, S. Snow Avalanche Hazard in Canada—A Review. Nat. Hazards 2003, 28, 487–515. [Google Scholar] [CrossRef]
- Van Tilburg, C.; Grissom, C.K.; Zafren, K.; McIntosh, S.; Radwin, M.I.; Paal, P.; Haegeli, P.; Smith, W.; Wheeler, A.R.; Weber, D.; et al. Wilderness Medical Society Practice Guidelines for Prevention and Management of Avalanche and Nonavalanche Snow Burial Accidents. Wilderness Environ. Med. 2017, 28, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Techel, F.; Jarry, F.; Kronthaler, G.; Mitterer, S.; Nairz, P.; Pavšek, M.; Valt, M.; Darms, G. Avalanche Fatalities in the European Alps: Long-Term Trends and Statistics. Geogr. Helv. 2016, 71, 147–159. [Google Scholar] [CrossRef]
- Jamieson, B.; Haegeli, P.; Gauthier, D.; Canadian Avalanche Association. Avalanche Accidents in Canada. Volume 5, 1996–2007; Canadian Avalanche Association: Revelstoke, BC, Canada, 2010; Volume 5, ISBN 978-0-9866597-4-4. [Google Scholar]
- Williams, K.; Logan, S. The Snowy Torrents: Avalanche Accidents in the United States, 1996–2004; American Avalanche Association: Denver, CO, USA, 2017; ISBN 978-0-9984805-0-3. [Google Scholar]
- Birkeland, K.W.; Greene, E.M.; Logan, S. In Response to Avalanche Fatalities in the United States by Jekich et al. Wilderness Environ. Med. 2017, 28, 380–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strapazzon, G.; Schweizer, J.; Chiambretti, I.; Brodmann Maeder, M.; Brugger, H.; Zafren, K. Effects of Climate Change on Avalanche Accidents and Survival. Front. Physiol. 2021, 12, 639433. [Google Scholar] [CrossRef]
- Jia, H.; Chen, F.; Pan, D. Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018. Int. J. Environ. Res. Public Health 2019, 16, 4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugger, H.; Zafren, K.; Festi, L.; Paal, P.; Strapazzon, G. Mountain Emergency Medicine; Edra: Milan, Italy, 2021. [Google Scholar]
- Bründl, M.; Margreth, S. Integrative Risk Management: The Example of Snow Avalanches. In Snow and Ice-Related Hazards, Risks, and Disasters, 2nd ed.; Haeberli, W., Whiteman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 259–296. ISBN 978-0-12-817129-5. [Google Scholar]
- McClung, D.; Schaerer, P.A. The Avalanche Handbook, 3rd ed.; The Mountaineers Books: Seattle, WA, USA, 2006. [Google Scholar]
- Bründl, M.; Etter, H.-J.; Steiniger, M.; Klingler, C.; Rhyner, J.; Ammann, W.J. IFKIS—A Basis for Managing Avalanche Risk in Settlements and on Roads in Switzerland. Nat. Hazards Earth Syst. Sci. 2004, 4, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Harvey, S.; Rhyner, H.; Dürr, L.; Schweizer, J.; Henny, H.M.; Nigg, P. Caution–Avalanches!—Avalanche Prevention in Snow Sports; Core Team of Instructor: Davos, Switzerland, 2018. [Google Scholar]
- Haegeli, P.; Falk, M.; Brugger, H.; Etter, H.-J.; Boyd, J. Comparison of Avalanche Survival Patterns in Canada and Switzerland. CMAJ 2011, 183, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procter, E.; Strapazzon, G.; Dal Cappello, T.; Zweifel, B.; Würtele, A.; Renner, A.; Falk, M.; Brugger, H. Burial Duration, Depth and Air Pocket Explain Avalanche Survival Patterns in Austria and Switzerland. Resuscitation 2016, 105, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Paal, P.; Gordon, L.; Strapazzon, G.; Brodmann Maeder, M.; Putzer, G.; Walpoth, B.; Wanscher, M.; Brown, D.; Holzer, M.; Broessner, G.; et al. Accidental Hypothermia-an Update: The Content of This Review Is Endorsed by the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). Scand. J. Trauma. Resusc. Emerg. Med. 2016, 24, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry-Jones, B.; Parry-Jones, W.L. Post-Traumatic Stress Disorder: Supportive Evidence from an Eighteenth Century Natural Disaster. Psychol. Med. 1994, 24, 15–27. [Google Scholar] [CrossRef]
- Brugger, H.; Sumann, G.; Meister, R.; Adler-Kastner, L.; Mair, P.; Gunga, H.C.; Schobersberger, W.; Falk, M. Hypoxia and Hypercapnia during Respiration into an Artificial Air Pocket in Snow: Implications for Avalanche Survival. Resuscitation 2003, 58, 81–88. [Google Scholar] [CrossRef]
- Strapazzon, G.; Paal, P.; Schweizer, J.; Falk, M.; Reuter, B.; Schenk, K.; Gatterer, H.; Grasegger, K.; Dal Cappello, T.; Malacrida, S.; et al. Effects of Snow Properties on Humans Breathing into an Artificial Air Pocket—An Experimental Field Study. Sci. Rep. 2017, 7, 17675. [Google Scholar] [CrossRef] [Green Version]
- Strapazzon, G.; Gatterer, H.; Falla, M.; Dal Cappello, T.; Malacrida, S.; Turner, R.; Schenk, K.; Paal, P.; Falk, M.; Schweizer, J.; et al. Hypoxia and Hypercapnia Effects on Cerebral Oxygen Saturation in Avalanche Burial: A Pilot Human Experimental Study. Resuscitation 2021, 158, 175–182. [Google Scholar] [CrossRef]
- Weuster, M.; Brück, A.; Lippross, S.; Menzdorf, L.; Fitschen-Oestern, S.; Behrendt, P.; Iden, T.; Höcker, J.; Lefering, R.; Seekamp, A.; et al. Epidemiology of Accidental Hypothermia in Polytrauma Patients: An Analysis of 15,230 Patients of the TraumaRegister DGU. J. Trauma. Acute Care Surg. 2016, 81, 905–912. [Google Scholar] [CrossRef]
- Wang, H.E.; Callaway, C.W.; Peitzman, A.B.; Tisherman, S.A. Admission Hypothermia and Outcome after Major Trauma. Crit. Care Med. 2005, 33, 1296–1301. [Google Scholar] [CrossRef]
- Boyd, J.; Brugger, H.; Shuster, M. Prognostic Factors in Avalanche Resuscitation: A Systematic Review. Resuscitation 2010, 81, 645–652. [Google Scholar] [CrossRef]
- Lott, C.; Truhlář, A.; Alfonzo, A.; Barelli, A.; González-Salvado, V.; Hinkelbein, J.; Nolan, J.P.; Paal, P.; Perkins, G.D.; Thies, K.-C.; et al. European Resuscitation Council Guidelines 2021: Cardiac Arrest in Special Circumstances. Resuscitation 2021, 161, 152–219. [Google Scholar] [CrossRef]
- Grissom, C.K.; Radwin, M.I.; Scholand, M.B.; Harmston, C.H.; Muetterties, M.C.; Bywater, T.J. Hypercapnia Increases Core Temperature Cooling Rate during Snow Burial. J. Appl. Physiol. 2004, 96, 1365–1370. [Google Scholar] [CrossRef] [Green Version]
- Oberhammer, R.; Beikircher, W.; Hörmann, C.; Lorenz, I.; Pycha, R.; Adler-Kastner, L.; Brugger, H. Full Recovery of an Avalanche Victim with Profound Hypothermia and Prolonged Cardiac Arrest Treated by Extracorporeal Re-Warming. Resuscitation 2008, 76, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Mittermair, C.; Foidl, E.; Wallner, B.; Brugger, H.; Paal, P. Extreme Cooling Rates in Avalanche Victims: Case Report and Narrative Review. High Alt. Med. Biol. 2021, 22, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Lankford, H.V.; Fox, L.R. The Wind-Chill Index. Wilderness Environ. Med. 2021, 32, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Brugger, H.; Durrer, B.; Adler-Kastner, L.; Falk, M.; Tschirky, F. Field Management of Avalanche Victims. Resuscitation 2001, 51, 7–15. [Google Scholar] [CrossRef]
- Falk, M.; Brugger, H.; Adler-Kastner, L. Avalanche Survival Chances. Nature 1994, 368, 21. [Google Scholar] [CrossRef]
- Hohlrieder, M.; Mair, P.; Wuertl, W.; Brugger, H. The Impact of Avalanche Transceivers on Mortality from Avalanche Accidents. High Alt. Med. Biol. 2005, 6, 72–77. [Google Scholar] [CrossRef]
- Brugger, H.; Etter, H.J.; Zweifel, B.; Mair, P.; Hohlrieder, M.; Ellerton, J.; Elsensohn, F.; Boyd, J.; Sumann, G.; Falk, M. The Impact of Avalanche Rescue Devices on Survival. Resuscitation 2007, 75, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Haegeli, P.; Falk, M.; Procter, E.; Zweifel, B.; Jarry, F.; Logan, S.; Kronholm, K.; Biskupič, M.; Brugger, H. The Effectiveness of Avalanche Airbags. Resuscitation 2014, 85, 1197–1203. [Google Scholar] [CrossRef]
- Grissom, C.K.; Radwin, M.I.; Harmston, C.H.; Hirshberg, E.L.; Crowley, T.J. Respiration during Snow Burial Using an Artificial Air Pocket. JAMA 2000, 283, 2266–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasegger, K.; Strapazzon, G.; Procter, E.; Brugger, H.; Soteras, I. Avalanche Survival after Rescue with the RECCO Rescue System: A Case Report. Wilderness Environ. Med. 2016, 27, 282–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohlrieder, M.; Thaler, S.; Wuertl, W.; Voelckel, W.; Ulmer, H.; Brugger, H.; Mair, P. Rescue Missions for Totally Buried Avalanche Victims: Conclusions from 12 Years of Experience. High Alt. Med. Biol. 2008, 9, 229–233. [Google Scholar] [CrossRef]
- Reiweger, I.; Genswein, M.; Paal, P.; Schweizer, J. A Concept for Optimizing Avalanche Rescue Strategies Using a Monte Carlo Simulation Approach. PLoS ONE 2017, 12, e0175877. [Google Scholar] [CrossRef] [Green Version]
- Wallner, B.; Moroder, L.; Brandt, A.; Mair, P.; Erhart, S.; Bachler, M.; Putzer, G.; Turner, R.; Strapazzon, G.; Falk, M.; et al. Extrication Times During Avalanche Companion Rescue: A Randomized Single-Blinded Manikin Study. High Alt. Med. Biol. 2019, 20, 245–250. [Google Scholar] [CrossRef]
- Brugger, H.; Durrer, B.; International Commission for Mountain Emergency Medicine. On-Site Treatment of Avalanche Victims ICAR-MEDCOM-Recommendation. High Alt. Med. Biol. 2002, 3, 421–425. [Google Scholar] [CrossRef]
- Peleg, K.; Reuveni, H.; Stein, M. Earthquake Disasters–Lessons to be Learned. Isr. Med. Assoc. J. 2002, 4, 361–365. [Google Scholar]
- Auerbach, P.S.; Cushing, T.A.; Harris, N.S. Auerbach’s Wilderness Medicine, 7th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2016; ISBN 978-0-323-39609-7. [Google Scholar]
- Risolo, E.; De Carlo, M.; Micillo, A.; Vetrella, M. Cold injuries in children. Experiences of the earthquake of November 1980 (author’s transl). Pediatria 1982, 90, 45–51. [Google Scholar]
- Mulvey, J.M.; Awan, S.U.; Qadri, A.A.; Maqsood, M.A. Profile of Injuries Arising from the 2005 Kashmir Earthquake: The First 72 h. Injury 2008, 39, 554–560. [Google Scholar] [CrossRef]
- The National Police Agency. The Great East Japan Earthquake Police Activities and Damage. Available online: https://www.npa.go.jp/news/other/earthquake2011/pdf/higaijokyo.pdf (accessed on 14 June 2021).
- Disaster Management, Cabinet Office. About the Great Hanshin-Awaji Earthquake. Available online: http://www.bousai.go.jp/kyoiku/kyokun/hanshin_awaji/earthquake/index.html (accessed on 1 May 2021).
- Aoki, Y.; Iwase, H. Questionnaire Survey Report for Dispatched Doctors by the Japan Forensic Society Disaster Dead Body Examination Support Project in the Great East Japan Earthquake. Available online: http://www.jslm.jp/saigai/pdf/shinsai_23.pdf (accessed on 14 June 2021).
- Ministry of Health, Labour and Welfare. The Vital Statistics of Death of the Great East Japan Earthquake. Available online: https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei11/dl/14_x34.pdf (accessed on 14 June 2021).
- Japan Meteorological Agency. Search Past Weather Data. Available online: https://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=&block_no=&year=&month=&day=&view= (accessed on 11 October 2021).
- Gagge, A.; Gonzalez, R. Mechanisms of Heat Exchange: Biophysics and Physiology. Compr. Physiol. 2011, 45–84. [Google Scholar] [CrossRef]
- Xu, X.; Turner, C.A.; Santee, W.R. Survival Time Prediction in Marine Environments. J. Therm. Biol. 2011, 36, 340–345. [Google Scholar] [CrossRef]
- Xu, X.; Giesbrecht, G.G. A New Look at Survival Times during Cold Water Immersion. J. Therm. Biol. 2018, 78, 100–105. [Google Scholar] [CrossRef]
- Furukawa, H.; Kudo, D.; Nakagawa, A.; Matsumura, T.; Abe, Y.; Konishi, R.; Yamanouchi, S.; Ishibashi, S.; Kobayashi, M.; Narita, N.; et al. Hypothermia in Victims of the Great East Japan Earthquake: A Survey in Miyagi Prefecture. Disaster Med. Public Health Prep. 2014, 8, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swol, J.; Darocha, T.; Paal, P.; Brugger, H.; Podsiadło, P.; Kosiński, S.; Puślecki, M.; Ligowski, M.; Pasquier, M. Extracorporeal Life Support in Accidental Hypothermia with Cardiac Arrest-A Narrative Review. ASAIO J. 2021. [Google Scholar] [CrossRef]
- Pasquier, M.; Rousson, V.; Darocha, T.; Bouzat, P.; Kosiński, S.; Sawamoto, K.; Champigneulle, B.; Wiberg, S.; Wanscher, M.C.J.; Brodmann Maeder, M.; et al. Hypothermia Outcome Prediction after Extracorporeal Life Support for Hypothermic Cardiac Arrest Patients: An External Validation of the HOPE Score. Resuscitation 2019, 139, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Michelozzi, P.; de’ Donato, F. Climate changes, floods, and health consequences. Recent. Prog. Med. 2014, 105, 48–50. [Google Scholar] [CrossRef]
- Dutch Water Facts. Available online: https://www.holland.com/global/tourism/information/general/dutch-water-facts.htm (accessed on 11 October 2021).
- Hickey, K.R. The Storm of 31 January to 1 February 1953 and Its Impact on Scotland. Scott. Geogr. J. 2001, 117, 283–295. [Google Scholar] [CrossRef]
- Cornwell, R. Disaster Victims to Be Remembered on Floods Tragedy Anniversary. Available online: https://www.ipswichstar.co.uk/news/details-of-anniversary-events-for-1953-floods-at-felixstowe-revealed-2802416 (accessed on 11 October 2021).
- Carlson, K. BASS 2010: Jim Shepard, “The Netherlands Lives with Water”. A Just Recompense. 2011. Available online: https://sloopie72.wordpress.com/2011/04/18/bass-2010-jim-shephard-the-netherlands-lives-with-water/ (accessed on 11 October 2021).
- Effects of Hurricane Katrina in New Orleans. Available online: https://en.wikipedia.org/w/index.php?title=Effects_of_Hurricane_Katrina_in_New_Orleans&oldid=1048109516 (accessed on 11 October 2021).
- Berko, J.; Ingram, D.D.; Saha, S.; Parker, J.D. Deaths Attributed to Heat, Cold, and other Weather Events in the United States, 2006–2010. Natl. Health Stat. Rep. 2014, 76, 1–15. [Google Scholar]
- Du, W.; FitzGerald, G.J.; Clark, M.; Hou, X.-Y. Health Impacts of Floods. Prehosp. Disaster Med. 2010, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Carrington, D. Climate Crisis Made Deadly German Floods ‘up to Nine Times More Likely’. The Guardian. 2021. Available online: https://www.theguardian.com/environment/2021/aug/23/climate-crisis-made-deadly-german-floods-up-to-nine-times-more-likely (accessed on 25 October 2021).
- UN Office for the Coordination of Humanitarian Affairs. Japan: Earthquake & Tsunami, Situation Report No. 10—Japan. Available online: https://reliefweb.int/report/japan/japan-earthquake-tsunami-situation-report-no10 (accessed on 1 May 2021).
- Paal, P.; Pasquier, M.; Darocha, T.; Lechner, R.; Kosinski, S.; Wallner, B.; Zafren, K.; Brugger, H. Accidental Hypothermia: 2021 Update. Int. J. Environ. Res. Public Health 2022, 19, 501. [Google Scholar] [CrossRef] [PubMed]
- Europe’s Floods: Lessons from German Tragedy. Available online: https://www.bbc.com/news/world-europe-58992093 (accessed on 1 December 2021).
General Principles and Recommendations in MCI Management |
---|
Declare an MCI. An MCI should be identified and the appropriate rescue organisations and hospitals should be alerted as soon as possible. Assess safety. Safety of the rescuers is the highest priority. Rescuers should not access an area if the risk to themselves is considered to be too high. Initial response. The initial response should focus on setting up a command-and-control structure, triage, and rapid life- or limb-saving interventions. Leadership and command. The medical commander should be trained in disaster medicine and in mountain rescue. The medical commander and leaders of the rescue services should all be at the same location on site to optimise cooperation. All should be easily identifiable. Ensuring effective communications. An effective communication structure should be implemented to support command and control. Triage. Effective triage tools adapted to mountain injuries should be implemented. Evacuations. Casualties should be evacuated to a safe area, then transferred to medical facilities appropriate to their medical needs. Identification and tracking. Tools that enable clear identification and tracking of casualties should be available for MCIs in mountains. Learning from experience. MCIs in mountain areas should be analysed afterwards and necessary improvements in prevention and management should be identified and implemented. Planning and training. Standard operating procedures should be available, familiar, and implemented with regular training exercises involving emergency services. |
Specific principles and recommendations in MCI management in mountain areas. Environmental influence. Objective hazards that could affect rescuers and victims, should be constantly monitored and mitigated to the greatest possible extent. Use of helicopters. Helicopters with appropriate mountain rescue capabilities are often useful in MCIs. Coordination of helicopter and ground operations is critical. Communication devices and networks are helpful and should be widely used. Management of uninjured people. In a mountain environment, uninjured survivors should be considered as victims at risk. Psychological trauma is often present. Affected survivors should be treated, as necessary. |
Specific MCIs in mountain areas. Avalanches. For a burial time <60 min, extrication is the first priority. Medical care should focus on victims with signs of life until enough resources are available to treat additional victims in cardiac arrest. For burial time >60 min, cardiopulmonary resuscitation (CPR) should only be started if the airway is patent. The use of a checklist may improve triage and treatment. |
Areas Susceptible to Tsunamis Should Be Identified. |
---|
Future housing and critical infrastructure should be built in safe places. Existing structures in areas at risk should be moved or protected. |
Early warning and protection systems should cover areas at risk. |
Adequate engineering of buildings, roads, and embankments is required. |
Education about safety and how to avoid natural disasters should be implemented for citizens in areas at risk. |
Temporary shelters and sanitation should be established on elevated land with adequate food and water and should be supplied with rewarming equipment. |
Essential non-food items, e.g., clothing and blankets, should be stockpiled. |
Global positioning system (GPS)-capable communication systems should be available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oshiro, K.; Tanioka, Y.; Schweizer, J.; Zafren, K.; Brugger, H.; Paal, P. Prevention of Hypothermia in the Aftermath of Natural Disasters in Areas at Risk of Avalanches, Earthquakes, Tsunamis and Floods. Int. J. Environ. Res. Public Health 2022, 19, 1098. https://doi.org/10.3390/ijerph19031098
Oshiro K, Tanioka Y, Schweizer J, Zafren K, Brugger H, Paal P. Prevention of Hypothermia in the Aftermath of Natural Disasters in Areas at Risk of Avalanches, Earthquakes, Tsunamis and Floods. International Journal of Environmental Research and Public Health. 2022; 19(3):1098. https://doi.org/10.3390/ijerph19031098
Chicago/Turabian StyleOshiro, Kazue, Yuichiro Tanioka, Jürg Schweizer, Ken Zafren, Hermann Brugger, and Peter Paal. 2022. "Prevention of Hypothermia in the Aftermath of Natural Disasters in Areas at Risk of Avalanches, Earthquakes, Tsunamis and Floods" International Journal of Environmental Research and Public Health 19, no. 3: 1098. https://doi.org/10.3390/ijerph19031098
APA StyleOshiro, K., Tanioka, Y., Schweizer, J., Zafren, K., Brugger, H., & Paal, P. (2022). Prevention of Hypothermia in the Aftermath of Natural Disasters in Areas at Risk of Avalanches, Earthquakes, Tsunamis and Floods. International Journal of Environmental Research and Public Health, 19(3), 1098. https://doi.org/10.3390/ijerph19031098