The Influence of Disease Status on Loneliness of the Elderly: Evidence from Rural China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Selection and Definition of Model Variables
2.2.2. The Models
3. Results
3.1. Descriptive Statistics of the Variables
3.2. Benchmark Regression Results
3.3. ”Serious Illness Effect” of Loneliness of Rural Elderly
3.4. Robustness Test
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CPC Central Committee and the State Council. Several Opinions of the CPC Central Committee and the State Council on Adhering to the Priority Development of Agriculture and Rural Areas and Doing a Good Job in the Work of Agriculture, Rural Areas and Farmers; CPC Central Committee and the State Council: Beijing, China, 2019. [Google Scholar]
- Haisheng, W.U. Life Quality of the Elderly in Rural Areas and Its Impact Factor Analysis: Case of Jiangsu Province. Issues Agric. Econ. 2009, 10, 44–50, 110–111. [Google Scholar]
- Yamwong, P.; Assantachai, P.; Amornrat, A. Prevalence of dyslipidemia in the elderly in rural areas of Thailand. Southeast Asian J. Trop. Med. Public Health 2000, 31, 158–162. [Google Scholar] [PubMed]
- Lee, M.S.; Lim, H.J. Factors Related to Health Promoting Behaviors of Young-Old and Old-Old Elderly in Rural Areas. J. Agric. Med. Community Health 2010, 35, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Alcaiz, M.; Riera-Prunera, M.C.; Solé-Auró, A. When I Retire, I’ll Move Out of the City: Mental Well-Being of the Elderly in Rural vs. Urban Settings. Int. J. Environ. Res. Public Health 2020, 17, 2442. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yi, F.; Xu, Z.; Tian, X. Do Living Arrangements Matter?—Evidence from Eating Behaviors of the Elderly in Rural China. J. Econ. Ageing 2021, 19, 100307. [Google Scholar] [CrossRef]
- Shen, S.; Fang, L.; Tanui, J.K. Quality of Life and Old Age Social Welfare System for the Rural Elderly in China. Ageing Int. 2012, 37, 285–299. [Google Scholar] [CrossRef]
- Mancini, J.A.; Blieszner, R. Aging Parents and Adult Children: Research Themes in Intergenerational Relations. J. Marriage Fam. 1989, 51, 275–290. [Google Scholar] [CrossRef]
- Bian, F.; Logan, J.R.; Bian, Y. Intergenerational relations in urban China: Proximity, contact, and help to parents. Demography 1998, 35, 115–124. [Google Scholar] [CrossRef]
- Pillemer, K.; Suitor, J.J.; Mock, S.E.; Sabir, M.; Pardo, T.B.; Sechrist, J. Capturing the Complexity of Intergenerational Relations: Exploring Ambivalence within Later-Life Families. J. Soc. Issues 2010, 63, 775–791. [Google Scholar] [CrossRef]
- Behrman, J.R. From Parent to Child: Intergenerational Relations and Intrahousehold Allocations; University of Chicago Press: Chicago, IL, USA, 1996; pp. 620–622. [Google Scholar]
- Vinarski-Peretz, H.; Halperin, D. Family Care in Our Aging Society: Policy, Legislation, and Intergenerational Relations: The Case of Israel. J. Fam. Econ. Issues 2021, 43, 187–203. [Google Scholar] [CrossRef]
- Steinbach, A.; Mahne, K.; Klaus, D.; Hank, K. Stability and Change in Intergenerational Family Relations Across Two Decades: Findings from the German Ageing Survey, 1996–2014. J. Gerontol. Ser. B 2020, 75, 899–906. [Google Scholar] [CrossRef]
- Wang, J. Keeping quiet: Aging, personhood, and intergenerational harmony in rural Central Tibet. J. Aging Stud. 2020, 54, 100866. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, W.D.; Zhang, L.X. The power of informal institutions: The impact of clan culture on the depression of the elderly in rural China-ScienceDirect. J. Integr. Agric. 2021, 20, 1107–1118. [Google Scholar] [CrossRef]
- Lin, H.; Jin, M.; Liu, Q.; Du, Y.; Fu, J.; Sun, C.; Ma, F.; Li, W.; Liu, H.; Zhang, X.; et al. Gender-specific prevalence and influencing factors of depression in elderly in rural China: A cross-sectional study. J. Affect. Disord. 2021, 288, 99–106. [Google Scholar] [CrossRef]
- Wang, G.; Jia, C.; Ma, Z.; Zhou, L. Physical diseases, and elderly suicide in rural China: A case–control psychological autopsy study. Aust. N. Z. J. Psychiatry 2021. [Google Scholar] [CrossRef]
- Liang, Y. Heterogeneity in the trajectories of depressive symptoms among elderly adults in rural China: The role of housing characteristics. Health Place 2020, 66, 102449. [Google Scholar] [CrossRef]
- Chaurasia, H.; Srivastava, S. Abuse, Neglect, and Disrespect against Older Adults in India. J. Popul. Ageing 2020, 13, 497–511. [Google Scholar] [CrossRef]
- Russell, D.W.; Cutrona, C.E.; de la Mora, A.; Wallace, R.B. Loneliness and nursing home admission among rural older adults. Psychol. Aging 1997, 12, 574. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, L.; Li, J.; Sun, L.; Ding, G.; Qin, W.; Wang, Q.; Zhu, J.; Yu, Z.; Xie, S. Loneliness and Health Service Utilization among the Rural Elderly in Shandong, China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2018, 15, 1468. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, Y.; Motohashi, Y.; Sasaki, H.; Yamaji, M. Prevalence of depressive symptoms and related risk factors for depressive symptoms among elderly persons living in a rural Japanese community: A cross-sectional study. Community Ment. Health J. 2007, 43, 583–590. [Google Scholar] [CrossRef]
- Liu, L.J.; Qiang, G. Loneliness, and health-related quality of life for the empty nest elderly in the rural area of a mountainous county in China. Qual. Life Res. 2007, 16, 1275–1280. [Google Scholar] [CrossRef]
- Yang, S.M.; Hong, S.J. Living Arrangement and Psychological Loneliness of Rural Elderly in Korea. J. Korean Home Manag. Assoc. 2003, 21, 129–139. [Google Scholar]
- Eloranta, S.; Arve, S.; Isoaho, H.; Lehtonen, A.; Viitanen, M. Loneliness of older people aged 70: A comparison of two Finnish cohorts born 20 years apart. Arch. Gerontol. Geriatr. 2015, 61, 254–260. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, X.D.; Zhang, Y.P. Impact of Social Support on Loneliness of Rural Female Elderly. Popul. J. 2010, 4, 41–47. [Google Scholar]
- Cohen-Mansfield, J.; Hazan, H.; Lerman, Y.; Shalom, V.; Birkenfeld, S.; Cohen, R. Efficacy of the I-SOCIAL intervention for loneliness in old age: Lessons from a randomized controlled trial. J. Psychiatr. Res. 2018, 99, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Beere, P.; Keeling, S.; Jamieson, H. Ageing, loneliness, and the geographic distribution of New Zealand’s interRAI-HC cohort. Soc. Sci. Med. 2019, 227, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Palloni, A.; McEniry, M.; Wong, R.; Pelaez, M. The tide to come elderly health in Latin America and the Caribbean. J. Aging Health 2006, 18, 180–206. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gilleskie, D.B.; Norton, E.C. Health Insurance, Medical Care, and Health Outcomes: A Model of Elderly Health Dynamics. J. Hum. Resour. 2009, 44, 47–114. [Google Scholar]
- Girzadas, P.M.; Counte, M.A.; Glandon, G.L.; Tancredi, D. An analysis of elderly health and life satisfaction. Behav. Health Aging 1993, 3, 103–117. [Google Scholar]
- Knodel, J.; Saengtienchai, C. Rural parents with urban children: Social and economic implications of migration for the rural elderly in Thailand. Popul. Space Place 2010, 13, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Giles, J.; Wang, D.; Zhao, C. Can China’s Rural Elderly Count on Support from Adult Children? Implications of Rural-to-Urban Migration. J. Popul. Ageing 2010, 3, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Luo, X.; Zhang, C.; Song, J.; Xu, D. Can Land Transfer Alleviate the Poverty of the Elderly? Evidence from Rural China. Int. J. Environ. Res. Public Health 2021, 18, 11288. [Google Scholar] [CrossRef]
- Dai, Y.T.; Dimond, M.F. Filial piety. A cross-cultural comparison and its implications for the well-being of older parents. J. Gerontol. Nurs. 1998, 24, 13–18. [Google Scholar] [CrossRef]
- Li, W.W.; Hodgetts, D.; Ho, E.; Stolte, O. From early Confucian texts to aged care in China and abroad today: The evolution of filial piety and its implications. J. U. S. China Public Adm. 2010, 7, 48–59. [Google Scholar]
- Han, L.; Shi, L.; Lu, L.; Ling, L. Work ability of Chinese migrant workers: The influence of migration characteristics. BMC Public Health 2014, 14, 353. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, C.; Guo, Y.; Xu, D. Impact of Environmental and Health Risks on Rural Households’ Sustainable Livelihoods: Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 10955. [Google Scholar] [CrossRef]
- Fu, Y.; Gabriel, S.A. Labor Migration, Human Capital Agglomeration and Regional Development in China. Reg. Sci. Urban Econ. 2012, 42, 473–484. [Google Scholar] [CrossRef]
- Ning, M.X.; Jing, C.L. An Analysis on Rural Labor Migration, Elderly People Care Needs, and Intervention Approaches of Social Support. East China Econ. Manag. 2014, 4, 42–45. [Google Scholar]
- Amzat, I.H.; Jayawardena, P. Emotional Loneliness and Coping Strategies: A Reference to Older Malaysians at Nursing Homes. J. Popul. Ageing 2016, 9, 227–247. [Google Scholar] [CrossRef]
- Tong, H. Loneness Depression Anxiety and the Locus of Control. Chin. J. Clin. Psychol. 2001, 9, 196–197. [Google Scholar]
- Ahn, Y.; Mi, J.K. Health Care Needs of Elderly in a Rural Community in Korea. Public Health Nurs. 2010, 21, 153–161. [Google Scholar] [CrossRef]
- Maroof, M.; Ahmad, A.; Khalique, N.; Ansari, M.A. Awareness of geriatric welfare services among rural elderly population. Int. J. Res. Med. Sci. 2016, 4, 2783–2787. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, G.H.; Park, G.J.; Lee, H.K. The Effects of the Social Support Network on the Psychological Well-Being of the Rural Elderly in Korea. J. Korean Soc. Rural. Plan. 2003, 9, 1–7. [Google Scholar]
Variable Type | Variable Name | Variable Definition | |
---|---|---|---|
explained variable | loneliness status | often feel lonely = 1; Less or never feel lonely = 0 | |
core explanatory variable | physical health | physical health status troubled by disease = 1; No disease = 0 | |
control variable | individual characteristics | age | actual age of the elderly in the surveyed year |
gender | male = 1; 0 = female = 0 | ||
education level | actual years of education of the elderly | ||
character | cheerful personality = 1; Not cheerful = 0 | ||
family characteristics | logarithm of household income | logarithm of the actual income of the elderly’s family | |
intergenerational support | frequent visits with children = 1; Infrequent visits by children = 0 | ||
number of children | number of children raised by the elderly |
Variable Type | Variable Name | Mean Value | Standard Deviation | Minimum Value | Maximum Value | |
---|---|---|---|---|---|---|
Explained Variable | Loneliness status | 0.3828 | 0.4861 | 0 | 1 | |
Core explanatory variable | Physical health | 0.1439 | 0.3510 | 0 | 1 | |
Control Variable | Individual characteristics | Age | 85.2063 | 10.4690 | 60 | 117 |
Gender | 0.4548 | 0.2480 | 0 | 1 | ||
Education level | 2.0710 | 3.1619 | 0 | 20 | ||
Character | 0.7135 | 0.4522 | 0 | 1 | ||
Family characteristics | Logarithm of household income | 9.7124 | 1.2875 | 5.7038 | 11.5129 | |
Intergenerational support | 0.9720 | 1.2875 | 0 | 1 | ||
Number of children | 4.6087 | 0.1649 | 1 | 15 |
Variable Type | Variable Name | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|---|
Coef | OR | Coef | OR | Coef | OR | ||
Core variable | Physical health | 0.675 *** | 1.9649 | 0.397 *** | 1.4869 | 0.379 *** | 1.4606 |
(0.0829) | (0.0951) | (0.0958) | |||||
Personal characteristics | Age | 0.0342 *** | 1.0347 | 0.0353 *** | 1.0359 | ||
(0.00334) | (0.00342) | ||||||
Gender | −0.210 *** | 0.8108 | −0.233 *** | 0.7923 | |||
(0.0737) | (0.0741) | ||||||
Education level | −0.0190 | 0.9811 | −0.0126 | 0.9875 | |||
(0.0129) | (0.0130) | ||||||
Character | −1.527 *** | 0.2171 | −1.523 *** | 0.2181 | |||
(0.0702) | (0.0706) | ||||||
Family characteristics | Logarithm of household income | −0.101 *** | 0.9041 | ||||
(0.0256) | |||||||
Intergenerational support | −0.360 * | 0.6978 | |||||
(0.198) | |||||||
Number of children | −0.0143 | 0.9858 | |||||
(0.0176) | |||||||
Constant term | −0.580 *** | 0.5601 | −2.280 *** | 0.1023 | −0.983 ** | 0.3742 | |
(0.0326) | (0.306) | (0.434) | |||||
Observed value | 4789 | 4789 | 4789 | ||||
R-squared | 0.0104 | 0.1247 | 0.1279 |
Disease Type | Variable Definition | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
Hypertension | Now suffering from hypertension = 1 No hypertension now = 0 | 0.3072 | 0.4614 | 0 | 1 |
Diabetes | Suffering from diabetes mellitus = 1 No diabetes = 0 | 0.0432 | 0.2034 | 0 | 1 |
Heart disease | Now suffering from heart disease = 1 No heart disease now = 0 | 0.1109 | 0.3140 | 0 | 1 |
Cerebrovascular diseases | Now suffering from cerebrovascular disease = 1; Conversely = 0 | 0.0785 | 0.2690 | 0 | 1 |
Respiratory disease | Now suffering from respiratory diseases = 1; Conversely = 0 | 0.1069 | 0.3090 | 0 | 1 |
Major diseases | Serious illness requiring hospitalization or bedridden at home in recent two years = 1 Serious illness in recent two years = 0 | 0.2585 | 0.4379 | 0 | 1 |
Variable Name | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hypertension | 0.00256 | 1.0026 | ||||||||||
(0.0719) | ||||||||||||
Diabetes | −0.207 | 0.8134 | ||||||||||
(0.169) | ||||||||||||
Heart disease | 0.0805 | 1.0839 | ||||||||||
(0.103) | ||||||||||||
Cerebrovascular diseases | 0.132 | 1.1412 | ||||||||||
(0.124) | ||||||||||||
Respiratory disease | −0.0839 | 0.9195 | ||||||||||
(0.108) | ||||||||||||
Major diseases | 0.157 ** | 1.1694 | ||||||||||
(0.0732) | ||||||||||||
Age | 0.0344 *** | 1.0350 | 0.0341 *** | 1.0347 | 0.0346 *** | 1.0352 | 0.0347 *** | 1.0352 | 0.0343 *** | 1.0349 | 0.0348 *** | 1.0354 |
(0.00343) | (0.00342) | (0.00341) | (0.00341) | (0.00341) | (0.00341) | |||||||
Gender | −0.237 *** | 0.7892 | −0.240 *** | 0.7866 | −0.235 *** | 0.7908 | −0.239 *** | 0.7875 | −0.234 *** | 0.7914 | −0.241 *** | 0.7856 |
(0.0739) | (0.0739) | (0.0739) | (0.0739) | (0.0739) | (0.0740) | |||||||
Education level | −0.0132 | 0.9869 | −0.0129 | 0.9872 | −0.0132 | 0.9869 | −0.0132 | 0.9869 | −0.0131 | 0.9870 | −0.0129 | 0.9872 |
(0.0130) | (0.0130) | (0.0130) | (0.0130) | (0.0130) | (0.0130) | |||||||
Character | −1.571 *** | 0.2077 | −1.573 *** | 0.2075 | −1.571 *** | 0.2078 | −1.566 *** | 0.2088 | −1.572 *** | 0.2076 | −1.562 *** | 0.2097 |
(0.0697) | (0.0697) | (0.0697) | (0.0699) | (0.0697) | (0.0698) | |||||||
Logarithm of household income | −0.105 *** | 0.9006 | −0.104 *** | 0.9013 | −0.105 *** | 0.9003 | −0.105 *** | 0.9004 | −0.104 *** | 0.9008 | −0.106 *** | 0.8994 |
(0.0255) | (0.0255) | (0.0255) | (0.0255) | (0.0255) | (0.0255) | |||||||
Intergenerational support | −0.385 * | 0.6802 | −0.382 * | 0.6825 | −0.387 ** | 0.6791 | −0.381 * | 0.6830 | −0.384 * | 0.6810 | −0.376 * | 0.6865 |
(0.197) | (0.197) | (0.197) | (0.197) | (0.196) | (0.196) | |||||||
Number of children | −0.0123 | 0.9877 | −0.0125 | 0.9876 | −0.0123 | 0.9877 | −0.0127 | 0.9874 | −0.0117 | 0.9884 | −0.0148 | 0.9854 |
(0.0176) | (0.0176) | (0.0176) | (0.0176) | (0.0176) | (0.0177) | |||||||
Constant term | −0.766 * | 0.4649 | −0.736 * | 0.4788 | −0.786 * | 0.4556 | −0.797 * | 0.4509 | −0.755 * | 0.4699 | −0.826 * | 0.4376 |
(0.430) | (0.429) | (0.429) | (0.429) | (0.429) | (0.429) | |||||||
Observed value | 4789 | 4789 | 4789 | 4789 | 4789 | 4789 | ||||||
R-squared | 0.1253 | 0.1255 | 0.1254 | 0.1254 | 0.1254 | 0.1260 |
Mean Value | Standard Deviation (%) | Deviation Reduction (%) | t-Test | ||||
---|---|---|---|---|---|---|---|
Variable | Sample | Interactive Group | Control Group | t-Value | p-Value | ||
Age | Before matching | 84.7300 | 85.286 | −5.4 | 40.9 | −1.29 | 0.197 |
After matching | 84.7300 | 85.059 | −3.2 | −0.60 | 0.550 | ||
Gender | Before matching | 0.4122 | 0.4620 | −10.0 | 88.3 | −2.43 | 0.015 |
After matching | 0.4122 | 0.4180 | −1.2 | −0.22 | 0.827 | ||
Education level | Before matching | 1.8200 | 2.1132 | −9.6 | 97.8 | −2.25 | 0.024 |
After matching | 1.8200 | 1.8135 | 0.2 | 0.04 | 0.967 | ||
Character | Before matching | 0.5080 | 0.7481 | −51.3 | 98.8 | −13.12 | 0.000 |
After matching | 0.5080 | 0.5110 | −0.6 | −0.11 | 0.914 | ||
Logarithm of household income | Before matching | 9.5360 | 9.7420 | −15.7 | 90.5 | −3.89 | 0.000 |
After matching | 9.5360 | 9.5165 | 1.5 | 0.27 | 0.786 | ||
Intergenerational support | Before matching | 0.9550 | 0.9749 | −10.8 | 52.5 | −2.93 | 0.003 |
After matching | 0.9550 | 0.9456 | 5.1 | 0.81 | 0.421 | ||
Number of children | Before matching | 4.7271 | 4.5888 | 7.5 | 83.5 | 1.82 | 0.069 |
After matching | 4.7271 | 4.7500 | −1.2 | −0.22 | 0.823 |
Mean Value | Standard Deviation (%) | Deviation Reduction (%) | t-Test | ||||
---|---|---|---|---|---|---|---|
Variable | Sample | Interactive Group | Control Group | t-Value | p-Value | ||
Age | Before matching | 84.730 | 85.286 | −5.4 | 49.6 | −1.29 | 0.197 |
After matching | 84.737 | 85.017 | −2.7 | −0.51 | 0.609 | ||
Gender | Before matching | 0.4122 | 0.4620 | −10.0 | 97.9 | −2.43 | 0.015 |
After matching | 0.4134 | 0.4144 | −0.2 | −0.04 | 0.969 | ||
Education level | Before matching | 1.8200 | 2.1132 | −9.6 | 93.1 | −2.25 | 0.024 |
After matching | 1.8253 | 1.8050 | 0.7 | 0.13 | 0.897 | ||
Character | Before matching | 0.5080 | 0.7481 | −51.3 | 100.0 | −13.12 | 0.000 |
After matching | 0.5095 | 0.5094 | 0.0 | 0.00 | 0.999 | ||
Logarithm of household income | Before matching | 9.5360 | 9.7420 | −15.7 | 83.5 | −3.89 | 0.000 |
After matching | 9.5415 | 9.5754 | −2.6 | −0.47 | 0.639 | ||
Intergenerational support | Before matching | 0.9550 | 0.9749 | −10.8 | 68.5 | −2.93 | 0.003 |
After matching | 0.9578 | 0.9515 | 3.4 | 0.56 | 0.578 | ||
Number of children | Before matching | 4.7271 | 4.5888 | 7.5 | 60.3 | 1.82 | 0.069 |
After matching | 4.7205 | 4.7754 | −3.0 | −0.53 | 0.594 |
Mean Value | Standard Deviation (%) | Deviation Reduction (%) | t-Test | ||||
---|---|---|---|---|---|---|---|
Variable | Sample | Interactive Group | Control Group | t-Value | p-Value | ||
Age | Before matching | 84.7300 | 85.286 | −5.4 | 30.9 | −1.29 | 0.197 |
After matching | 84.7300 | 85.115 | −3.8 | −0.70 | 0.482 | ||
Gender | Before matching | 0.4122 | 0.4620 | −10.0 | 74.7 | −2.43 | 0.015 |
After matching | 0.4122 | 0.4248 | −2.5 | −0.47 | 0.636 | ||
Education level | Before matching | 1.8200 | 2.1132 | −9.6 | 89.7 | −2.25 | 0.024 |
After matching | 1.8200 | 1.8502 | −1.0 | −0.19 | 0.848 | ||
Character | Before matching | 0.5080 | 0.7481 | −51.3 | 97.5 | −13.12 | 0.000 |
After matching | 0.5080 | 0.5140 | −1.3 | −0.22 | 0.824 | ||
Logarithm of household income | Before matching | 9.5360 | 9.7420 | −15.7 | 60.9 | −3.89 | 0.000 |
After matching | 9.5360 | 9.6166 | −6.1 | −1.13 | 0.260 | ||
Intergenerational support | Before matching | 0.9550 | 0.9749 | −10.8 | 68.9 | −2.93 | 0.003 |
After matching | 0.9550 | 0.9612 | −6.1 | −0.57 | 0.568 | ||
Number of children | Before matching | 4.7271 | 4.5888 | 7.5 | 95.7 | 1.82 | 0.069 |
After matching | 4.7271 | 4.7212 | 0.3 | 0.06 | 0.953 |
Matching Method | Sample | Treated | Controls | ATT Difference (Difference) | S.E. | t-Value |
---|---|---|---|---|---|---|
Neighbor | Before matching | 0.5239 | 0.3590 | 0.1649 | 0.0199 | 8.30 *** |
After matching | 0.5239 | 0.4510 | 0.0729 | 0.0234 | 3.12 *** | |
Radius | Before matching | 0.5239 | 0.3590 | 0.1649 | 0.0199 | 8.30 *** |
After matching | 0.5239 | 0.4474 | 0.0751 | 0.0212 | 3.55 *** | |
Kernel | Before matching | 0.5239 | 0.3590 | 0.1649 | 0.0199 | 8.30 *** |
After matching | 0.5239 | 0.4440 | 0.0800 | 0.0210 | 3.81 *** |
Matching Method | Sample | Treated | Controls | ATT Difference (Difference) | S.E. | t-Value |
---|---|---|---|---|---|---|
Neighbor | Before matching | 0.4192 | 0.3700 | 0.0492 | 0.0160 | 3.07 *** |
After matching | 0.4192 | 0.3677 | 0.0515 | 0.0180 | 2.85 *** | |
Radius | Before matching | 0.4192 | 0.3700 | 0.0492 | 0.0160 | 3.07 *** |
After matching | 0.4192 | 0.3821 | 0.0371 | 0.0164 | 2.27 ** | |
Kernel | Before matching | 0.4192 | 0.3700 | 0.0492 | 0.0160 | 3.07 *** |
After matching | 0.4192 | 0.3747 | 0.0445 | 0.0163 | 2.73 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Wu, H.; Lan, H.; Xu, D.; Wang, W. The Influence of Disease Status on Loneliness of the Elderly: Evidence from Rural China. Int. J. Environ. Res. Public Health 2022, 19, 3023. https://doi.org/10.3390/ijerph19053023
Song J, Wu H, Lan H, Xu D, Wang W. The Influence of Disease Status on Loneliness of the Elderly: Evidence from Rural China. International Journal of Environmental Research and Public Health. 2022; 19(5):3023. https://doi.org/10.3390/ijerph19053023
Chicago/Turabian StyleSong, Jiahao, Haitao Wu, Hongxing Lan, Dingde Xu, and Wei Wang. 2022. "The Influence of Disease Status on Loneliness of the Elderly: Evidence from Rural China" International Journal of Environmental Research and Public Health 19, no. 5: 3023. https://doi.org/10.3390/ijerph19053023
APA StyleSong, J., Wu, H., Lan, H., Xu, D., & Wang, W. (2022). The Influence of Disease Status on Loneliness of the Elderly: Evidence from Rural China. International Journal of Environmental Research and Public Health, 19(5), 3023. https://doi.org/10.3390/ijerph19053023