An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Water Resources Security Evaluation Index
3.2. Individual Factor Grade Intervals
3.3. Fuzzy Security Level Using Fuzzy Set Pair Analysis
3.3.1. Calculation of Index Connection Degree
3.3.2. Determination of Index Weights
- (1)
- Standardize the evaluation index:
- (2)
- Determine the value of evaluation index entropy:
- (3)
- Determine the weight of index:
3.3.3. Calculation of Connection Degree
3.3.4. Measures of Water Resources Security
3.4. Statistical Analysis
3.4.1. Repeated Measures Correlation
3.4.2. Linear Mixed Models
4. Results
4.1. Water Resource Security Evaluation in Jiangxi Province Using the Modified Confidence Threshold Method
4.2. Temporal and Spatial Dynamics of Water Resource Security in Jiangxi Province
4.3. The Cross-Sectional and Longitudinal Inter-Correlations among the DPSIR Subsystems
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, D.; Lu, C.; Liu, J.; Wang, H.; Wang, J.; Li, H.; Chu, J.; Chen, G. Theoretical framework of dualistic nature–social water cycle. Chin. Sci. Bull. 2014, 59, 810–820. [Google Scholar] [CrossRef]
- John, C.K.; Pu, J.H.; Moruzzi, R.; Pandey, M. Health-risk assessment for roof-harvested rainwater via QMRA in Ikorodu area, Lagos, Nigeria. J. Water Clim. Chang. 2021, 12, 2479–2494. [Google Scholar] [CrossRef]
- John, C.K.; Pu, J.H.; Pandey, M.; Moruzzi, R. Impacts of sedimentation on rainwater quality: Case study at Ikorodu of Lagos, Nigeria. Water Supply 2021, 21, 3356–3369. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Pandey, B.; Yadav, A.K.; Saroj, S. Chapter 5—An overview of the potential impacts of global climate change on water resources. In Water Conservation in the Era of Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 99–120. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S.; et al. Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Qian, H. Water resources research to support a sustainable China. Int. J. Water Resour. Dev. 2018, 34, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Anandhi, A.; Kannan, N. Vulnerability assessment of water resources—Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer. J. Hydrol. 2018, 557, 460–474. [Google Scholar] [CrossRef]
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef]
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul. Bull. 1992, 47, 1–36. [Google Scholar]
- Raskin, P.; Gleick, P.; Kirshen, P.; Pontius, G.; Strzepek, K. Comprehensive Assessment of the Freshwater Resources of the World; Stockholm Environment Institute: Stockholm, Sweden, 1997. [Google Scholar]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Ashton, P.J. Avoiding conflicts over Africa’s water resources. Ambio 2002, 31, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.A. Calculating a Water Poverty Index. World Dev. 2002, 30, 1195–1210. [Google Scholar] [CrossRef]
- Wang, X.-j.; Zhang, J.-y.; Shamsuddin, S.; Xia, X.-h.; He, R.-m.; Shang, M.-t. Catastrophe theory to assess water security and adaptation strategy in the context of environmental change. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 463–477. [Google Scholar]
- Yin, S.; Dongjie, G.; Weici, S.; Weijun, G. Integrated assessment and scenarios simulation of urban water security system in the southwest of China with system dynamics analysis. Water Sci. Technol. 2017, 76, 2255–2267. [Google Scholar] [CrossRef]
- Su, F.; Li, P.; He, X.; Elumalai, V. Set Pair Analysis in Earth and Environmental Sciences: Development, Challenges, and Future Prospects. Expo. Health 2020, 12, 343–354. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Carr, E.R.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World Ecol. 2007, 14, 543–555. [Google Scholar] [CrossRef]
- Li, X.; Su, X.; Wei, Y. Multistage integrated water security assessment in a typical region of Northwestern China. J. Clean. Prod. 2019, 220, 732–744. [Google Scholar] [CrossRef]
- Jaramillo, P.; Nazemi, A. Assessing urban water security under changing climate: Challenges and ways forward. Sustain. Cities Soc. 2018, 41, 907–918. [Google Scholar] [CrossRef]
- Octavianti, T.; Staddon, C. A review of 80 assessment tools measuring water security. WIREs Water 2021, 8, e1516. [Google Scholar] [CrossRef]
- Jensen, O.; Wu, H. Urban water security indicators: Development and pilot. Environ. Sci. Policy 2018, 83, 33–45. [Google Scholar] [CrossRef]
- Cao, Y.; Bian, Y. Improving the ecological environmental performance to achieve carbon neutrality: The application of DPSIR-Improved matter-element extension cloud model. J. Environ. Manag. 2021, 293, 112887. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.N.; Mamun, A.; Saroar, M.; Roy, T.S. Application of “DPSIR” framework to assess the status and role of blue ecosystem services (BES) in Khulna city. J. Eng. Sci. 2019, 10, 49–60. [Google Scholar]
- Kagalou, I.; Leonardos, I.; Anastasiadou, C.; Neofytou, C. The DPSIR approach for an integrated river management framework. A preliminary application on a Mediterranean site (Kalamas River-NW Greece). Water Res. Manag. 2012, 26, 1677–1692. [Google Scholar] [CrossRef]
- Liu, S.; Ding, P.; Xue, B.; Zhu, H.; Gao, J. Urban Sustainability Evaluation Based on the DPSIR Dynamic Model: A Case Study in Shaanxi Province, China. Sustainability 2020, 12, 7460. [Google Scholar] [CrossRef]
- Mimidis, K.; Andrikakou, P.; Kallioras, A.; Pliakas, F. The DPSIR approach to groundwater management for sustainable development in coastal areas: The case of Nea Peramos aquifer system, Kavala, Greece. Water Util. J. 2017, 16, 67–80. [Google Scholar]
- Mosaffaie, J.; Jam, A.S.; Tabatabaei, M.R.; Kousari, M.R. Trend assessment of the watershed health based on DPSIR framework. Land Use Policy 2020, 100, 104911. [Google Scholar] [CrossRef]
- Qinlin, X.; Chao, T.; Yanjun, W.; Xiuqing, L.; Liming, X. Measurement and Comparison of Urban Haze Governance Level and Efficiency Based on the DPSIR Model: A Case Study of 31 Cities in North China. J. Resour. Ecol. 2020, 11, 549–561. [Google Scholar] [CrossRef]
- Nezami, S.R.; Nazariha, M.; Moridi, A.; Baghvand, A. Environmentally Sound Water Resources Management in Catchment Level using DPSIR Model and Scenario Analysis. Int. J. Environ. Res. 2013, 7, 569–580. [Google Scholar] [CrossRef]
- Shi, S.; Tao, X.; Chen, X.; Chen, H.; Fitri, A.; Yang, X. Evaluation of urban water security based on DPSIR model. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Sun, S.; Wang, Y.; Liu, J.; Cai, H.; Wu, P.; Geng, Q.; Xu, L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; Gomez y Paloma, S. Does research applying the DPSIR framework support decision making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Vannevel, R. Using DPSIR and Balances to Support Water Governance. Water 2018, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, J.; Wu, R.; Ma, Q.; Yang, J. Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China. Stoch. Hydrol. Hydraul. 2015, 30, 1235–1247. [Google Scholar] [CrossRef]
- Apostolaki, S.; Koundouri, P.; Pittis, N. Using a systemic approach to address the requirement for Integrated Water Resource Management within the Water Framework Directive. Sci. Total Environ. 2019, 679, 70–79. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Todaro, F.; Wang, L.; Tsang, D.C.; Notarnicola, M. A holistic DPSIR-based approach to the remediation of heavily contaminated coastal areas. Environ. Pollut. 2021, 284, 117129. [Google Scholar] [CrossRef]
- Xiang, X.; Li, Q. Water Resources Vulnerability Assessment and Adaptive Management Based on Projection Pursuit Model. J. Coast. Res. 2020, 103, 431–435. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Li, B. Sustainability Assessment of Water Resources in Beijing. Water 2020, 12, 1999. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Jia, Y.; Shen, J.; Wang, H.; Dong, G.; Sun, F. Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China). Water 2018, 10, 554. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wei, Y. Water resource system risk and adaptive management of the Chinese Heihe River Basin in Asian arid areas. Mitig. Adapt. Strat. Glob. Chang. 2019, 24, 1271–1292. [Google Scholar] [CrossRef]
- Ruan, J.; He, G. Comprehensive evaluation of water resources security of the Huaihe Eco-economic Belt. Water Supply 2021, 22, 1047–1061. [Google Scholar] [CrossRef]
- Chen, L.; Shi, J. Analysis and predication of urban water security: A case study of Chengdu City, China. IOP Conf. Series Earth Environ. Sci. 2016, 39, 012027. [Google Scholar] [CrossRef]
- Zi-Ying, Z.; An-Yan, H. Construction method and application of water environment security assessment system in Taizhou bay of Zhejiang province. J. Environ. Prot. Ecol. 2018, 19, 515–526. [Google Scholar]
- Zhou, F.; Su, W.; Zhang, F. Influencing Indicators and Quantitative Assessment of Water Resources Security in Karst Region Based on PSER Model—The Case of Guizhou. Sustainability 2019, 11, 5671. [Google Scholar] [CrossRef] [Green Version]
- Van Ginkel, K.C.H.; Hoekstra, A.Y.; Buurman, J.; Hogeboom, R.J. Urban Water Security Dashboard: Systems Approach to Characterizing the Water Security of Cities. J. Water Resour. Plan. Manag. 2018, 144, 04018075. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, Y.; Wang, Y. Comprehensive evaluation and influencing factors of urban agglomeration water resources carrying capacity. J. Clean. Prod. 2021, 288, 125097. [Google Scholar] [CrossRef]
- Sun, D.; Wu, J.; Zhang, F.; Su, W.; Hui, H. Evaluating Water Resource Security in Karst Areas Using DPSIRM Modeling, Gray Correlation, and Matter–Element Analysis. Sustainability 2018, 10, 3934. [Google Scholar] [CrossRef] [Green Version]
- Stanners, D.; Bourdeau, P. Europe’s Environment: The Dobris Assessment; EEA: Copenhagen, Denmark, 1995. [Google Scholar]
- Holten-Andersen, J.; Paaby, H. Recommendations on Strategies for Integrated Assessment of Broad Environmental Problems; Report submitted to the European Environment Agency (EEA); National Environmental Research Institute (NERI): Aarhus, Denmark, 1995. [Google Scholar]
- Gebremedhin, S.; Getahun, A.; Anteneh, W.; Bruneel, S.; Goethals, P. A Drivers-Pressure-State-Impact-Responses Framework to Support the Sustainability of Fish and Fisheries in Lake Tana, Ethiopia. Sustainability 2018, 10, 2957. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; He, Y.; Xie, R.; Liu, Y. A footprint-based water security assessment: An analysis of Hunan province in China. J. Clean. Prod. 2019, 245, 118485. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci. 2011, 28, 322–337. [Google Scholar] [CrossRef]
- Guo, E.; Zhang, J.; Ren, X.; Zhang, Q.; Sun, Z. Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Nat. Hazards 2014, 74, 947–965. [Google Scholar] [CrossRef]
- Liang, Y.; Lv, A. Risk assessment of water resource security in China. Resour. Sci. 2019, 4, 775–789. [Google Scholar]
- Yang, Z.-h.; Zhou, Q.-w.; Guo, Y.; Su, W.-c.; Zhang, F.-t. Dynamic assessment of water resources security in karst area based on SPA-MC model-a case study of Guiyang city. China Environ. Sci. 2017, 37, 1589–1600. [Google Scholar]
- Zhang, F.; Wang, L.; Su, W. Evaluation on the safety of epikarst dualistic water resources by coupling model of entropy weight set pair. China Environ. Sci. 2015, 35, 3511–3520. (In Chinese) [Google Scholar]
- Zhang, Z.; He, W.; An, M.; Degefu, D.M.; Yuan, L.; Shen, J.; Liao, Z.; Wu, X. Water Security Assessment of China’s One Belt and One Road Region. Water 2019, 11, 607. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Elzarka, H. Retrospective Evaluation of the Vulnerability of Watershed Sustainable Water Development Using a Time-Series-Based Space Geometry Model: Xiang Jiang Watershed, China. J. Hydrol. Eng. 2021, 26, 05021023. [Google Scholar] [CrossRef]
- Pagan, J.; Pryor, M.; Deepa, R.; Grace, J.M., III; Mbuya, O.; Taylor, R.; Dickson, J.O.; Ibeanusi, V.; Chauhan, A.; Chen, G.; et al. Sustainable Development Tool Using Meta-Analysis and DPSIR Framework—Application to Savannah River Basin, U.S. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 1059–1082. [Google Scholar] [CrossRef]
- Sarindizaj, E.E.; Karamouz, M. Dynamic Water Balance Accounting-Based Vulnerability Evaluation Considering Social Aspects. Water Resour. Manag. 2022, 36, 659–681. [Google Scholar] [CrossRef]
- Pan, B.; Han, M.; Li, Y.; Wang, M.; Du, H. An Analysis on the Trend of Sustainable Utilization of Water Resources in Dongying City, China. Water Resour. 2021, 48, 158–166. [Google Scholar] [CrossRef]
- Xiao, J. Safety Evaluation of Water Resources in Jiangxi Province. Master’s Thesis, Changsha University of Science & Technology, Changsha, China, 2008; p. 108. (In Chinese). [Google Scholar]
- Zhiping, Y.; Lihong, M. Evaluation of Environmental Carrying Capacity of Water Resources in Jiangxi Province. Agric. Sci. Technol. 2015, 16, 2849–2853. [Google Scholar]
- Sun, M.; Kato, T. City Water Resources Vulnerability: The Case of Jinan and Qingdao in Shandong Province, China; Springer: Singapore, 2020. [Google Scholar]
- Tan, C.; Peng, Q.; Ding, T.; Zhou, Z. Regional Assessment of Land and Water Carrying Capacity and Utilization Efficiency in China. Sustainability 2021, 13, 9183. [Google Scholar] [CrossRef]
- Lei, X.; Qiu, G. Empirical study about the carrying capacity evaluation of regional resources and environment based on entropy-weight TOPSIS model. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2016, 36, 314–323. [Google Scholar]
- Wensheng, W.; Yueqing, L.; Juliang, J.; Jing, D. Set-Pair Analysis of Hydrology and Water Resources; Science Publishing House: Beijing, China, 2010. [Google Scholar]
- Babel, M.S.; Shinde, V.R.; Sharma, D.; Dang, N.M. Measuring water security: A vital step for climate change adaptation. Environ. Res. 2020, 185, 109400. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Li, Z.; Fang, G.; Wang, Y. Development and utilization of water resources and assessment of water security in Central Asia. Agric. Water Manag. 2020, 240, 106297. [Google Scholar] [CrossRef]
- Arreguin-Cortes, F.I.; Saavedra-Horita, J.R.; Rodriguez-Varela, J.M.; Tzatchkov, V.G.; Cortez-Mejia, P.E.; Llaguno-Guilberto, O.J.; Sainos-Candelario, A.; Sandoval-Yoval, L.; Ortega-Gaucin, D.; Mendoza-Cazares, E.Y.; et al. Municipal level water security indices in Mexico. SN Appl. Sci. 2019, 1, 1194. [Google Scholar] [CrossRef] [Green Version]
- Aboelnga, H.T.; El-Naser, H.; Ribbe, L.; Frechen, F.-B. Assessing Water Security in Water-Scarce Cities: Applying the Integrated Urban Water Security Index (IUWSI) in Madaba, Jordan. Water 2020, 12, 1299. [Google Scholar] [CrossRef]
- Khan, S.; Guan, Y.; Khan, F.; Khan, Z. A Comprehensive Index for Measuring Water Security in an Urbanizing World: The Case of Pakistan’s Capital. Water 2020, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Nie, R.-X.; Tian, Z.-P.; Wang, J.-Q.; Zhang, H.-Y.; Wang, T.-L. Water security sustainability evaluation: Applying a multistage decision support framework in industrial region. J. Clean. Prod. 2018, 196, 1681–1704. [Google Scholar] [CrossRef]
- Assefa, Y.T.; Babel, M.S.; Sušnik, J.; Shinde, V.R. Development of a Generic Domestic Water Security Index, and Its Application in Addis Ababa, Ethiopia. Water 2018, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.Q. Set pair and set pair analysis—A new concept and systematic analysis method. In Proceedings of the National Conference on System Theory and Regional Planning, Baotou, China, January 1989. [Google Scholar]
- Zhang, X.Q.; Li, N.N. Research on water resources carrying capacity based on set pair analysis evaluation model. In Proceedings of the 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, Kunming, China, 26–28 November 2010. [Google Scholar]
- Yang, F.; Shao, D.; Xiao, C.; Tan, X.; Gu, W.; Wang, K. Improvement of set pair analysis evaluation method and its application on urban water security. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011. [Google Scholar]
- Yue, W.; Cai, Y.; Rong, Q.; Li, C.; Ren, L. A hybrid life-cycle and fuzzy-set-pair analyses approach for comprehensively evaluating impacts of industrial wastewater under uncertainty. J. Clean. Prod. 2014, 80, 57–68. [Google Scholar] [CrossRef]
- Zhang, X.; Du, X.; Li, Y. Comprehensive evaluation of water resources carrying capacity in ecological irrigation districts based on fuzzy set pair analysis. Desalin. Water Treat. 2020, 187, 63–69. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, M. An improved fuzzy-set pair analysis in water quality evaluation. Chin. J. Environ. Eng. 2015, 9, 749–755. [Google Scholar]
- Hongwei, W.; Xin, Z.; Junnan, Q. Application of fuzzy set pair analysis method in safety evaluation of water resources. J. Northwest Agric. For. Univ. 2011, 39, 210–214. [Google Scholar]
- Bo, Y.; Junjie, Y.; Ye, M.; Tao, W. A comprehensive evaluation and research of water resources allocation plans based on fuzzy set pair analysis. In Proceedings of the International Conference on Logistics Engineering, Management and Computer Science, Shenyang, China, 24–26 May 2014. [Google Scholar]
- Xie, Y.-X.; Wang, W.-S. Fractal fuzzy set pair analysis assessment model of urban flood-waterlogged vulnerability. J. Shenzhen Univ. Sci. Eng. 2012, 29, 12–17. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, J.; Zhang, B. Comprehensive evaluation of the water resources carrying capacity based on DPSIMR. J. Nat. Res. 2017, 32, 484–493. [Google Scholar]
- Wang, J.; Li, S.-C.; Li, L.-P.; Lin, P.; Xu, Z.-H.; Gao, C.-L. Attribute recognition model for risk assessment of water inrush. Bull. Eng. Geol. Environ. 2017, 78, 1057–1071. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Yuan, Z.; Xu, J.; Wang, Y.; Lin, Y. Water resource security evaluation of the Yangtze River Economic Belt. Water Supply 2020, 20, 1554–1566. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Calculating correlation coefficients with repeated observations: Part 2—Correlation between subjects. BMJ 1995, 310, 633. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistics notes: Calculating correlation coefficients with repeated observations: Part 1—Correlation within subjects. BMJ 1995, 310, 446. [Google Scholar] [CrossRef] [Green Version]
- Bakdash, J.Z.; Marusich, L. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: Cham, Switzerland, 2006. [Google Scholar]
- Bates, D. Fitting linear mixed models in R. R News 2005, 5, 27–30. [Google Scholar]
Subsystem | Factors | Unit | Calculation | Meaning of Index | Index Type | References |
---|---|---|---|---|---|---|
Driver | Per capita GDP (D1) | yuan/person | GDP/population | It indicates the driver of economic development on water resources security | + | [47,48,71,72] |
Population density (D2) | person/km2 | Total population/land area | It indicates the driver of population density on water security | - | [47,60,72,73] | |
Urbanization rate (D3) | % | Non-agricultural population/total population | It indicates the driver of regional development on water resources security | + | [15,47,48,60] | |
Annual GDP growth rate (D4) | % | Statistical data | It indicates the driver of economic development intensity to water resources security | + | [15,47,60] | |
Pressure | Water use for each 10,000 yuan of GDP (P1) | m3/10,000 yuan | Total amount of water use/total GDP | It indicates the pressure of economic development intensity on the quantity of water resources | - | [47,60,71,72] |
Wastewater discharge for each 10,000 yuan of GDP (P2) | m3/10,000 yuan | Wastewater discharge/total GDP | It indicates the pressure of industrial development on the quality of water resources | - | [47,60] | |
Water use for each 10,000 yuan of agricultural output (P3) | m3/10,000 yuan | Total amount of irrigated water use/total output value of farming | It indicates the pressure of agricultural development on the quality of water resources | - | [47,60,71] | |
Per capita daily consumption of tap water for residential use (P4) | L/day | Statistical data | It indicates the pressure of human life on the quantity of water resources | - | [47,60,73,74] | |
State | Per capita water resource quantity (S1) | m3/person | Total amount of water resources/total population | It indicates the per capita state of water resources | + | [15,23,47,60,71,74,75,76,77] |
Per unit area water resource quantity (S2) | 10,000 m3/km2 | Total amount of water resources/land area | It indicates the per unit area water resource state. | + | [23,72] | |
Impact | Energy consumption for each 10,000 yuan of GDP (I1) | Tons of SCE /10,000 yuan | Total Energy Composition/total GDP | It indicates the Potential impact of resource utilization on water resources | - | [74] |
Rate of green coverage area to developed area (I2) | % | Statistical data | It indicates the response of surface water storage to water resources | + | [60,71,74] | |
Proportion of tertiary industry in GDP (I3) | % | Statistical data | It indicates the impact of water resources system on industrial structure | + | [47,60] | |
Response | Utilization rate of water resources (R1) | % | Total amount of water use/total amount of water resources | It indicates the response of water resources quantity security | - | [15,47,72] |
Urban sewage treatment rate (R2) | % | Statistical data | It indicates the response of standard discharge of sewage | + | [60,71,74,75,76] |
Factor Level | Index Level | Index Type | 1—Safe | 2—Generally Safe | 3—Barely Safe | 4—Unsafe | 5—Very Unsafe |
---|---|---|---|---|---|---|---|
Driver (D) | D1 (yuan) | + | >75,000 | 55,000–75,000 | 35,000–55,000 | 15,000–35,000 | <15,000 |
D2 (person/km2) | - | <250 | 250–2000 | 2000–3750 | 3750–5500 | >5500 | |
D3 (%) | + | >70 | 50–70 | 30–50 | 10–30 | <10 | |
D4 (%) | + | >10 | 8–10 | 5–8 | 3–5 | <3 | |
Pressure (P) | P1 (m3) | - | <300 | 300–600 | 600–1000 | 1000–1500 | >1500 |
P2 (m3) | - | <20 | 20–30 | 30–40 | 40–60 | >60 | |
P3 (m3) | - | <500 | 500–1000 | 1000–1500 | 1500–2000 | >2000 | |
P4 (L/day) | - | <70 | 70–120 | 120–170 | 170–220 | >220 | |
State (S) | S1 (m3) | + | >3000 | 1700–3000 | 1000–1700 | 500–1000 | <500 |
S2 (10,000 m3/km2) | + | >200 | 200–150 | 150–100 | 100–50 | <50 | |
Impact (I) | I1 (Tons of SCE) | - | <0.5 | 0.5–1 | 1–2 | 2–5 | >5 |
I2 (%) | + | >40 | 30–40 | 20–30 | 10–20 | <10 | |
I3 (%) | + | >60 | 40–60 | 20–40 | 5–20 | <5 | |
Response(R) | R1 (%) | - | <5 | 5–15 | 15–30 | 30–45 | >45 |
R2 (%) | + | >90 | 80–90 | 70–80 | 60–70 | <60 |
D1 | D2 | D3 | D4 | P1 | P2 | P3 | P4 | S1 | S2 | I1 | I2 | I3 | R1 | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.060 | 0.067 | 0.065 | 0.150 | 0.052 | 0.051 | 0.049 | 0.040 | 0.075 | 0.070 | 0.045 | 0.062 | 0.079 | 0.050 | 0.086 |
D | P | S | I | R | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | Estimates | p | Estimates | p | Estimates | p | Estimates | p | Estimates | p |
(Intercept) | 1.27 | <0.001 | 2.99 | <0.001 | 2.79 | <0.001 | 2.70 | <0.001 | 2.15 | <0.001 |
(0.87–1.67) | (2.58–3.40) | (2.39–3.20) | (2.30–3.10) | (1.74–2.57) | ||||||
years | 0.09 | <0.001 | −0.12 | <0.001 | 0.03 | 0.212 | −0.13 | <0.001 | −0.06 | 0.017 |
(0.04–0.14) | (−0.17–−0.07) | (−0.02–0.08) | (−0.18–−0.08) | (−0.11–−0.01) | ||||||
Random Effects | ||||||||||
0.11 | 0.11 | 0.45 | 0.04 | 0.43 | ||||||
ICC | 0.14 | 0.51 | 0.16 | 0.62 | 0.32 | |||||
N | 11citys | 11citys | 11citys | 11citys | 11citys | |||||
Observations | 99 | 99 | 99 | 99 | 99 | |||||
Marginal R2/ Conditional R2 | 0.299/0.397 | 0.304/0.660 | 0.013/0.172 | 0.518/0.815 | 0.040/0.346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Wang, S.; Wang, X.; Liao, W.; Wang, C.; Lei, X.; Wang, H. An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China. Int. J. Environ. Res. Public Health 2022, 19, 3650. https://doi.org/10.3390/ijerph19063650
Lu M, Wang S, Wang X, Liao W, Wang C, Lei X, Wang H. An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China. International Journal of Environmental Research and Public Health. 2022; 19(6):3650. https://doi.org/10.3390/ijerph19063650
Chicago/Turabian StyleLu, Mengtian, Siyu Wang, Xiaoying Wang, Weihong Liao, Chao Wang, Xiaohui Lei, and Hao Wang. 2022. "An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China" International Journal of Environmental Research and Public Health 19, no. 6: 3650. https://doi.org/10.3390/ijerph19063650
APA StyleLu, M., Wang, S., Wang, X., Liao, W., Wang, C., Lei, X., & Wang, H. (2022). An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China. International Journal of Environmental Research and Public Health, 19(6), 3650. https://doi.org/10.3390/ijerph19063650