The Perception of Urban Forests in Post-Mining Areas: A Case Study of Sosnowiec-Poland
Abstract
:1. Introduction
2. Research Overview
3. Sources and Methods
- How often do you visit a forest or a park in the city of Sosnowiec?
- Should a green area in your area be a more accessible forest or park?
- Should this area be better managed (alleys, lighting, recreation)?
- Do you appreciate this area’s natural diversity?
- What deters you from wandering in a forest or park in the city? (See more in Appendix A)
4. Results
4.1. Features of Urban Forests
4.1.1. Diversity of Forests in Urbanized and Post-Mining Areas in Katowice Conurbation and Sosnowiec
- −
- the discrepancies between forest areas delimited in master plans and the actual extent of forests,
- −
- inconsistent trends in managing forest areas created as a result of succession in post-mining areas (with part of this area having the status of a forest, part the status of wasteland, and part the status of land with other uses),
- −
- the intense focus of municipal strategies and master plans towards the social role of parks, with the visible marginalization of forests
- −
- weak promotion of valuable natural fragments of forests and their biodiversity.
4.1.2. Forests in the Post-Mining Area—A Problem or an Opportunity for Town Planning in Sosnowiec
4.2. Results of Empirical Research
4.2.1. Forests in Post-Mining Areas in Documents
- −
- pressure to develop economic and residential investments,
- −
- diverse natural and geological conditions,
- −
- specific features of individual post-mining areas (e.g., pit, slag heap, leveled area, an area requiring decontamination),
- −
- location of a given forest complex,
- (a)
- renaturalization and reforestation,
- (b)
- reindustrialization,
- (c)
- functional pausing,
- (d)
- parkification (cf. also [79]).
4.2.2. Forests in Post-Mining Areas, in the Opinion of Residents
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Survey Developed with the CATI Method for Forest Areas
Information about Respondents | |
Question | Response |
Sex: | □ Female □ Male |
Age: | □ 18–34 years □ 35–54 years □ 55 years and over |
Neighbourhood: | □ Bór □ Dańdówka □ Dębowa Góra □ Klimontów □ Maczki □ Mec □ Milowice □ Niwka □ Osiedle Juliusz □ Osiedle Piastów □ Osiedle Stulecia □ Ostrowy Górnicze □ Pekin □ Pogoń □ Porąbka □ Rabka □ Sielec □ Stary Sosnowiec □ Środula □ Śródmieście □ Zagórze □ Other ............................................... |
Information on forest areas | |
1. How often do you visit a forest or a park in the city of Sosnowiec? | □ 1. Every day □ 2. Once a week □ 3. Once a month □ 4. Once a year □ 5. Every few years □ 6. I do not |
2. Should a green area in your area be a more accessible forest or park? | □ 1. Forest □ 2. Park □ 3. No opinion |
3. Should this area be better managed (alleys, lighting, recreation)? | □ 1. Yes □ 2. No □ 3. No opinion |
4. Do you appreciate this area’s natural Diversity? | □ 1. Yes □ 2. No □ 3. No opinion |
5. What deters you from wandering in a forest or park in the city? | □ 5.01. The threat of crime □ 5.02. Ticks □ 5.03. Wild animals □ 5.04. Being unacquainted with the area □ 5.05. Distance from home □ 5.06. Noise □ 5.07. Other ............................................... □ 5.08. Nothing deters me |
Appendix B. Results of the Chi-Square Test of Independence for Features from the Survey Developed with the CATI Method for Forest Areas
Statistic | Statistics: 1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? (6) × 2. Should a Green Area in Your Area Be a More Accessible Forest or Park? (3) (BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 37.47531 | df = 10 | p = 0.00005 |
M-L Chi-square | 28.31869 | df = 10 | p = 0.00160 |
Phi | 0.3534370 | ||
Contingency coefficient | 0.3332358 | ||
Cramér’s V | 0.2499177 |
1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? | Two-Way Summary Table: Observed Frequencies (Base in BASE) Marked Cells Have Counts > 4 | |||
2. Should a Green Area in Your Area Be a More Accessible Forest or Park. 2. Park | 2. Should a Green Area in Your Area Be a More Accessible Forest or Park 1. Forest | 2. Should a Green Area in Your Area Be a More Accessible Forest or Park 3. No Opinion | Row Totals | |
2. Once a week | 103 | 51 | 5 | 159 |
Column % | 59.20% | 48.57% | 23.81% | |
3. Once a month | 40 | 22 | 10 | 72 |
Column % | 22.99% | 20.95% | 47.62% | |
4. Once a year | 11 | 6 | 3 | 20 |
Column % | 6.32% | 5.71% | 14.29% | |
1. Every day | 15 | 24 | 1 | 40 |
Column % | 8.62% | 22.86% | 4.76% | |
6. I do not | 5 | 2 | 1 | 8 |
Column % | 2.87% | 1.90% | 4,76% | |
5. Every few years | 0 | 0 | 1 | 1 |
Column % | 0.00% | 0.00% | 4.76% | |
Totals | 174 | 105 | 21 | 300 |
Statistic | Statistics: 1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? (6) × 3. Should This Area Be Better Managed (Alleys, Lighting, Recreation)? (3) (BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 31.06643 | df = 10 | p = 0.00057 |
M-L Chi-square | 18.39142 | df = 10 | p = 0.04871 |
Phi | 0.322337 | ||
Contingency coefficient | 0.306793 | ||
Cramér’s V | 0.227927 |
1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? | Two-Way Summary Table: Observed Frequencies (Base in BASE) Marked Cells Have Counts > 4 | |||
3. Should This Area Be Better Managed (Alleys, Lighting, Recreation)? 2. No | 3. Should This Area Be Better Managed (Alleys, Lighting, Recreation)? 1. Yes | 3. Should This Area Be Better Managed (Alleys, Lighting, Recreation)? 3. No Opinion | Row Totals | |
2. Once a week | 49 | 102 | 8 | 159 |
Column % | 52.13% | 53.97% | 47.06% | |
3. Once a month | 24 | 44 | 4 | 72 |
Column % | 25.53% | 23.28% | 23.53% | |
4. Once a year | 6 | 10 | 4 | 20 |
Column % | 6.38% | 5.29% | 23.53% | |
1. Every day | 11 | 29 | 0 | 40 |
Column % | 11.70% | 15.34% | 0.00% | |
6. I do not | 4 | 4 | 0 | 8 |
Column % | 4.26% | 2.12% | 0.00% | |
5. Every few years | 0 | 0 | 1 | 1 |
Column % | 0.00% | 0.00% | 5.88% | |
Totals | 94 | 189 | 17 | 300 |
Statistic | Statistics: 1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? (6) × 4. Do You Appreciate This Area’s Natural Diversity? (3) (BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 42.62672 | df = 10 | p = 0.00001 |
M-L Chi-square | 30.60505 | df = 10 | p = 0.00068 |
Phi | 0.377577 | ||
Contingency coefficient | 0.353236 | ||
Cramér’s V | 0.266987 |
1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? | Two-Way Summary Table: Observed Frequencies (Base in BASE) Marked Cells Have Counts > 4 | |||
4. Do You Appreciate This Area’s Natural Diversity? 1. Yes | 4. Do You Appreciate This Area’s Natural Diversity? 3. No Opinion | 4. Do You Appreciate This Area’s Natural Diversity? 2. No | Row Totals | |
2. Once a week | 138 | 6 | 15 | 159 |
Column % | 55.65% | 27.27% | 50.00% | |
3. Once a month | 59 | 8 | 5 | 72 |
Column % | 23.79% | 36.36% | 16.67% | |
4. Once a year | 10 | 6 | 4 | 20 |
Column % | 4.03% | 27.27% | 13.33% | |
1. Every day | 36 | 0 | 4 | 40 |
Column % | 14.52% | 0.00% | 13.33% | |
6. I do not | 5 | 1 | 2 | 8 |
Column % | 2.02% | 4.55% | 6.67% | |
5. Every few years | 0 | 1 | 0 | 1 |
Column % | 0.00% | 0.00% | 0.00% | |
Totals | 248 | 22 | 30 | 300 |
Statistic | Statistics: M4. Age (3) × 5.02. pw. Ticks (2) (Base in BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 6.609019 | df = 2 | p = 0.03672 |
M-L Chi-square | 6.840868 | df = 2 | p = 0.03270 |
Phi | 0.148425 | ||
Contingency coefficient | 0.146817 | ||
Cramér’s V | 0.148425 |
M4. Age | Two-Way Summary Table: Observed Frequencies (Base in BASE) Marked Cells Have Counts > 4 | ||
5.02. pw. Ticks 0 | 5.02. pw. Ticks 1 | Row Totals | |
3. 55 years and over | 92 | 41 | 133 |
Column % | 40.71% | 55.41% | |
1. 18–34 years | 47 | 16 | 63 |
Column % | 20.80% | 21.62% | |
2. 35–54 years | 87 | 17 | 104 |
Column % | 38.50% | 22.97% | |
Totals | 226 | 74 | 300 |
Statistic | Statistics: 1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? (6) × 5.04. pw. Being Unacquainted with the Area (2) (BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 11.90814 | df = 5 | p = 0.03607 |
M-L Chi-square | 8.645664 | df = 5 | p = 0.12406 |
Phi | 0.199233 | ||
Contingency coefficient | 0.195393 | ||
Cramér’s V | 0.199233 |
1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? | Two-Way Summary Table: Observed Frequencies (BASE) Marked Cells Have Counts > 5 | ||
5.04. pw. Being Unacquainted with the Area 0 | 5.04. pw. Being Unacquainted with the Area 1 | Row Totals | |
2. Once a week | 138 | 21 | 159 |
Column % | 51.69% | 63.64% | |
3. Once a month | 68 | 4 | 72 |
Column % | 25.47% | 12.12% | |
4. Once a year | 17 | 3 | 20 |
Column % | 6.37% | 9.09% | |
1. Every day | 37 | 3 | 40 |
Column % | 13.86% | 9.09% | |
6. I do not | 7 | 1 | 8 |
Column % | 2.62% | 3.03% | |
5. Every few years | 0 | 1 | 1 |
Column % | 0.00% | 3.03% | |
Totals | 267 | 33 | 300 |
Statistic | Statistics: 1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec (6) × 5.01. pw? The Threat of Crime (2) (BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 21.70901 | df = 5 | p = 0.00059 |
M-L Chi-square | 17.77878 | df = 5 | p = 0.00324 |
Phi | 0.269004 | ||
Contingency coefficient | 0.25977 | ||
Cramér’s V | 0.269004 |
1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? | Two-Way Summary Table: Observed Frequencies (BASE) Marked Cells Have Counts > 5 | ||
5.01. pw. The Threat of Crime 0 | 5.01. pw. The Threat of Crime 1 | Row Totals | |
2. Once a week | 142 | 17 | 159 |
Column % | 54.20% | 44.74% | |
3. Once a month | 67 | 5 | 72 |
Column % | 25.57% | 13.16% | |
4. Once a year | 17 | 3 | 20 |
Column % | 6.49% | 7.89% | |
1. Every day | 28 | 12 | 40 |
Column % | 10.69% | 31.58% | |
6. I do not | 8 | 0 | 8 |
Column % | 3.05% | 0.00% | |
5. Every few years | 0 | 1 | 1 |
Column % | 0.00% | 2.63% | |
Totals | 262 | 38 | 300 |
Statistic | Statistics: 1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? (6) × 5.07. pw. Other? (2) (BASE) | ||
Chi-Square | df | p | |
Pearson Chi-square | 11.62483 | df = 5 | p = 0.04031 |
M-L Chi-square | 8.524585 | df = 5 | p = 0.12960 |
Phi | 0.196849 | ||
Contingency coefficient | 0.193142 | ||
Cramér’s V | 0.196849 |
1. How Often Do You Visit a Forest or a Park in the City of Sosnowiec? | Two-Way Summary Table: Observed Frequencies (BASE) Marked Cells Have Counts > 5 | ||
5.07. pw. Other? 0 | 5.07. pw. Other? 1 | Row Totals | |
2. Once a week | 150 | 9 | 159 |
Column % | 53.57% | 45.00% | |
3. Once a month | 68 | 4 | 72 |
Column % | 24.29% | 20.00% | |
4. Once a year | 16 | 4 | 20 |
Column % | 5.71% | 20.00% | |
1. Every day | 39 | 1 | 40 |
Column % | 13.93% | 5.00% | |
6. I do not | 6 | 2 | 8 |
Column % | 2.14% | 10.00% | |
5. Every few years | 1 | 0 | 1 |
Column % | 0.36% | 0.00% | |
Totals | 280 | 20 | 300 |
References
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Grin, J.; Rotmans, J.; Schot, J. Transitions to Sustainable Development. New Directions in the Study of Long Term Transformative Change; Routledge: New York, NY, USA; London, UK, 2010. [Google Scholar]
- Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [Google Scholar] [CrossRef]
- Patterson, J.; Schulz, K.; Vervoort, J.; van der Hel, S.; Widerberg, O.; Adler, C.; Hurlbert, M.; Anderton, K.; Sethi, M.; Barau, A.S. Exploring the governance and politics of transformations towards sustainability. Environ. Innov. Soc. Transit. 2017, 24, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rink, D. Wilderness: The Nature of Urban Shrinkage? The Debate on Urban Restructuring and Restoration in Eastern Germany. Nat. Cult. 2009, 4, 275–292. [Google Scholar] [CrossRef]
- Wirth, P.; Černič Mali, B.; Fischer, W. (Eds.) Post-Mining Regions in Central Europe—Problems, Potentials, Possibilities; Oekom: München, Germany, 2012. [Google Scholar]
- Runge, A.; Kantor-Pietraga, I.; Runge, J.; Krzysztofik, R.; Dragan, W. Can Depopulation Create Urban Sustainability in Postindustrial Regions? A Case from Poland. Sustainability 2018, 10, 4633. [Google Scholar] [CrossRef] [Green Version]
- Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards smart cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Vargas-Hernandez, J.G.; Pallagst, K.; Hammer, P. Urban Green Spaces as a Component of an Ecosystem Functions, Services, Users, Community Involvement, initiatives and Actions. Int. J. Environ. Sc. Nat. Resour. 2018, 8, 24–39. Available online: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.555730.php (accessed on 20 November 2021).
- Franz, M.; Pahlen, G.; Nathanail, P.; Okuniek, N.; Koj, A. Sustainable development and brownfield regeneration. What defines the quality of derelict land recycling? Environ. Sci. 2006, 3, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Baycan-Levent, T.; Nijkamp, P. Planning and Management of Urban Green Spaces in Europe: Comparative Analysis. J. Urban Plan. Dev. 2009, 135, 1–12. [Google Scholar] [CrossRef]
- Mathey, J.; Rink, D. Urban redevelopment and quality of open spaces. In Sustainable Built Environments; Loftness, V., Haase, D., Eds.; Springer: New York, NY, USA, 2013; pp. 719–732. [Google Scholar] [CrossRef]
- Mudrák, O.; Frouz, J.; Velichová, V. Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol. Eng. 2010, 36, 783–790. [Google Scholar] [CrossRef]
- Krzysztofik, R.; Dulias, R.; Kantor-Pietraga, I.; Spórna, T.; Dragan, W. Paths of urban planning in a post-mining area. A case study of a former sandpit in southern Poland. Land Use Policy 2020, 99, 104801. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Annerstedt, M.; Nielsen, A.B.; Maruthaveeran, S. Benefits of Urban Parks. A systematic review. A Report for IFPRA; University of Copenhagen: Copenhagen, Denmark; Swedish University of Agricultural Sciences: Alnarp, Sweden, 2013. [Google Scholar]
- De Sousa, C.A. Turning brownfields into green space in the City of Toronto. Lands. Urban Plan. 2003, 62, 181–198. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Cohen, D.A.; Golinelli, D.; Williamson, S.; Sehgal, A.; Marsh, T.; McKenzie, T.L. Effects of Park Improvements on Park Use and Physical Activity: Policy and Programming Implications. Am. J. Prev. Med. 2009, 37, 475–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmonov, O.; Krzysztofik, R.; Środek, D.; Smolarek-Lach, J. Vegetation- and Environmental Changes on Non-Reclaimed Spoil Heaps in Southern Poland. Biology 2020, 9, 164. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Randrup, T.B. Urban forestry. In Encyclopedia of Forest Sciences; Burley, J., Evans, J., Younquist, J.A., Eds.; Elsevier Science: London, UK, 2004; pp. 471–478. [Google Scholar]
- Svobodova, K.; Sklenicka, P.; Molnarová, K.J.; Salek, M. Visual preferences for physical attributes of mining and post-mining landscapes with respect to the sociodemographic characteristics of respondents. Ecol. Eng. 2012, 43, 34–44. [Google Scholar] [CrossRef]
- Thompson, C.W.; Aspinall, P.; Bell, S.; Findlay, C. “It Gets You Away From Everyday Life”: Local Woodlands and Community Use—What Makes a Difference? Landsc. Res. 2005, 30, 109–146. [Google Scholar] [CrossRef]
- Wong, T.; Yuen, B. Eco-City Planning; Springer: Singapore, 2011. [Google Scholar]
- Bjerke, T.; Østdahl, T.; Thrane, C.; Strumse, E. Vegetation density of urban parks and perceived appropriateness for recreation. Urban For. Urban Green. 2006, 5, 35–44. [Google Scholar] [CrossRef]
- Adamiec, P.; Trzaskowska, E. Diagnoza stanu i walorów parków miejskich Lublina oraz wytyczne ich kształtowania [Diagnosis of the condition and advantages of Lublin’s city parks and guidelines for their shaping]. Teka Kom. Arch. Urb. Stud. Krajobr. OL PAN 2012, VIII/1, 7–18. [Google Scholar]
- Szumacher, I. Funkcje terenów zieleni miejskiej a świadczenia ekosystemów Urban greenery functions and ecosystem services]. Pr. Stud. Geogr. 2011, 46, 169–176. [Google Scholar]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, M.; Frantzeskaki, N. Cities and Systemic Change for Sustainability: Prevailing Epistemologies and an Emerging Research Agenda. Sustainability 2016, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Mersal, A. Sustainable Urban Futures: Environmental Planning for Sustainable Urban Development. Procedia Environ. Sci. 2016, 34, 49–61. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, L. The brownfield dual land-use policy challenge: Reducing barriers to private redevelopment while connecting reuse to broader community goals. Land Use Policy 2002, 19, 287–296. [Google Scholar] [CrossRef]
- Dixon, T.; Otsuka, N.; Abe, H. Critical Success Factors in Urban Brownfield Regeneration: An Analysis of ‘Hardcore’ Sites in Manchester and Osaka during the Economic Recession (2009–10). Environ. Plan. A Econ. Space 2011, 43, 961–980. [Google Scholar] [CrossRef]
- Martinat, S.; Dvorak, P.; Frantal, B.; Klusacek, P.; Kunc, J.; Navratil, J.; Osman, R.; Tureckova, K.; Reed, M. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic. J. Clean. Prod. 2016, 118, 78–87. [Google Scholar] [CrossRef]
- Chan, E.H.; Choy, L.H.; Yung, E.H. Current research on low-carbon cities and institutional responses. Habitat Int. 2013, 37, 1–3. [Google Scholar] [CrossRef]
- Mathey, J.; Rößler, S.; Banse, J.; Lehmann, I. How can urban brownfields contribute to climate adaptation and human well-being in cities? In Proceedings of the European Conference “Climate Change and Nature Conservation in Europe—An Ecological, Policy and Economic Perspective”. Available online: http://www.landschaft.tu-berlin.de/fileadmin/fg218/Publikationen/BfN_2014_EuropeanConference_CC_NC_Skript_367.pdf (accessed on 20 December 2021).
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Kiewra, D.; Szpor, A.; Witajewski-Baltvilks, J. Just Coal Transition in the Silesia Region. Implications for the Labour Market; I.B.S. Research Report 02: Warsaw, Poland, 2019; Available online: https://ibs.org.pl/app/uploads/2019/07/Summary_IBS_Research_Report_02_2019_ENG.pdf (accessed on 20 December 2021).
- Krzysztofik, R. The socio-economic transformation of the Katowice conurbation in Poland. In Growth and Change in Post-Socialist Cities of Central Europe; Cudny, W., Kunc, J., Eds.; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2021; pp. 195–2016. [Google Scholar]
- Cortese, C.; Haase, A.; Grossmann, K.; Ticha, I. Governing Social Cohesion in Shrinking Cities: The Cases of Ostrava, Genoa and Leipzig. Eur. Plan. Stud. 2014, 22, 2050–2066. [Google Scholar] [CrossRef]
- Rink, D.; Arndt, T. Investigating perception of green structure configuration for afforestation in urban brownfield development by visual methods—A case study in Leipzig, Germany. Urban For. Urban Green. 2016, 15, 65–74. [Google Scholar] [CrossRef]
- Stryjakiewicz, T.; Jaroszewska, E. The Process of Shrinkage as a Challenge to Urban Governance. Quaest. Geogr. 2016, 35, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Mallach, A.; Haase, A.; Hattori, K. The shrinking city in comparative perspective: Contrasting dynamics and responses to urban shrinkage. Cities 2017, 69, 102–108. [Google Scholar] [CrossRef]
- Haase, D.; Haase, A.; Kabisch, N.; Kabisch, S.; Rink, D. Actors and factors in land-use simulation: The challenge of urban shrinkage. Environ. Model. Softw. 2012, 35, 92–103. [Google Scholar] [CrossRef]
- Batunova, E.; Gunko, M. Urban shrinkage: An unspoken challenge of spatial planning in Russian small and medium-sized cities. Eur. Plan. Stud. 2018, 26, 1580–1597. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Miettinen, A. Property Prices and Urban Forest Amenities. J. Environ. Econ. Manag. 2000, 39, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosyst. 2013, 16, 741–761. [Google Scholar] [CrossRef] [Green Version]
- Pallagst, K.; Fleschurz, R.; Said, S. What drives planning in a shrinking city? Tales from two German and two American cases. Town Plan. Rev. 2017, 88, 15–28. [Google Scholar] [CrossRef]
- Forman, R.T.T. Towns, Ecology, and the Land; Cambridge University Press: New York, NY, USA, 2019. [Google Scholar]
- Szafrańska, E.; de Lille, L.C.; Kazimierczak, J. Urban shrinkage and housing in a post-socialist city: Relationship between the demographic evolution and housing development in Łódź, Poland. J. Hous. Built Environ. 2019, 34, 441–464. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, C.A. Brownfields Redevelopment and the Quest for Sustainability; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Rizzo, E.; Pesce, M.; Pizzol, L.; Alexandrescu, F.M.; Giubilato, E.; Critto, A.; Marcomini, A.; Bartke, S. Brownfield regeneration in Europe: Identifying stakeholder perceptions, concerns, attitudes and information needs. Land Use Policy 2015, 48, 437–453. [Google Scholar] [CrossRef]
- Doick, K.J.; Sellers, G.; Hutchings, T.R.; Moffat, A.J. Brownfield sites turned green: Realising sustainability in urban revival. In Brownfields III. Prevention, Assessment, Rehabilitation and Development of Brownfield Sites; Brebbia, C.A., Mander, U., Eds.; W.I.T. Press: Southampton, UK, 2006; pp. 131–140. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, S.E.; Landhäusser, S.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.L.; Jacobs, D.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Klusáček, P.; Alexandrescu, F.; Osman, R.; Malý, J.; Kunc, J.; Dvořák, P.; Frantal, B.; Havlíček, M.; Krejčí, T.; Martinát, S.; et al. Good governance as a strategic choice in brownfield regeneration: Regional dynamics from the Czech Republic. Land Use Policy 2018, 73, 29–39. [Google Scholar] [CrossRef]
- Ahmad, N.; Zhu, Y.; Shao, J.; Lin, H. Stakeholders’ perspective on strategies to promote contaminated site remediation and brownfield redevelopment in developing countries: Empirical evidence from Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 14614–14633. [Google Scholar] [CrossRef] [PubMed]
- Eckerd, A.; Keeler, A.G. Going green together? Brownfield remediation and environmental justice. Policy Sci. 2012, 45, 293–314. [Google Scholar] [CrossRef]
- Kabisch, S.; Kuhlicke, C. Urban Transformations and the Idea of Resource Efficiency, Quality of Life and Resilience. Built Environ. 2014, 40, 497–507. [Google Scholar] [CrossRef]
- Douglas, I.; Sadler, J.P. Urban wildlife corridors. Conduits for movement or linear habitat? In The Routledge Handbook of Urban Ecology; Douglas, I., Goode, D., Houck, M., Wang, R., Eds.; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2015; pp. 274–288. [Google Scholar]
- Keil, A. Use and perception of post-industrial urban landscapes in the Ruhr. In Wild Urban Woodlands: New Perspectives for Urban Forestry; Kowarik, I., Körner, S., Eds.; Springer: Berlin, Germany, 2005; pp. 117–130. [Google Scholar]
- Mathey, J.; Arndt, T.; Banse, J.; Rink, D. Public perception of spontaneous vegetation on brownfields in urban areas—Results from surveys in Dresden and Leipzig (Germany). Urban For. Urban Green. 2018, 29, 384–392. [Google Scholar] [CrossRef]
- Mapy i Granice Historyczne Województwa Śląskiego [Historical Maps and Borders of the Silesian Voivodeship]. Available online: https://geoportal.orsip.pl/aplikacje-mapowe (accessed on 20 November 2021).
- Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde; Springer: Vienna, NY, USA, 1964. [Google Scholar]
- Lokalny Program Rewitalizacji Miasta Sosnowca na lata 2016–2023 [Local Program for the Revitalization of the City of Sosnowiec for 2016–2023]; Municipal Office in Sosnowiec: Sosnowiec, Poland, 2017.
- Strategia Rozwoju Miasta Sosnowca do 2020 r. [Strategy for the Development of Sosnowiec until 2020]; Municipal Office in Sosnowiec: Sosnowiec, Poland, 2007.
- Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Sosnowca [Sosnowiec—Master Plan—Study of the Conditions and Directions for Spatial Development]; Municipal Office in Sosnowiec: Sosnowiec, Poland, 2016.
- BDL GUS, Bank Danych Lokalnych Główny Urząd Statystyczny [Central Statistical Office Poland, Local Data Bank]. Available online: https://bdl.stat.gov.pl/BDL (accessed on 20 December 2021).
- Storm, A. Post-Industrial Landscape Scars; Palgrave Macmillan: New York, NY, USA, 2014. [Google Scholar]
- Henne, S.K. “New Wilderness” as an Element of the Peri-Urban Landscape. In Wild Urban Woodlands; Kowarik, I., Körner, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 247–262. [Google Scholar] [CrossRef]
- Bonthoux, S.; Brun, M.; Di Pietro, F.; Greulich, S.; Bouché-Pillon, S. How can wastelands promote biodiversity in cities? A review. Landsc. Urban Plan. 2014, 132, 79–88. [Google Scholar] [CrossRef]
- Czylok, A. Przemiany i współczesny stan środowiska biotycznego na obszarze miasta [Transformations and the contemporary state of the biotic environment in the city]. In Sosnowiec Obraz Miasta i Jego Dzieje [Sosnowiec—An Image of the City and Its History]; Barciak, A., Jankowski, A.T., Eds.; Muzeum w Sosnowcu: Sosnowiec, Poland, 2016; pp. 113–120. [Google Scholar]
- Środek, D.; Rahmonov, O. The Properties of Black Locust Robinia pseudoacacia L. to Selectively Accumulate Chemical Elements from Soils of Ecologically Transformed Areas. Forests 2022, 13, 7. [Google Scholar] [CrossRef]
- Matuszkiewicz, J.M. Potential Vegetation of Poland; Polish Academy of Science: Warsaw, Poland, 2008. [Google Scholar]
- Rahmonov, O.; Cabała, J.; Krzysztofik, R. Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. Biology 2021, 10, 1242. [Google Scholar] [CrossRef]
- Krzysztofik, R.; Kantor-Pietraga, I.; Spórna, T. A Dynamic Approach to the Typology of Functional Derelict Areas (Sosnowiec, Poland). Morav. Geogr. Rep. 2013, 21, 20–35. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- M.E.A. (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Sosnowiec. Miejscowy Plan Zagospodarowania Przestrzennego—Milowice [Sosnowiec. Local Spatial Development Plan—Milowice]; Urząd Miejski w Sosnowcu [Municipal Office in Sosnowiec]: Sosnowiec, Poland, 2016.
- Sosnowiec. Miejscowy Plan Zagospodarowania Przestrzennego—Niwka [Sosnowiec. Local Spatial Development Plan—Niwka]; Urząd Miejski w Sosnowcu [Municipal Office in Sosnowiec]: Sosnowiec, Poland, 2016.
- Opania, S.; Szaton, K. Krajobraz Kontrastów: Koncepcja Obszaru Funkcjonalnego Krajobrazowego Parku Linearnego Doliny Przemszy i Brynicy [Landscape of Contrasts: The Idea of Functional Area of Przemsza and Brynica Landscape Linear Park]; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2019. [Google Scholar]
- Krzysztofik, R.; Runge, J.; Kantor-Pietraga, I. Paths of Environmental and Economic Reclamation: The Case of Post-Mining Brownfields. Pol. J. Environ. Stud. 2012, 21, 219–223. [Google Scholar]
- Krzysztofik, R.; Kantor-Pietraga, I.; Spórna, T. Spatial and functional dimensions of the COVID-19 epidemic in Poland. Eurasian Geogr. Econ. 2020, 61, 573–586. [Google Scholar] [CrossRef]
- Marynowski, L.; Łupikasza, E.; Dąbrowska-Zapart, K.; Małarzewski, L.; Niedźwiedź, T.; Simoneit, B.R. Seasonal and vertical variability of saccharides and other organic tracers of PM10 in relation to weather conditions in an urban environment of Upper Silesia, Poland. Atmos. Environ. 2020, 242, 117849. [Google Scholar] [CrossRef]
- Rink, D. Urbane Wälder in Leipzig: Ein neuer Grünflächentyp. Transform. Cities 2019, 4, 66–69. [Google Scholar]
- Rosa, J.C.S.; Sánchez, L.E.; Morrison-Saunders, A. Getting to ‘agreed’ post-mining land use—An ecosystem services approach. Impact Assess. Proj. Apprais. 2018, 36, 220–229. [Google Scholar] [CrossRef]
- Rahmonov, O.; Abramowicz, A.; Pukowiec-Kurda, K.; Fagiewicz, K. The link between a high-mountain community and ecosystem services of juniper forests in Fann Mountains (Tajikistan). Ecosyst. Serv. 2021, 48, 101255. [Google Scholar] [CrossRef]
- Fish, R.; Saratsi, E.; Reed, M.; Keune, H. Stakeholder Participation in Ecosystem Service Decision-Making. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Youg, R., Fish, R., Turner, K., Eds.; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2016; pp. 256–270. [Google Scholar] [CrossRef]
- Jacobs, S.; Dendoncker, N.; Martín-López, B.; Barton, D.N.; Gomez-Baggethun, E.; Boeraeve, F.; McGrath, F.L.; Vierikko, K.; Geneletti, D.; Sevecke, K.J.; et al. A new valuation school: Integrating diverse values of nature in resource and land use decisions. Ecosyst. Serv. 2016, 22, 213–220. [Google Scholar] [CrossRef]
- Lima, E.A.C.F.; Ranieri, V.E.L. Land use planning around protected areas: Case studies in four state parks in the Atlantic forest region of southeastern Brazil. Land Use Policy 2018, 71, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Rosa, J.C.S.; Sánchez, L.E. Advances and challenges of incorporating ecosystem services into impact assessment. J. Environ. Manag. 2016, 180, 485–492. [Google Scholar] [CrossRef]
- Partidario, M.R.; Gomes, R.C. Ecosystem services inclusive strategic environmental assessment. Environ. Impact Assess. Rev. 2013, 40, 36–46. [Google Scholar] [CrossRef]
- Kohlová, M.B.; Nepožitková, P.; Melichar, J. How Do Observable Characteristics of Post-Mining Forests Affect Their Attractiveness for Recreation? Land 2021, 10, 910. [Google Scholar] [CrossRef]
- Haase, A.; Wolff, M.; Rink, D. From shrinkage to regrowth: The nexus between urban dynamics, land use change and ecosystem service provision. In Urban Transformations. Future City; Kabisch, S., Koch, F., Gawel, E., Haase, A., Knapp, S., Krellenberg, K., Nivala, J., Zehnsdorf, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 197–219. [Google Scholar] [CrossRef]
Sample Distribution | Female | Male | The Total Population in Particular Groups | ||||||
---|---|---|---|---|---|---|---|---|---|
18–34 Years | 35–54 Years | 55 Years and Over | 18–34 Years | 35–54 Years | 55 Years and Over | 18–34 Years | 35–54 Years | 55 Years and Over | |
Population in 2019 | 17,499 | 29,348 | 44,307 | 18,287 | 29,481 | 32,037 | 35,786 | 58,829 | 76,344 |
Population in 2019 in % | 10.24 | 17.17 | 25.92 | 10.7 | 17.24 | 18.74 | 20.93 | 34.41 | 44.66 |
Numerical distribution of the sample after correction | 31 | 52 | 77 | 32 | 52 | 56 | 63 | 104 | 133 |
No. | Type of Vegetation and Woody and Shrubby Species Dominants | Local Names | Forest Layers * | Forest Area in km2 | Compactness | The Age Structure | Type of (Post) Mining Activity ** |
---|---|---|---|---|---|---|---|
1. | Mixed poplar and birch forest: Tree layer (A): Populus tremula, Betula pendula, Robinia pseudoacacia and single Pinus sylvestris. | Bergi | A,B,D | 0.61 | 4–5 | 30–40 | 1,2,3,4 |
2. | Fresh pine forest Leucobryo-Pinetum: Tree layer (A): P. sylvestris, Q. robur, Acer pseudoplatanus. Shrub layer (B): Sorbus aucuparia and Padus serotina. Vaccinium myrtillus and V. vites-idaea. | Bory | A,B,C,D | 0.31 | 4–5 | 50–60 | 4 |
3. | Artificial mixed forest: Tree layer (A): R. pseudoacacia, B. pendula, P. sylvestris, Q. rubra. Shrub layer (B) mostly Padus serotina. | Dorota | A,B,C | 0.32 | 4–5 | 60–70 | 1,2 |
4. | Artificial pine plantation: P. sylvestris with a single share of B. pendula and Populus tremula. Shrub layer (B): a single specimen of P. tremula. | Hałda Feliks | A,B | 0.23 | 5 | 20–30 | 2 |
5. | Artificial mixed oak-pine-birch forest: Tree layer (A): Q. rubra, Q. robur. P. sylvestris, B. pendula, R. pseudoacacia, Populus alba and Padus serotina in B layer (shrub). | Jęzor Południe | A,B,C | 2.13 | 3–4 | 60–70 | 4 |
6. | Deciduous mixed forests Robinia-Populus-Betula-Acer: Tree layer (A): R. pseudocacia, Populus tremula, Betula pendula, A. platanoides, A. pseudoplatanus, Tilia cordata, A. negundo. Shrub layer: Sambucus nigra, S. aucuparia, Corylus avellana, Prunus serotina, Crataegus monogyna. | Józefów | A,B,C,D | 0.38 | 5 | 70–80 | 1,2,3 |
7. | Mixed forests with black locust and maple forest: Tree layer: R. pseudoacacia, A. platanoides, A. pseudoplatanus, A. negundo, Tilia cordata, Ulmus montana, U. minor and Populus nigra. Shrub layer: Caragana arborescens Juglans regia, Malus domestica. | Kamionka—Dańdówka | A,B,C,D | 0.03 | 3–4 | 50–60 | 5 |
8. | Elm and oak forest: Tree layer: Ulmus laevis, Quercus robur, Carpinus betulus, A. platanoides, A. pseudoplatanus, Betula obscura, Aesculus hipocastanum. Shrub layer (B): Corylus avellana, Prunus serotina, Crataegus monogyna, Cornus sanguinea, Sambucius nigra. | Kamionka—Mec | A,B,C,D | 0.06 | 5 | 40–50 | 5 |
9. | Artificial birch forest: Mainly B. pendula in tree layer. B layer: Padus serotina and Hippophae rhamnoides. | Klimontów (Mine) | A,B | 0.35 | 5 | 30 | 2 |
10. | Artificial mixed forest: Tree layer: Q. rubra, R. pseuduacacia, Fagus sylvatica, A. negundo, P. sylvestris, P. nigra, P. alba. Shrub layer: Caragana arborescens, Salix caprea, S. pupurea. | Las Zagórski | A,B,C,D | 1.93 | 4–5 | 60–70 | 1,2,3 |
11. | Artificial initial pine forest: Tree layer: P. sylvestris, Q. robur individually as an admixture, Acer pseudoplatanus, Shrub layer: Sorbus aucuparia, Padus serotina and tree growths. | Lasek | A,B,D | 0.64 | 5 | 50–60 | 1,2,3 |
12. | Artificial mixed forest: Tree layer: A. platanoides, A. pseudoplatanus B. pendula, Q. robur, Q. rubra, Pinus sylvestris, R. pseudoacacia, P. tremula, U. leavis. B layer: Caragana arborescens, Hippophae rhamnoides, Padus avium, P. serotina, Sambucus nigra, Symphoricarpos albus, Spiraea salicifolia. | Milowice | A,B,C | 0.52 | 3,4–5 | 60–70 | 1,2,4 |
13. | Initial stage of Leucobryo-Pinetum: Tree layer: P. sylvestris, Q. robur, B. pendula, P. tremula, R. pseudoacacia. Srub layer (B): P. serotina, Juniperus communis, S. aucuparia and tree growths. | Rybaczówka | A,B,C | 0.76 | 4–5 | 50–60 | 4 |
Answers | F 18–34 Years | F 35–54 Years | F 55 Years and Over | M 18–34 Years | M 35–54 Years | M 55 Years and Over | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | |
Every day | 0 | 0.0 | 4 | 1.3 | 14 | 4.7 | 6 | 2.0 | 8 | 2.7 | 8 | 2.7 | 40 |
Once a week | 22 | 7.3 | 29 | 9.7 | 35 | 11.7 | 17 | 5.7 | 22 | 7.3 | 34 | 11.3 | 159 |
Once a month | 7 | 2.3 | 12 | 4.0 | 17 | 5.7 | 8 | 2.7 | 17 | 5.7 | 11 | 3.7 | 72 |
Once a year | 2 | 0.7 | 5 | 1.7 | 6 | 2.0 | 1 | 0.3 | 4 | 1.3 | 2 | 0.7 | 20 |
Every few years | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 0.3 | 1 |
I do not | 0 | 0.0 | 2 | 0.7 | 5 | 1.7 | 0 | 0.0 | 1 | 0.3 | 0 | 0.0 | 8 |
Total | 31 | 10.3 | 52 | 17.3 | 77 | 25.7 | 32 | 10.7 | 52 | 17.3 | 56 | 18.7 | 300 |
Answers | F 18–34 Years | F 35–54 Years | F 55 Years and Over | M 18–34 Years | M 35–54 Years | M 55 Years and Over | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | |
Yes | 20 | 6.7 | 37 | 12.3 | 46 | 15.3 | 22 | 7.3 | 30 | 10.0 | 34 | 11.3 | 189 |
No | 10 | 3.3 | 15 | 5.0 | 25 | 8.3 | 8 | 2.7 | 19 | 6.3 | 17 | 5.7 | 94 |
No opinion | 1 | 0.3 | 0 | 0.0 | 6 | 2.0 | 2 | 9.3 | 3 | 1.0 | 5 | 1.7 | 17 |
Total | 31 | 10.3 | 52 | 17.3 | 77 | 25.7 | 32 | 10.7 | 52 | 17.3 | 56 | 18.7 | 300 |
Answers | F 18–34 Years | F 35–54 Years | F 55 Years and Over | M 18–34 Years | M 35–54 Years | M 55 Years and Over | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | |
Forest | 8 | 2.7 | 13 | 4.3 | 35 | 11.7 | 14 | 4.7 | 16 | 5.3 | 19 | 6.3 | 105 |
Park | 22 | 7.3 | 36 | 12.0 | 40 | 13.3 | 15 | 5.0 | 30 | 10.0 | 31 | 10.3 | 174 |
No opinion | 1 | 0.3 | 3 | 1.0 | 2 | 0.7 | 3 | 1.0 | 6 | 2.0 | 6 | 2.0 | 21 |
Total | 31 | 10.3 | 52 | 17.3 | 77 | 25.7 | 32 | 10.7 | 52 | 17.3 | 56 | 18.7 | 300 |
Answers | F 18–34 Years | F 35–54 Years | F 55 Years and Over | M 18–34 Years | M 35–54 Years | M 55 Years and Over | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | % | N.P. | |
Yes | 25 | 8.3 | 41 | 13.7 | 68 | 22.7 | 25 | 8.3 | 40 | 13.3 | 49 | 16.3 | 248 |
No | 2 | 0.7 | 9 | 3.0 | 4 | 1.3 | 3 | 1.0 | 6 | 2.0 | 6 | 2.0 | 30 |
No opinion | 4 | 1.3 | 2 | 0.7 | 5 | 1.7 | 4 | 1.3 | 6 | 2.0 | 1 | 0.3 | 22 |
Total | 31 | 10.3 | 52 | 17.3 | 77 | 25.7 | 32 | 10.7 | 52 | 17.3 | 56 | 18.7 | 300 |
Answers | F 18–34 Years | F 35–54 Years | F 55 Years and Over | M 18–34 Years | M 35–54 Years | M 55 Years and Over | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y% | N% | Y% | N% | Y% | N% | Y% | N% | Y% | N% | Y% | N% | Y% | |
The threat of crime | 1.7 | 8.7 | 1.3 | 16.0 | 3.7 | 22.0 | 2.3 | 8.3 | 1.0 | 16.3 | 2.7 | 16.0 | 12.7 |
Ticks | 2.3 | 8.0 | 2.0 | 15.3 | 8.0 | 17.7 | 3.0 | 7.7 | 3.7 | 13.7 | 5.7 | 13.0 | 24.7 |
Wild animals | 1.3 | 9.0 | 0.7 | 16.7 | 3.7 | 22.0 | 1.3 | 9.3 | 1.7 | 15.7 | 3.7 | 15.0 | 12.3 |
Being unacquainted with the area | 1.3 | 9.0 | 1.0 | 16.3 | 3.0 | 22.7 | 1.7 | 9.0 | 1.3 | 16.0 | 2.7 | 16.0 | 11.0 |
Distance from home | 1.7 | 8.7 | 2.3 | 15.0 | 3.7 | 22.0 | 1.3 | 9.3 | 2.3 | 15.0 | 3.0 | 15.7 | 14.3 |
Noise | 0.0 | 10.3 | 0.7 | 16.7 | 1.0 | 24.7 | 0.3 | 10.3 | 1.3 | 16.0 | 0.3 | 18.3 | 3.7 |
Other | 0.3 | 10.0 | 2.3 | 15.0 | 0.7 | 25.0 | 0.3 | 10.3 | 2.0 | 15.3 | 1.0 | 17.7 | 6.7 |
Nothing deters me | 4.7 | 5.7 | 10.0 | 7.3 | 11.0 | 14.7 | 5.7 | 5.0 | 8.3 | 9.0 | 8.7 | 10.0 | 48.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzysztofik, R.; Rahmonov, O.; Kantor-Pietraga, I.; Dragan, W. The Perception of Urban Forests in Post-Mining Areas: A Case Study of Sosnowiec-Poland. Int. J. Environ. Res. Public Health 2022, 19, 3852. https://doi.org/10.3390/ijerph19073852
Krzysztofik R, Rahmonov O, Kantor-Pietraga I, Dragan W. The Perception of Urban Forests in Post-Mining Areas: A Case Study of Sosnowiec-Poland. International Journal of Environmental Research and Public Health. 2022; 19(7):3852. https://doi.org/10.3390/ijerph19073852
Chicago/Turabian StyleKrzysztofik, Robert, Oimahmad Rahmonov, Iwona Kantor-Pietraga, and Weronika Dragan. 2022. "The Perception of Urban Forests in Post-Mining Areas: A Case Study of Sosnowiec-Poland" International Journal of Environmental Research and Public Health 19, no. 7: 3852. https://doi.org/10.3390/ijerph19073852
APA StyleKrzysztofik, R., Rahmonov, O., Kantor-Pietraga, I., & Dragan, W. (2022). The Perception of Urban Forests in Post-Mining Areas: A Case Study of Sosnowiec-Poland. International Journal of Environmental Research and Public Health, 19(7), 3852. https://doi.org/10.3390/ijerph19073852