Forest Bathing Is Better than Walking in Urban Park: Comparison of Cardiac and Vascular Function between Urban and Forest Parks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Site Descriptions of the Forest and Urban Park Environments
2.3. Exposure Assessments
2.4. Cardiovascular Function Assessments
2.5. Statistical Analysis
3. Results
3.1. Environmental Characteristics
3.2. Cardiovascular Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathers, C.D.; Saloman, S.J.; Ezati, M. Global Burden of Disease and Risk Factors; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Mendis, S.; Puska, P.; Norrving, B. Global Atlas on Cardiovascular Disease Prevention and Control; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Mulle, J.G.; Vaccarino, V. Cardiovascular disease, psychosocial factors, and genetics: The case of depression. Prog. Cardiovasc. Dis. 2013, 55, 557–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases; Report No. 916; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. American College of Sports Medicine position stand. Exercise and hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Stratton, J.R.; Levy, W.C.; Cerqueira, M.D.; Schwartz, R.S.; Abrass, I.B. Cardiovascular responses to exercise effects of aging and exercise training in healthy men. Am. Heart Ass. 1994, 89, 1648–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mereles, D.; Ehlken, N.; Kreuscher, S.; Ghofrani, S.; Hoeper, M.M.; Halank, M.; Meyer, F.J.; Karger, G.; Buss, J.; Juenger, J. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006, 114, 1482–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, M.L.; Franklin, B.A.; Balady, G.J.; Chaitman, B.L.; Fleg, J.L.; Fletcher, B.; Limacher, M.; Piña, I.L.; Stein, R.A.; Williams, M. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: Benefits, rationale, safety, and prescription. An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 2000, 101, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Maltais, F.; LeBlanc, P.; Simard, C.; Jobin, J.; Bérubé, C.; Bruneau, J.; Carrier, L.; Belleau, R. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996, 154, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.C.; Lee, J.H.; Tsai, M.K.; Su, T.C.; Wen, C.P. The ability of physical activity in reducing mortality risks and cardiovascular loading and in extending life expectancy in patients with COPD. Sci. Rep. 2021, 11, 21674. [Google Scholar] [CrossRef] [PubMed]
- Someya, F.; Mugii, N.; Oohata, S. Cardiac hemodynamic response to the 6-minute walk test in young adults and the elderly. BMC Res. Notes 2015, 8, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.T.; Wang, C.H.; Wu, Y.F. Adhering to a Tai Chi Chuan exercise program improves vascular resistance and cardiac function. Int. J. Geront. 2011, 5, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, L.I.; Wakayama, Y.; et al. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef]
- Tsao, T.M.; Tsai, M.J.; Hwang, J.S.; Cheng, W.F.; Wu, C.F.; Chou, C.-C.K.; Su, T.C. Health effects of a forest environment on natural killer cells in humans: An observational pilot study. Oncotarget 2018, 9, 16501–16511. [Google Scholar] [CrossRef] [Green Version]
- Roviello, V.; Roviello, G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterreanean plants. Environ. Chem. Lett. 2021, 19, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilhen-Baker, M.; Roviello, V.; Beresford-Kroeger, D.; Roviello, G.N. Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environ. Chem. Lett. 2022. [Google Scholar] [CrossRef] [PubMed]
- Morita, E.; Fukuda, S.; Nagano, J.; Hamajima, N.; Yamamoto, H.; Iwari, Y.; Nakashima, T.; Ohira, H.; Shirakawa, T. Psychological effects of forest environments on healthy adults: Shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 2006, 121, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Park, B.J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects? Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Han, J.; Lichtfouse, E. Smarter cures to combat COVID-19 and future pathogens: A review. Environ. Chem. Lett. 2021, 19, 2759–2771. [Google Scholar] [CrossRef]
- Khan, A.H.; Tirth, V.; Fawzy, M.; Mahmoud, A.E.D.; Khan, N.A.; Ahmed, S.; Ali, S.S.; Akram, M.; Hameed, L.; Islam, S.; et al. COVID-19 transmission, vulnerability, persistence and nanotherapy: A review. Environ. Chem. Lett. 2021, 19, 2773–2787. [Google Scholar] [CrossRef] [PubMed]
- Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environ. Chem. Lett. 2022, 20, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Daba, G.M.; Elnahas, M.O.; Thomas, P.W. Fomitopsis officinalis mushroom: Ancient gold mine of functional components and biological activities for modern medicine. Egypt. Pharm. J. 2019, 18, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Girometta, C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: A review. Mycology 2019, 10, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Roviello, V.; Scognamiglio, P.L.; Caruso, U.; Vicidomini, C.; Roviello, G.N. Evaluating In Silico the Potential Health and Environmental Benefits of Houseplant Volatile Organic Compounds for an Emerging ‘Indoor Forest Bathing’ Approach. Int. J. Environ. Res. Public Health 2022, 19, 273. [Google Scholar] [CrossRef] [PubMed]
- Brinton, T.J.; Cotter, B.; Kailasam, M.T.; Lapointe, J.C.; Huynh-Covey, T.; Kwan, O.L.; DeMaria, A.N.; Brown, D.L.; Chio, S.S.; O’Connor, D.T.; et al. Development and validation of a non-invasive method to determine arterial pressure and vascular compliance. Am. J. Cardiol. 1997, 80, 323–330. [Google Scholar] [CrossRef]
- Brinton, T.J.; Daniel Walls, E.; Chio, S.S. Validation of pulse dynamic blood pressure measurement by auscultation. Blood Press. Monit. 1998, 3, 121–124. [Google Scholar]
- Urbina, E.M.; Kieltkya, L.; Tsai, J.; Srinivasan, S.R.; Berenson, G.S. Impact of multiple cardiovascular risk factors on brachial artery distensibility in young adults: The Bogalusa Heart Study. Am. J. Hyperten. 2005, 18, 767–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbina, E.M.; Brinton, T.J.; Elkasabany, A.; Berenson, G.S. Brachial artery distensibility and relation to cardiovascular risk factors in healthy young adults (The Bogalusa Heart Study). Am. J. Cardiol. 2002, 89, 946–951. [Google Scholar] [CrossRef]
- Chio, S.S.; Tsai, J.J.; Hsu, Y.M.; Lapointe, J.C.; Huynh-Covey, T.; Kwan, O.L.; DeMaria, A.N. Development and validation of a noninvasive method to estimate cardiac output using cuff sphygmomanometry. Clin. Cardiol. 2007, 30, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chan, C.C.; Lin, Y.L.; Hwang, J.S.; Su, T.C. Fine particulate matter results in hemodynamic changes in subjects with blunted nocturnal blood pressure dipping. Environ. Res. 2014, 131, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tsao, T.M.; Tsai, M.J.; Wang, Y.N.; Lin, H.L.; Wu, C.F.; Hwang, J.S.; Hsu, S.H.J.; Chao, H.; Chuang, K.J.; Chou, C.-C.K.; et al. The Health Effects of a Forest Environment on Subclinical Cardiovascular Disease and Health-Related Quality of Life. PLoS ONE 2014, 9, 103231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Kagawa, T.; Miyazaki, Y. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, J.; Woo, J.M.; Kim, W.; Lim, S.K.; Chung, E.J. The effect of cognitive behavior therapy-based “forest therapy” program on blood pressure, salivary cortisol level, and quality of life in elderly hypertensive patients. Clin. Exp. Hypertens. 2012, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Domanski, M.; Mitchell, G.; Pfeffer, M.; Neaton, J.D.; Norman, J.; Svendsen, K.; Grimm, R.; Cohen, J.; Stamler, J. Pulse Pressure and Cardiovascular Disease–Related Mortality: Follow-up Study of the Multiple Risk Factor Intervention Trial (MRFIT). J. Am. Med. Assoc. 2002, 287, 2677–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psaty, B.M.; Furberg, C.D.; Kuller, L.H.; Cushman, M.; Savage, P.J.; Levine, D.; O’Leary, D.H.; Bryan, R.N.; Anderson, M.; Lumley, T. Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality. The cardiovascular health study. Arch. Intern. Med. 2001, 161, 1183–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.J.; Choi, S.H.; Kim, Y.H.; Park, D.K.; Hah, W. The relationship between arterial stiffness and increase in blood pressure during exercise in normotensive persons. J. Hypertens. 2012, 30, 587–591. [Google Scholar] [CrossRef]
- Tsunetsugu, Y.; Park, B.J.; Miyazaki, Y. Trends in research related to “Shinrin-yoku” (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med. 2010, 15, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Gava, N.S.; Véras-Silva, A.S.; Negrão, C.E.; Krieger, E.M. Low-intensity exercise training attenuates cardiac b-adrenergic tone during exercise in spontaneously hypertensive rats. Hypertens 1995, 26, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Véras-Silva, A.S.; Mattos, K.C.C.; Gava, N.S.; Brum, P.C.; Negrão, C.E.; Krieger, E.M. Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am. J. Physiol. 1997, 273, H2627–H2631. [Google Scholar] [CrossRef]
- Hagberg, J.M.; Montain, S.J.; Martin, W.H., III; Ehsani, A.L. Effect of exercise training in 60- to 69-year-old persons with essential hypertension. Am. J. Cardiol. 1989, 64, 348–353. [Google Scholar] [CrossRef]
- Tipton, C.M.; Sebastian, L.A.; Overton, J.M.; Woodman, C.R.; Williams, S.B. Chronic exercise and its hemodynamic influences on resting blood pressure of hypertensive rats. J. Appl. Physiol. 1991, 71, 2206–2210. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Dockery, D.W.; Muller, J.E.; Mittleman, M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001, 103, 2810–2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.C.; Hwang, J.J.; Shen, Y.C.; Chan, C.C. Carotid intima-media thickness and long-term exposure to traffic-related air pollution in middle-aged residents of Taiwan: A cross-sectional study. Environ. Health Perspect. 2015, 123, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnus, K.; Matroos, A.; Strackee, J. Walking, cycling or gardening, with or without seasonal interruption, in relation to acute coronary events. Am. J. Epidemiol. 1979, 110, 724–733. [Google Scholar] [CrossRef]
- Koken, P.J.M.; Piver, W.T.; Ye, F.; Elixhauser, A.; Olsen, L.M.; Portier, C.J. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 2003, 111, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Kleerekoper, L.; van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Ouis, D. Annoyance from road traffic noise: A review. J. Environ. Psychol. 2001, 21, 101–120. [Google Scholar] [CrossRef]
- Li, Q.; Otsuka, T.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Li, Y.; Hirata, K.; Shimizu, T.; et al. Acute effects of walking in forest environments on cardiovascular and metabolic parameters. Eur. J. Appl. Physiol. 2011, 111, 2845–2853. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, D.C. Cardiac and pulmonary benefits of forest walking versus city walking in elderly women: A randomised, controlled, open-label trial. Eur. J. Integrat. Med. 2014, 6, 5–11. [Google Scholar] [CrossRef]
- Peterfalvi, A.; Meggyes, M.; Makszin, L.; Farkas, N.; Miko, E.; Miseta, A.; Szereday, L. Forest Bathing Always Makes Sense: Blood Pressure-Lowering and Immune System-Balancing Effects in Late Spring and Winter in Central Europe. Int. J. Environ. Res. Public Health 2021, 18, 2067. [Google Scholar] [CrossRef] [PubMed]
- Su, T.C.; Hwang, J.J.; Yang, Y.R.; Chan, C.C. Association between long-term exposure to traffic-related air pollution and inflammatory and thrombotic markers in middle-aged adults. Epidemiology 2017, 28, S74–S81. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, W.C.; Chang, C.Y. Landscapes and human health. Int. J. Environ. Res. Public Health 2017, 14, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maller, C.; Townsend, M.; Pryor, A.; Brown, P.; St Leger, L. Healthy nature healthy people: ‘contact with nature’ as an upstream health promotion intervention for populations. Health Promot. Int. 2006, 21, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonntag-Öström, E.; Stenlund, T.; Nordin, M.; Lundellc, Y.; Ahlgrenb, C.; Fjellman-Wiklundb, A.; Järvholma, L.S.; Dolling, A. “Nature’s effect on my mind”-patients’ qualitative experiences of a forest-based rehabilitation program. Urban For. Urban Green 2015, 14, 607–614. [Google Scholar] [CrossRef] [Green Version]
Variables | Forest Park | Urban Park | p-Value | ||
---|---|---|---|---|---|
N/Mean | %/SD | N/Mean | %/SD | ||
Gender | |||||
Female | 4 | 28.57 | 3 | 27.27 | 1.0000 |
Male | 10 | 71.43 | 8 | 72.73 | |
Age (Continuous) | 54.21 | 15.53 | 42.36 | 19.50 | 0.2491 |
Age (Categorical) | |||||
22–35 | 3 | 21.43 | 6 | 54.55 | 0.1153 |
54–73 | 11 | 78.57 | 5 | 45.45 | |
BMI (Continuous) | 24.07 | 3.36 | 23.34 | 2.93 | 0.5287 |
BMI (Categorical) | |||||
<24 | 7 | 50 | 7 | 63.64 | 0.6887 |
≥24 | 7 | 50 | 4 | 36.36 | |
Hypertension | |||||
No | 10 | 71.43 | 7 | 63.64 | 1.0000 |
Yes | 4 | 28.57 | 4 | 36.36 | |
Diabetes mellitus | |||||
No | 10 | 71.43 | 11 | 100 | 0.1052 |
Yes | 4 | 28.57 | 0 | 0 | |
Hypercholesterolemia | |||||
No | 13 | 92.86 | 9 | 81.82 | 0.5648 |
Yes | 1 | 7.14 | 2 | 18.18 | |
Hyperlipidemia | |||||
No | 8 | 57.14 | 10 | 90.91 | 0.0900 |
Yes | 6 | 42.86 | 1 | 9.09 | |
Coronary artery disease | |||||
No | 12 | 85.71 | 11 | 100 | 0.4867 |
Yes | 2 | 14.29 | 0 | 0 | |
Chronic renal failure | |||||
No | 13 | 92.86 | 11 | 100 | 1.0000 |
Yes | 1 | 7.14 | 0 | 0 |
Air Quality | N | Forest Park | N | Urban Park | p-Value |
---|---|---|---|---|---|
PM1 (μg/m3) | 1129 | 19.59 ± 12.5 | 666 | 37.71 ± 26.6 | <0.0001 |
PM2.5 (μg/m3) | 1129 | 19.98 ± 12.6 | 666 | 38.35 ± 27.1 | <0.0001 |
PM10 (μg/m3) | 1129 | 21.17 ± 13.3 | 666 | 43.63 ± 43.3 | <0.0001 |
Total PM (μg/m3) | 1129 | 22.27 ± 14.6 | 628 | 86.96 ± 77.7 | <0.0001 |
TVOC (ppb) | 1026 | 157.08 ± 124.6 | 669 | 288.45 ± 99.5 | <0.0001 |
CO (ppm) | 1127 | 0.05 ± 0.01 | 668 | 2.11 ± 0.3 | <0.0001 |
CO2 (ppm) | 1127 | 419.95 ± 30.8 | 668 | 419.71 ± 13.0 | 0.8472 |
Temperature (°C) | 1135 | 24.16 ± 1.5 | 336 | 34.38 ± 1.8 | <0.0001 |
Humidity (%) | 1135 | 87.05 ± 6.9 | 336 | 55.32 ± 4.7 | <0.0001 |
Atmosphere (hPa) | 144 | 886.44 ± 0.82 | 48 | 1000.76 ± 0.91 | <0.0001 |
Wind speed (m/s) | 144 | 1.18 ± 0.39 | 48 | 2.25 ± 1.15 | <0.0001 |
Air Quality | Phyllostachys edulis Forest | Japanese cedar Forest | Taiwan red cedar Forest | Greensward | Taiwania cryptomerioides Forest | p-Value |
---|---|---|---|---|---|---|
N = 208 | N = 192 | N = 191 | N = 207 | N = 188 | ||
PM1 (μg/m3) | 14.22 ± 2.9 | 19.04 ± 2.2 | 15.54 ± 3.6 | 25.14 ± 4.6 | 8.53 ± 2.5 | <0.0001 |
PM2.5 (μg/m3) | 14.70 ± 2.9 | 19.04 ± 2.2 | 15.83 ± 3.7 | 25.47 ± 4.6 | 8.78 ± 2.6 | <0.0001 |
PM10 (μg/m3) | 15.88 ± 3.1 | 19.89 ± 2.3 | 16.71 ± 3.9 | 26.60 ± 4.6 | 9.65 ± 2.8 | <0.0001 |
Total PM (μg/m3) | 16.70 ± 3.6 | 20.50 ± 2.5 | 17.39 ± 4.1 | 27.60 ± 5.0 | 10.41 ± 3.1 | <0.0001 |
TVOC (ppb) | 66.64 ± 39.1 | 66.14 ± 20.3 | 107.19 ± 17.0 | 58.08 ± 58.7 | 357.27 ± 32.1 | <0.0001 |
CO (ppm) | 0.11 ± 0.1 | 0.05 ± 0.01 | ND | 0.014± 0.01 | 0.03 ± 0.02 | 0.1594 |
CO2 (ppm) | 412.56 ± 33.6 | 412.62 ± 26.2 | 418.30 ± 17.1 | 427.78 ± 46.3 | 423.86 ± 24.2 | <0.0001 |
Temperature (°C) | 23.88 ± 0.9 | 24.82 ± 1.9 | 22.77 ± 0.7 | 25.32 ± 1.7 | 24.16 ± 0.9 | <0.0001 |
Humidity (%) | 88.00 ± 4.5 | 84.32 ± 7.6 | 90.12 ± 5.0 | 81.84 ± 7.2 | 85.87 ± 5.3 | <0.0001 |
Air Quality | 228 Memorial Park | Chiang Kai Shek Memorial Hall Park | Pao An Temple Park | Sun Yat Sen Memorial Hall Park | Long Shan Temple Park | p-Value |
---|---|---|---|---|---|---|
N = 145 | N = 135 | N = 124 | N = 119 | N = 143 | ||
PM1 (μg/m3) | 62.14 ± 39.2 | 36.50 ± 12.3 | 31.40 ± 6.9 | 30.63 ± 8.4 | 25.43 ± 26.1 | <0.0001 |
PM2.5 (μg/m3) | 63.16 ± 39.8 | 37.00 ± 12.4 | 31.94 ± 7.0 | 31.26 ± 8.6 | 25.94 ± 27.1 | <0.0001 |
PM10 (μg/m3) | 73.45 ± 61.6 | 39.01 ± 13.4 | 34.52 ± 7.4 | 35.14 ± 15.5 | 32.70 ± 57.9 | <0.0001 |
Total PM (μg/m3) | 147.00 ± 119.8 | 67.45 ± 56.2 | 64.61 ± 26.1 | 76.33 ± 81.2 | 88.05 ± 64.6 | <0.0001 |
TVOC (ppb) | 240.96 ± 53.2 | 352.61 ± 45.7 | 222.06 ± 48.4 | 186.86 ± 37.7 | 419.78 ± 47.1 | <0.0001 |
CO (ppm) | 2.31 ± 0.3 | 2.01 ± 0.1 | 2.28 ± 0.3 | 1.91 ± 0.1 | 2.00 ± 0.9 | <0.0001 |
CO2 (ppm) | 428.37 ± 8.6 | 414.00 ± 3.4 | 426.69 ± 14.3 | 401.65 ± 7.1 | 425.65 ± 6.0 | <0.0001 |
Temperature (°C) | 34.11 ± 2.1 | 36.31 ± 0.9 | 34.19 ± 1.7 | 34.28 ± 0.7 | 33.08 ± 1.1 | <0.0001 |
Humidity (%) | 58.42 ± 5.6 | 53.02 ± 1.3 | 50.64 ± 3.5 | 59.40 ± 2.7 | 55.06 ± 2.4 | <0.0001 |
Variables | Forest Park (76 Pairs) | Urban Park (86 Pairs) | p1-Value | p2-Value | p3-Value | p4-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | |||||||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | |||||
Blood Pressure Components (mmHg) | ||||||||||||
Systolic blood pressure | 111.39 | 12.81 | 107.62 | 12.19 | 113.82 | 12.76 | 114.11 | 14.48 | <0.0001 | 0.6927 | 0.2300 | 0.0026 |
Diastolic blood pressure | 69.14 | 8.43 | 69.76 | 9.84 | 72.72 | 8.88 | 73.06 | 9.49 | 0.3951 | 0.4591 | 0.0098 | 0.0317 |
Central end systolic blood pressure | 118.68 | 15.02 | 114.07 | 13.98 | 121.90 | 14.00 | 122.01 | 15.77 | <0.0001 | 0.9135 | 0.1604 | 0.0009 |
Central end diastolic blood pressure | 66.08 | 8.37 | 66.75 | 9.79 | 68.58 | 8.69 | 68.98 | 9.58 | 0.3545 | 0.4493 | 0.0653 | 0.1450 |
Mean artery pressure | 83.58 | 9.65 | 82.22 | 10.49 | 85.17 | 9.17 | 85.74 | 10.43 | 0.0395 | 0.3556 | 0.2844 | 0.0343 |
Pulse pressure | 52.61 | 10.64 | 47.32 | 8.88 | 53.33 | 8.74 | 53.02 | 9.05 | <0.0001 | 0.7365 | 0.6371 | <0.0001 |
Cardiac Function | ||||||||||||
Heart rate (beat/min) | 73.25 | 9.34 | 71.95 | 9.32 | 78.62 | 8.38 | 78.48 | 7.95 | 0.0131 | 0.7979 | 0.0002 | <0.0001 |
Left ventricular ejection time (sec) | 0.29 | 0.05 | 0.30 | 0.05 | 0.25 | 0.04 | 0.26 | 0.03 | 0.0025 | 0.0182 | <0.0001 | <0.0001 |
Left ventricular dP/dt max, (mmHg/s) | 1123.9 | 211.4 | 1026.7 | 176.9 | 1212.3 | 185.2 | 1204.5 | 191.7 | <0.0001 | 0.6536 | 0.0051 | <0.0001 |
Left ventricular contractility (1/s) | 15.56 | 1.70 | 14.81 | 1.59 | 16.21 | 2.17 | 16.29 | 1.82 | <0.0001 | 0.7056 | 0.0344 | <0.0001 |
Cardiac output (L/min) | 5.04 | 1.00 | 4.80 | 0.97 | 5.22 | 0.92 | 5.24 | 0.83 | <0.0001 | 0.7798 | 0.2343 | 0.0020 |
Cardiac index (L/min/m2) | 2.87 | 0.49 | 2.72 | 0.45 | 3.04 | 0.57 | 3.05 | 0.48 | <0.0001 | 0.9003 | 0.0374 | <0.0001 |
Stroke volume (mL) | 67.74 | 7.71 | 65.63 | 8.06 | 65.51 | 7.89 | 65.98 | 6.12 | 0.0007 | 0.5190 | 0.0720 | 0.7553 |
Stroke volume index (mL/m2) | 38.59 | 3.74 | 37.38 | 3.88 | 38.09 | 4.69 | 38.35 | 3.54 | 0.0006 | 0.5308 | 0.4517 | 0.0991 |
Vascular Function | ||||||||||||
Systemic vascular compliance (mL/mmHg) | 1.34 | 0.28 | 1.43 | 0.27 | 1.26 | 0.18 | 1.28 | 0.18 | 0.0004 | 0.2782 | 0.0361 | <0.0001 |
Systemic vascular resistance (dynes-sec/cm5) | 1365.9 | 265.7 | 1414.5 | 286.2 | 1306.4 | 264.3 | 1340.6 | 260.3 | 0.0195 | 0.0534 | 0.1554 | 0.0869 |
Brachial artery compliance (mL/mmHg) | 0.08 | 0.03 | 0.08 | 0.03 | 0.07 | 0.02 | 0.07 | 0.02 | 0.0010 | 0.7172 | 0.2255 | 0.0019 |
Brachial artery distensibility (%/mmHg) | 6.60 | 1.69 | 7.41 | 1.92 | 6.27 | 1.17 | 6.34 | 1.17 | 0.0002 | 0.6267 | 0.1541 | <0.0001 |
Brachial artery resistance (dynes-sec/cm5) | 199.93 | 120.60 | 185.86 | 116.26 | 175.65 | 61.40 | 176.40 | 63.31 | 0.0132 | 0.8224 | 0.1163 | 0.5293 |
Variables | Forest Park (76 Pairs) | Urban Park (86 Pairs) | p-Value | ||
---|---|---|---|---|---|
Mean | Std | Mean | Std | ||
Systolic blood pressure (mmHg) | −3.78 | 7.45 | 0.29 | 6.80 | 0.0004 |
Diastolic blood pressure (mmHg) | 0.62 | 6.30 | 0.34 | 4.28 | 0.7429 |
Central end systolic blood pressure (mmHg) | −4.62 | 8.69 | 0.10 | 8.91 | 0.0008 |
Central end diastolic blood pressure (mmHg) | 0.67 | 6.28 | 0.41 | 4.97 | 0.7657 |
Mean artery pressure (mmHg) | −1.36 | 5.64 | 0.57 | 5.69 | 0.0324 |
Pulse pressure (mmHg) | −5.29 | 10.12 | −0.30 | 8.31 | 0.0007 |
Heart rate (beat/min) | −1.30 | 4.47 | −0.14 | 5.04 | 0.1242 |
Left ventricular ejection time (sec) | 0.01 | 0.03 | 0.01 | 0.03 | 0.5460 |
Left ventricular dP/dt max, (mmHg/s) | −97.18 | 171.67 | −7.85 | 161.72 | 0.0008 |
Left ventricular contractility (1/s) | −0.75 | 1.56 | 0.08 | 1.85 | 0.0024 |
Cardiac output (L/min) | −0.25 | 0.48 | 0.02 | 0.65 | 0.0038 |
Cardiac index (L/min/m2) | −0.15 | 0.27 | 0.01 | 0.38 | 0.0036 |
Stroke volume (mL) | −2.11 | 5.17 | 0.47 | 6.73 | 0.0074 |
Stroke volume index (mL/m2) | −1.22 | 2.94 | 0.26 | 3.86 | 0.0074 |
Systemic vascular compliance (mL/mmHg) | 0.09 | 0.21 | 0.02 | 0.18 | 0.0271 |
Systemic vascular resistance (dynes-sec/cm5) | 48.61 | 177.54 | 34.17 | 161.78 | 0.5889 |
Brachial artery compliance (mL/mmHg) | 0.01 | 0.02 | 0.00 | 0.01 | 0.0084 |
Brachial artery distensibility (%/mmHg) | 0.80 | 1.81 | 0.07 | 1.26 | 0.0035 |
Brachial artery resistance (dynes-sec/cm5) | −14.08 | 48.33 | 0.75 | 30.90 | 0.0235 |
Outcome Variables | β | p-Value |
---|---|---|
Systolic blood pressure (mmHg) | −5.22 | 0.0004 |
Diastolic blood pressure (mmHg) | −0.12 | 0.9119 |
Central end systolic blood pressure (mmHg) | −6.91 | 0.0001 |
Central end diastolic blood pressure (mmHg) | 0.59 | 0.5811 |
Mean artery pressure (mmHg) | −2.06 | 0.0662 |
Pulse pressure (mmHg) | −7.69 | <0.0001 |
Heart rate (beat/min) | −2.46 | 0.0069 |
Left ventricular ejection time (sec) | 0.03 | <0.0001 |
Left ventricular dP/dt max, (mmHg/s) | −146.91 | <0.0001 |
Left ventricular contractility (1/s) | −1.12 | <0.0001 |
Cardiac output (L/min) | −0.52 | <0.0001 |
Cardiac index (L/min/m2) | −0.28 | <0.0001 |
Stroke volume (mL) | −3.02 | 0.0010 |
Stroke volume index (mL/m2) | −1.78 | 0.0006 |
Systemic vascular compliance (mL/mmHg) | 0.16 | <0.0001 |
Systemic vascular resistance (dynes-sec/cm5) | 87.55 | 0.0029 |
Brachial artery compliance (mL/mmHg) | 0.02 | <0.0001 |
Brachial artery distensibility (%/mmHg) | 1.67 | <0.0001 |
Brachial artery resistance (dynes-sec/cm5) | −21.31 | 0.0033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsao, T.-M.; Hwang, J.-S.; Lin, S.-T.; Wu, C.; Tsai, M.-J.; Su, T.-C. Forest Bathing Is Better than Walking in Urban Park: Comparison of Cardiac and Vascular Function between Urban and Forest Parks. Int. J. Environ. Res. Public Health 2022, 19, 3451. https://doi.org/10.3390/ijerph19063451
Tsao T-M, Hwang J-S, Lin S-T, Wu C, Tsai M-J, Su T-C. Forest Bathing Is Better than Walking in Urban Park: Comparison of Cardiac and Vascular Function between Urban and Forest Parks. International Journal of Environmental Research and Public Health. 2022; 19(6):3451. https://doi.org/10.3390/ijerph19063451
Chicago/Turabian StyleTsao, Tsung-Ming, Jing-Shiang Hwang, Sung-Tsun Lin, Charlene Wu, Ming-Jer Tsai, and Ta-Chen Su. 2022. "Forest Bathing Is Better than Walking in Urban Park: Comparison of Cardiac and Vascular Function between Urban and Forest Parks" International Journal of Environmental Research and Public Health 19, no. 6: 3451. https://doi.org/10.3390/ijerph19063451
APA StyleTsao, T. -M., Hwang, J. -S., Lin, S. -T., Wu, C., Tsai, M. -J., & Su, T. -C. (2022). Forest Bathing Is Better than Walking in Urban Park: Comparison of Cardiac and Vascular Function between Urban and Forest Parks. International Journal of Environmental Research and Public Health, 19(6), 3451. https://doi.org/10.3390/ijerph19063451