Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling
2.3. Laboratory Procedure
2.4. Statistical Analysis
3. Results
3.1. Heavy Metals
3.2. Phytoplankton Biomass Structure
3.3. Variables Affecting Concentrations of Phytoplankton Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mackay, D.; Celsie, A.K.D.; Arnot, J.A.; Powell, D.E. Processes influencing chemical biomagnification and trophic magnification factors in aquatic ecosystems: Implications for chemical hazard and risk assessment. Chemosphere 2016, 154, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basset, A.; Barbone, E.; Elliott, M.; Li, B.-L.; Jorgensen, S.E.; Lucena-Moya, P.; Pardo, I.; Mouillot, D. A unifying approach to understanding transitional waters: Fundamental properties emerging from ecotone ecosystems. Estuar. Coast. Shelf Sci. 2013, 132, 5–16. [Google Scholar] [CrossRef]
- Urrutxurtu, I.; Orive, E.; de la Sota, A. Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 2003, 57, 1169–1182. [Google Scholar] [CrossRef]
- Cloern, J.E. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Rev. Geophys. 1996, 34, 127–168. [Google Scholar] [CrossRef]
- Netto, S.A.; Fonseca, G. Regime shifts in coastal lagoons: Evidence from free-living marine Nematodes. PLoS ONE 2017, 12, e0172366. [Google Scholar] [CrossRef]
- Obolewski, K.; Glińska-Lewczuk, K. Connectivity and complexity of coastal lakes as determinants for their restoration—A case study of the southern Baltic Sea. Ecol. Eng. 2020, 155, 105948. [Google Scholar] [CrossRef]
- Obolewski, K.; Glińska-Lewczuk, K.; Szymańska, M.; Mrozińska, N.; Bąkowska, M.; Astel, A.; Lew, S.; Paturej, E. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 2018, 13, e0207825. [Google Scholar] [CrossRef] [Green Version]
- Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Varis, O.; Vakkilainen, P. China’s 8 Challenges to water resources management in the firstquarter of the 21st century. Geomorphology 2001, 41, 93–104. [Google Scholar] [CrossRef]
- Jarosiewicz, A.; Obolewski, K.; Ożgo, M. Long-term trends in nutrient concentrations in Polish Coastal Rivers. Ocean. Coast. Manag. 2015, 118, 37–46. [Google Scholar] [CrossRef]
- Mrozińska, N.; Bąkowska, M. Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal lake Łebsko on the southern Baltic coast. Int. J. Environ. Res. 2020, 17, 6848. [Google Scholar] [CrossRef] [PubMed]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A.; Glińska-Lewczuk, K.; Cymes, I. Heavy metal contamination in the surface layer of bottom sediments in a flow-through lake: A case study of lake Symsar in northern Poland. Water 2016, 8, 358. [Google Scholar] [CrossRef]
- Mitra, A.; Trivedi, S.; Gupta, A. Distribution of trace metals in the sediments from hooghly estuary, India. Pollut. Res. 1996, 15, 137–141. [Google Scholar]
- Walve, J.; Gelting, J.; Ingri, J. Trace metals and nutrients in Baltic Sea cyanobacteria: Internal and external fractions and potential use in nitrogen fixation. Mar. Chem. 2014, 158, 27–38. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Robbins, L.J.; Alessi, D.S.; Flynn, S.L.; Gingras, M.K.; Martinez, R.E.; Kappler, A.; Swanner, E.D.; Li, Y.-L.; Crowe, S.A.; et al. Phytoplankton contributions to the trace-element composition of precambrian banded iron formations. GSA Bull. 2018, 130, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Mori, C.; Beck, M.; Striebel, M.; Merder, J.; Schnetger, B.; Dittmar, T.; Pahnke, K.; Brumsack, H.-J. Biogeochemical cycling of molybdenum and thallium during a phytoplankton summer bloom: A mesocosm study. Mar. Chem. 2021, 229, 103910. [Google Scholar] [CrossRef]
- Whitfield, M. Interactions between phytoplankton and trace metals in the ocean. Adv. Mar. Biol. 2001, 41, 1–128. [Google Scholar]
- Sigee, D.C.; Krivtsov, V.; Bellinger, E.G. Elemental concentrations, correlations and ratios in micropopulations of Ceratium hirundinella (Pyrrhophyta): An X-ray Microanalytical Study. Eur. J. Phycol. 1998, 33, 155–164. [Google Scholar] [CrossRef]
- Luoma, S.N.; van Geen, A.; Lee, B.-G.; Cloern, J.E. Metal uptake by phytoplankton during a bloom in south san francisco bay: Implications for metal cycling in estuaries. Limnol. Oceanogr. 1998, 43, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- González-Dávila, M. The role of phytoplankton cells on the control of heavy metal concentration in seawater. Mar. Chem. 1995, 48, 215–236. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9780429161513. [Google Scholar]
- Dam, H.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater Diatoms from the Netherlands. Neth. J. Aquat. Ecol. 1994, 28, 117–133. [Google Scholar] [CrossRef]
- Glińska-Lewczuk, K.; Burandt, P.; Kobus, S.; Sidoruk, M. Water Levels. In The Ecological Status of the Southern Baltic Coastal Lakes; Obolewski, K., Ed.; PWN: Warsaw, Poland, 2017; pp. 41–51. [Google Scholar]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Beutler, M.; Wiltshire, K.H.; Meyer, B.; Moldaenke, C.; Lüring, C.; Meyerhöfer, M.; Hansen, U.-P.; Dau, H. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res. 2002, 72, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.L.; Lawrenz, E.; Pinckney, J.L.; Guajardo, R.C.; Walker, E.A.; Paerl, H.W.; MacIntyre, H.L. Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser®. Water Res. 2010, 44, 2461–2472. [Google Scholar] [CrossRef] [PubMed]
- Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Braak, C.J.F.T.; Looman, C.W.N. Biplots in reduced-rank regression. Biom. J. 1994, 36, 983–1003. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef] [Green Version]
- McLusky, D.S.; Elliott, M. The Estuarine Ecosystem; Oxford University Press: Oxford, UK, 2004; ISBN 9780198525080. [Google Scholar]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M.; Pérez-Marcos, M. Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. J. Coast. Conserv. 2011, 15, 369–392. [Google Scholar] [CrossRef]
- Colling, L.A.; Bemvenuti, C.E.; Gandra, M.S. Seasonal variability on the structure of sublittoral macrozoobenthic association in the Patos Lagoon estuary, Southern Brazil. Iheringia Ser. Zool. 2007, 97, 257–262. [Google Scholar] [CrossRef]
- Wooldridge, T. Estuarine zooplankton community structure and dynamics. In Estuaries of South Africa; Allanson, B.R., Baird, D., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 141–166. [Google Scholar]
- Kjerfve, B. Coastal lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 1–8. [Google Scholar]
- Yin, K. Influence of monsoons and oceanographic processes on red tides in Hong Kong waters. Mar. Ecol. Prog. Ser. 2003, 262, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Woszczyk, M.; Tylmann, W.; Jędrasik, J.; Szarafin, T.; Stach, A.; Skrzypczak, J.; Lutyńska, M. Recent sedimentation dynamics in a shallow coastal lake (Lake Sarbsko, Northern Poland): Driving factors, processes and effects. Mar. Freshw. Res. 2014, 65, 1102–1115. [Google Scholar] [CrossRef]
- Woszczyk, M.; Spychalski, W.; Lutyńska, M.; Cieśliński, R. Temporal trend in the intensity of subsurface saltwater ingressions to coastal lake Sarbsko (Northern Poland) during the last few decades. IOP Conf. Ser. Earth Environ. Sci. 2010, 9, 012013. [Google Scholar] [CrossRef] [Green Version]
- Woszczyk, M.; Bechtel, A.; Gratzer, R.; Kotarba, M.J.; Kokociński, M.; Fiebig, J.; Cieśliński, R. Composition and origin of organic matter in surface sediments of Lake Sarbsko: A highly eutrophic and shallow coastal lake (Northern Poland). Org. Geochem. 2011, 42, 1025–1038. [Google Scholar] [CrossRef]
- D’ors, A.; Bartolomé, M.C.; Sánchez-Fortún, S. Repercussions of salinity changes and osmotic stress in marine phytoplankton species. Estuar. Coast. Shelf Sci. 2016, 175, 169–175. [Google Scholar] [CrossRef]
- Santos-Merino, M.; Singh, A.K.; Ducat, D.C. New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front. Bioeng. Biotechnol. 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Li, S.; Song, X.; Diao, J.; Chen, L.; Zhang, W. Toolboxes for cyanobacteria: Recent advances and future direction. Biotechnol. Adv. 2018, 36, 1293–1307. [Google Scholar] [CrossRef]
- Astel, A.M.; Bigus, K.; Obolewski, K.; Glińska-Lewczuk, K. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of southern Baltic. Estuar. Coast. Shelf Sci. 2016, 182, 47–59. [Google Scholar] [CrossRef]
- Trojanowski, J.; Trojanowska, C.; Korzeniewski, K. Trophic state of coastal lakes. Pol. Arch. Hydrobiol. 1991, 38, 23–34. [Google Scholar]
- Karlsson, J.; Byström, P.; Ask, J.; Ask, P.; Persson, L.; Jansson, M. Light limitation of nutrient-poor lake ecosystems. Nature 2009, 460, 506–509. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environmen; Technical Reports Series; International Atomic Energy Agency: Vienna, Austria, 2004.
- Fowler, S.W.; Fisher, N.S. Chapter 6 radionuclides in the biosphere. In Radioactivity in the Environment; Livingston, H.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 167–203. [Google Scholar] [CrossRef]
- Köck, G.; Triendl, M.; Hofer, R. Seasonal patterns of metal accumulation in Arctic Char (Salvelinus alpinus) from an oligotrophic alpine lake related to temperature. Can. J. Fish. Aquat. Sci. 1996, 53, 780–786. [Google Scholar] [CrossRef]
- Çoǧun, H.Y.; Kargın, F. Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus. Chemosphere 2004, 55, 277–282. [Google Scholar] [CrossRef]
- Biswas, S.; Prabhu, R.K.; Hussain, K.J.; Selvanayagam, M.; Satpathy, K.K. Heavy metals concentration in edible fishes from coastal region of Kalpakkam, Southeastern part of India. Environ. Monit. Assess. 2012, 184, 5097–5104. [Google Scholar] [CrossRef] [PubMed]
- Jak, R.G.; Maas, J.L.; Scholten, M.C.T. Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing fresh water plankton communities in Enclosures. Water Res. 1996, 30, 1215–1227. [Google Scholar] [CrossRef]
- Byrne, R.H. Inorganic speciation of dissolved elements in seawater: The influence of pH on concentration ratios. Geochem. Trans. 2002, 3, 11. [Google Scholar] [CrossRef]
- Fowler, S.W.; Teyssie, J.-L.; Church, T.M. Scavenging and retention of bismuth by marine plankton and biogenic particles. Limnol. Oceanogr. 2010, 55, 1093–1104. [Google Scholar] [CrossRef]
- Neto, M.M.P.M.; de Varennes, A. Determination of lead in White Lupin by anodic stripping voltammetry. Plant Soil 1993, 154, 1–5. [Google Scholar] [CrossRef]
- Kozelka, P.B.; Bruland, K.W. Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island. Mar. Chem. 1998, 60, 267–282. [Google Scholar] [CrossRef]
- Costa, M. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit. Rev. Toxicol. 1997, 27, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. Efflux-mediated heavy metal resistance in Prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef]
- Directive of the Ministry of Environment Concerning Classification Approaches Applied to Uniform Parts of Surface Waters as well as Environmental Quality Standards for Priority Substances. 2016; pos. 1187. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001187 (accessed on 11 December 2021). (In Polish)
- Macdonald, T.L.; Bruce Martin, R. Aluminum ion in biological systems. Trends Biochem. Sci. 1988, 13, 15–19. [Google Scholar] [CrossRef]
- Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750. [Google Scholar] [CrossRef]
- Sunda, W.G.; Huntsman, S.A. Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnol. Oceanogr. 1983, 28, 924–934. [Google Scholar] [CrossRef]
- Twining, B.S.; Baines, S.B.; Bozard, J.B.; Vogt, S.; Walker, E.A.; Nelson, D.M. Metal quotas of plankton in the equatorial Pacific Ocean. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 325–341. [Google Scholar] [CrossRef]
- Astel, A.; Bigus, K.; Obolewski, K.; Niedzielski, P.; Stec, M.; Astel, K.; Tsakovski, S. Heavy metals risk assessment in water and bottom sediments of ICOLLs in Northern Poland. Glob. Nest. J. 2019, 21, 438–448. [Google Scholar] [CrossRef] [Green Version]
- Venice System. Symposium on the classification of brackish waters. Arch. Limnol. Oceanogr. 1959, 11, 1–248. [Google Scholar]
Lake Characteristics | Lake Łebsko | Lake Gardno | Lake Sarbsko | Lake Dołgie |
---|---|---|---|---|
Geographic coordinates | 54°43′ N 17°25′ E | 54°39′ N 17°07′ E | 54°22′ N 18°48′ E | 54°42′ N 17°12′ E |
Area (ha) | 7020 | 2261 | 611 | 136 |
Mean depth (m) | 1.6 | 1.4 | 1.2 | 1.4 |
Max. depth (m) | 4.7 | 2.2 | 3.2 | 2.7 |
Volume (106 m3) | 113.5 | 30.9 | 7.3 | 2.2 |
Salinity level (PSU) | 1.5–7.05 | 0.3–2.9 | <0.9 | <0.02 |
Type of hydrological connectivity (sea connection) | Permanent seawater intrusion by the Łeba River | Periodical seawater intrusion by the Łupawa River | Occasional seawater intrusion by Chełst and Łeba Rivers | Fully isolated from sea |
Residence time (days/year) | 250 < x | 150 < x < 250 | 0 < x < 150 | x = 0 |
Type of habitat | Brackish (B) | Freshwater-brackish (FB) | Brackish-freshwater (BF) | Freshwater (F) |
B n = 66 | FB n = 30 | BF n = 30 | F n = 30 | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | Mean | ±SD | Mean | ±SD | |||
Ba | mg L−1 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | <0.0001 |
Bi | mg L−1 | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 0.01 | <0.0001 |
Cr | mg L−1 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.6 |
Cu | mg L−1 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.001 |
Mn | mg L−1 | 0.22 | 0.19 | 0.15 | 0.10 | 0.19 | 0.10 | 0.12 | 0.06 | <0.0001 |
Fe | mg L−1 | 0.78 | 0.53 | 0.58 | 0.36 | 0.85 | 0.63 | 2.75 | 1.42 | <0.0001 |
Ni | mg L−1 | 0.05 | 0.12 | 0.07 | 0.13 | 0.05 | 0.06 | 0.05 | 0.06 | 0.4 |
Pb | mg L−1 | 0.05 | 0.07 | 0.09 | 0.13 | 0.06 | 0.11 | 0.09 | 0.11 | 0.2 |
Zn | mg L−1 | 0.63 | 0.42 | 1.05 | 1.02 | 1.18 | 1.70 | 1.08 | 0.77 | 0.001 |
Total | 1.78 | 2.01 | 2.41 | 4.10 | <0.0001 |
B n = 66 | FB n = 30 | BF n = 30 | F n = 30 | p | |||||
---|---|---|---|---|---|---|---|---|---|
mean | SD | mean | SD | mean | SD | mean | SD | ||
TChl | 13.73 | 13.76 | 18.59 | 17.45 | 98.17 | 183.81 | 55.32 | 82.88 | <0.001 |
Chlorophyta | 2.53 | 3.67 | 2.14 | 2.38 | 2.85 | 4.14 | 8.12 | 9.34 | 0.001 |
Cyanobacteria | 10.28 | 9.66 | 15.94 | 15.77 | 80.27 | 158.17 | 43.20 | 71.65 | 0.001 |
Bacillariophyta | 0.30 | 0.62 | 0.30 | 0.46 | 0.21 | 0.51 | 3.38 | 4.91 | <0.001 |
Cryptophyta | 0.05 | 0.17 | 0.02 | 0.13 | 14.64 | 27.74 | 0.46 | 1.17 | <0.0001 |
PA | 10.9 | 6.9 | 10.1 | 7.0 | 8.6 | 6.2 | 9.7 | 7.4 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymańska-Walkiewicz, M.; Glińska-Lewczuk, K.; Burandt, P.; Obolewski, K. Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 2022, 19, 4131. https://doi.org/10.3390/ijerph19074131
Szymańska-Walkiewicz M, Glińska-Lewczuk K, Burandt P, Obolewski K. Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes. International Journal of Environmental Research and Public Health. 2022; 19(7):4131. https://doi.org/10.3390/ijerph19074131
Chicago/Turabian StyleSzymańska-Walkiewicz, Monika, Katarzyna Glińska-Lewczuk, Paweł Burandt, and Krystian Obolewski. 2022. "Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes" International Journal of Environmental Research and Public Health 19, no. 7: 4131. https://doi.org/10.3390/ijerph19074131
APA StyleSzymańska-Walkiewicz, M., Glińska-Lewczuk, K., Burandt, P., & Obolewski, K. (2022). Phytoplankton Sensitivity to Heavy Metals in Baltic Coastal Lakes. International Journal of Environmental Research and Public Health, 19(7), 4131. https://doi.org/10.3390/ijerph19074131