Evaluation of a Brief Sleep Intervention Designed to Improve the Sleep, Mood, and Cognitive Performance of Esports Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Demographic/General Information
2.2.2. Sleep Measures
Wrist Activity Monitor
Sleep Diary
Insomnia Severity Index (ISI)
Pediatric Daytime Sleepiness Scale (PDSS)
Sleep Knowledge
2.2.3. Mood Measures
Centre for Epidemiological Studies Depression (CES-D)
State-Trait Anxiety Inventory (STAI-Y)
2.2.4. Cognitive Performance Measure
Psychomotor Vigilance Task (PVT-5)
2.3. Procedure
2.3.1. Pre-Intervention Period
2.3.2. Intervention Period
2.4. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Sleep Knowledge
3.3. Sleep Diary
3.4. Wrist Activity Monitor
3.5. Sleep, Mood, and PVT Scores
4. Discussion
4.1. Sleep Outcomes
4.2. Mood and Cognitive Performance Outcomes
4.3. Considerations for Future Sleep Interventions in Esports
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnar, D.; Castine, B.; Kakoschke, N.; Sharp, G. Sleep and performance in eathletes: For the win! Sleep Health 2019, 5, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Newzoo. 2021 Global Esports and Live Streaming Market Report. Available online: https://newzoo.com/insights/trend-reports/newzoos-global-esports-live-streaming-market-report-2021-free-version/ (accessed on 30 June 2021).
- Walsh, N.P.; Halson, S.L.; Sargent, C.; Roach, G.D.; Nédélec, M.; Gupta, L.; Leeder, J.; Fullagar, H.H.; Coutts, A.J.; Edwards, B.J.; et al. Sleep and the athlete: Narrative review and 2021 expert consensus recommendations. Br. J. Sports Med. 2021, 55, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Solmi, M.; Wootton, R.E.; Vancampfort, D.; Schuch, F.B.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Bonnar, D.; Roane, B.; Gradisar, M.; Dunican, I.; Lastella, M.; Maisey, G.; Suh, S. Sleep characteristics and mood of professional Esports athletes: A multi-national study. Int. J. Environ. Res. Public Health 2021, 18, 664. [Google Scholar] [CrossRef]
- Lee, S.; Bonnar, D.; Kim, Y.; Lee, Y.; Lee, S.; Gradisar, M.; Suh, S. Sleep characteristics and risk factors of Korean esports athletes: An exploratory study. Sleep Med. Res. 2020, 11, 77–87. [Google Scholar] [CrossRef]
- Gomes, M.A.; Narciso, F.V.; de Mello, M.T.; Esteves, A.M. Identifying electronic-sport athletes’ sleep-wake cycle characteristics. Chronobiol. Int. 2021, 38, 1002–1009. [Google Scholar] [CrossRef]
- Ohayon, M.; Wickwire, E.M.; Hirshkowitz, M.; Albert, S.; Avidan, A.; Daly, F.J.; Dauvilliers, Y.; Ferri, R.; Fung, C.; Gozal, D.; et al. National Sleep Foundation’s sleep quality recommendations: First report. Sleep Health 2017, 3, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Short, M.A.; Gradisar, M.; Lack, L.C.; Wright, H.; Carskadon, M.A. The discrepancy between actigraphic and sleep diary measures of sleep in adolescents. Sleep Med. 2012, 13, 378–384. [Google Scholar] [CrossRef]
- Fullagar, H.H.K.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef]
- Van Dongen, H.P.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Lowe, C.J.; Safati, A.; Hall, P. The neurocognitive consequences of sleep restriction: A meta-analytic review. Neurosci. Biobehav. Rev. 2017, 80, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Palanichamy, T.; Sahu, M.; Kanchana, D. Influence of esports on stress: A systematic review. Ind. Psychiatry J. 2020, 29, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; De Gennaro, L. How much sleep do we need? Sleep Med. Rev. 2001, 5, 155–179. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F.; Pack, F.; Williams, K.; Gillen, K.A.; Powell, J.W.; Ott, G.E.; Aptowicz, C.; Pack, A.I. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 h per night. Sleep 1997, 20, 267–277. [Google Scholar] [CrossRef]
- Bonnar, D.; Lee, S.; Gradisar, M.; Suh, S. Risk factors and sleep intervention considerations in esports: A review and practical guide. Sleep Med. Res. 2019, 10, 59–66. [Google Scholar] [CrossRef]
- Melo, D.L.M.; Carvalho, L.B.C.; Prado, L.B.F.; Prado, G.F. Biofeedback therapies for chronic insomnia: A systematic review. Appl. Psychophysiol. Biofeedback 2019, 44, 259–269. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, 291. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- Morgenthaler, T.; Alessi, C.; Friedman, L.; Owens, J.; Kapur, V.; Boehlecke, B.; Brown, T.; Chesson, A.; Coleman, J.; Lee-Chiong, T.; et al. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: An update for 2007. Sleep 2007, 30, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Carney, C.E.; Buysse, D.J.; Ancoli-Israel, S.; Edinger, J.D.; Krystal, A.D.; Lichstein, K.L.; Morin, C.M. The consensus sleep diary: Standardizing prospective sleep self-monitoring. Sleep 2012, 35, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The insomnia severity index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzar, D.; Jahrami, H.A.; Bahammam, A.S. Structural validity of the insomnia severity index: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 60, 101531. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.W.; Song, M.L.; Morinc, C.M. Validation of a Korean version of the insomnia severity index. J. Clin. Neurol. 2014, 10, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, C.; Nickel, C.; Burduvali, E.; Roth, T.; Jefferson, C.; Badia, P. The pediatric daytime sleepiness scale (PDSS): Sleep habits and school outcomes in middle-school children. Sleep 2003, 26, 455–458. [Google Scholar] [CrossRef]
- Richardson, C.; Cain, N.; Bartel, K.; Micic, G.; Maddock, B.; Gradisar, M. A randomised controlled trial of bright light therapy and morning activity for adolescents and young adults with delayed sleep-wake phase disorder. Sleep Med. 2018, 45, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Rhie, S.; Lee, S.; Chae, K.Y. Sleep patterns and school performance of Korean adolescents assessed using a Korean version of the pediatric daytime sleepiness scale. Korean J. Pediatr. 2011, 54, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Bonnar, D.; Gradisar, M.; Moseley, L.; Coughlin, A.-M.; Cain, N.; Short, M.A. Evaluation of novel school-based interventions for adolescent sleep problems: Does parental involvement and bright light improve outcomes? Sleep Health 2015, 1, 66–74. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Cosco, T.; Prina, M.; Stubbs, B.; Wu, Y.-T. Reliability and validity of the center for epidemiologic studies depression scale in a population-based cohort of middle-aged U.S. adults. J. Nurs. Meas. 2017, 25, 476–485. [Google Scholar] [CrossRef]
- Chon, K.K.; Choi, S.C.; Yang, B.C. Integrated adaptation of CES-D in Korea. Korean J. Health Psychol. 2001, 1, 59–76. [Google Scholar]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Spielberger, C.D. State-Trait Anxiety Inventory: Bibliography, 2nd ed.; Consulting Psychologists Press: Palo Alto, CA, USA, 1989. [Google Scholar]
- Ortuno-Sierra, J.; Garcia-Velasco, L.; Inchausti, F.; Debbane, M.; Fonseca-Pedrero, E. New approaches on the study of the psychometric properties of the STAI. Actas Esp. De Psiquiatr. 2016, 44, 83–92. [Google Scholar]
- Hahn, D.W. Korean adaptation of Spielberger’s STAI (K-STAI). Korean J. Health Psychol. 1996, 1, 1–4. [Google Scholar]
- Loh, S.; Lamond, N.; Dorrian, J.; Roach, G.; Dawson, D. The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav. Res. Methods Instrum. Comput. 2004, 36, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.J.; Dunican, I.C.; Murray, K.; Peeling, P.; Dawson, B.; Halson, S.; Miller, J.; Eastwood, P.R. The psychomotor vigilance test: A comparison of different test durations in elite athletes. J. Sports Sci. 2018, 36, 2033–2037. [Google Scholar] [CrossRef] [PubMed]
- Roach, G.D.; Dawson, D.; Lamond, N. Can a shorter psychomotor vigilance task be used as a reasonable substitute for the ten-minute psychomotor vigilance task? Chronobiol. Int. 2006, 23, 1379–1387. [Google Scholar] [CrossRef]
- Hursh, S.R.; Redmond, D.P.; Johnson, M.L.; Thorne, D.R.; Belenky, G.; Balkin, T.J.; Storm, W.F.; Miller, J.C.; Eddy, D.R. Fatigue models for applied research in war-fighting. Aviat. Space Environ. Med. 2004, 75, 44–53. [Google Scholar]
- Hursh, S.R.; Raslear, T.G.; Kaye, A.S.; Franzone, J.F. Validation and Calibration of a Fatigue Assessment Tool for Railroad Work Schedules, Summary Report; U.S. Department of Transportation: Washington, DC, USA, 2006.
- Van Dongen, H.P. Comparison of mathematical model predictions to experimental data of fatigue and performance. Aviat. Space Environ. Med. 2004, 75, A15–A36. [Google Scholar]
- Troxel, W.M.; Germain, A.; Buysse, D.J. Clinical management of insomnia with brief behavioral treatment (BBTI). Behav. Sleep Med. 2012, 10, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, A.; Schlarb, A.A. Let’s talk about sleep: A systematic review of psychological interventions to improve sleep in college students. J. Sleep Res. 2017, 27, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Micic, G.; Richardson, C.; Cain, N.; Reynolds, C.; Bartel, K.; Maddock, B.; Gradisar, M. Readiness to change and commitment as predictors of therapy compliance in adolescents with delayed sleep-wake phase disorder. Sleep Med. 2019, 1, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Van Ryswyk, E.; Weeks, R.; Bandick, L.; O’Keefe, M.; Vakulin, A.; Catcheside, P.; Barger, L.; Potter, A.; Poulos, N.; Wallace, J.; et al. Harvard Medic. A novel sleep optimisation programme to improve athletes’ well-being and performance. Eur. J. Sport Sci. 2017, 17, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Driller, M.W.; Lastella, M.; Sharp, A.P. Individualized sleep education improves subjective and objective sleep indices in elite cricket athletes: A pilot study. J. Sports Sci. 2019, 37, 2021–2025. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; An, H.; Suh, S. What do people do before going to bed? a study of bedtime procrastination using time use surveys. Sleep 2020, 43, 267. [Google Scholar] [CrossRef] [PubMed]
- Kroese, F.M.; De Ridder, D.T.D.; Eevers, C.; Adriaanse, M.A. Bedtime procrastination: Introducing a new area of procrastination. Front. Psychol. 2014, 5, 611. [Google Scholar] [CrossRef] [PubMed]
- Gradisar, M.; Lack, L.; Richards, H.; Harris, J.; Gallasch, J.; Boundy, M.; Johnston, A. The Flinders fatigue scale: Preliminary psychometric properties and clinical sensitivity of a new scale for measuring daytime fatigue associated with insomnia. J. Clin. Sleep Med. 2007, 3, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Gee, B.; Orchard, F.; Clarke, E.; Joy, A.; Clarke, T.; Reynolds, S. The effect of non-pharmacol ogical sleep interventions on depression symptoms: A meta-analysis of randomised control ed trials. Sleep Med. Rev. 2019, 43, 118–128. [Google Scholar] [CrossRef]
- Belleville, G.; Cousineau, H.; Levrier, K.; St-Pierre-Delorme, M.-È. Meta-analytic review of the impact of cognitive-behavior therapy for insomnia on concomitant anxiety. Clin. Psychol. Rev. 2011, 31, 638–652. [Google Scholar] [CrossRef]
- Gradisar, M.; Dohnt, H.; Gardner, G.; Paine, S.; Starkey, K.; Menne, A.; Slater, A.; Wright, H.; Hudson, J.; Weaver, E.; et al. A randomized controlled trial of cognitive-behavior therapy plus bright light therapy for adolescent delayed sleep phase disorder. Sleep 2011, 34, 1671–1680. [Google Scholar] [CrossRef] [Green Version]
- Ritland, B.M.; Simonelli, G.; Gentili, R.J.; Smith, J.C.; He, X.; Mantua, J.; Balkin, T.J.; Hatfield, B.D. Effects of sleep extension on cognitive/motor performance and motivation in military tactical athletes. Sleep Med. 2019, 58, 48–55. [Google Scholar] [CrossRef]
- Mah, C.D.; Mah, K.E.; Kezirian, E.J.; Dement, W.C. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep 2011, 34, 943–950. [Google Scholar] [CrossRef]
- Famodu, O.; Montgomery-Downs, H.; Thomas, J.; Gilleland, D.L.; Bryner, R.W.; Olfert, M.D. Impact of a single week of sleep extension on performance, mood, and nutrition among female college track athletes. Sleep 2017, 40, A32. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.M.; Jarrin, D.C.; Ballot, O.; Bharwani, A.A.; Morin, C.M. A systematic review of cognitive behavioral therapy for insomnia implemented in primary care and community settings. Sleep Med. Rev. 2019, 44, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, D.; Bartel, K.; Kakoschke, N.; Lang, C. Sleep interventions designed to improve athletic performance and recovery: A systematic review of current approaches. Sports Med. 2018, 48, 683–703. [Google Scholar] [CrossRef] [PubMed]
- Miles, K.H.; Clark, B.; Fowler, P.M.; Miller, J.; Pumpa, K.L. Sleep practices implemented by team sport coaches and sports science support staff: A potential avenue to improve athlete sleep? J. Sci. Med. Sport 2019, 22, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Järvinen, A.; Poikela, E. Modelling reflective and contextual learning at work. J. Work. Learn. 2001, 13, 282–290. [Google Scholar] [CrossRef]
- González, C.S.G.; del Río, N.G.; Adelantado, V.N. Exploring the benefits of using gamification and videogames for physical exercise: A review of state of art, international journal of interactive multimedia and artificial intelligence. Int. J. Interact. Multimedia Artif. Intell. 2018, 5, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Cain, N.; Gradisar, M.; Moseley, L. A motivational school-based intervention for adolescent sleep problems. Sleep Med. 2011, 12, 246–251. [Google Scholar] [CrossRef]
- Moseley, L.; Gradisar, M. Evaluation of a school-based intervention for adolescent sleep problems. Sleep 2009, 32, 334–341. [Google Scholar] [CrossRef] [Green Version]
Measure | South Korea N = 34 | United States N = 7 | Australia N = 15 | Total Sample N = 56 | F (p) |
---|---|---|---|---|---|
Age (years) | 21.0 (2.42) | 21.9 (3.16) | 20.0 (1.94) | 20.9 (2.43) | 1.64 (0.20) |
BMI (kg/m2) | 24.2 (5.39) | 25.0 (5.88) | 22.4 (4.69) | 23.8 (5.26) | 0.82 (0.44) |
Training hours per day | 12.71 (2.04) | 6.93 (1.79) | 5.80 (2.10) | 10.13 (3.81) | 70.27 (0.001) |
Career length in yrs | 2.9 (1.6) | 2.9 (1.5) | 1.8 (1.2) | 2.6 (1.6) | 2.74 (0.074) |
Chi-square (p) | |||||
Female sex, n (%) | 0 (0%) | 2 (29%) | 0 (0%) | 2 (4%) | 14.52 (0.001) |
Sleep disturbance pre-competition, n (%) | 14 (42%) | 3 (43%) | 10 (67%) | 27 (49%) | 2.55 (0.28) |
Sleep medication use n (%) | 0 (0%) | 0 (0%) | 1 (7%) | 1 (2%) | 2.78 (0.24) |
Kruskal-Wallis | |||||
Caffeine intake (mg per day), n (%) | 3.94 (0.14) | ||||
<100 | 14 (44%) | 4 (57%) | 8 (67%) | 26 (51%) | |
100–200 | 7 (22%) | 2 (29%) | 4 (33%) | 13 (25%) | |
300–400 | 7 (22%) | 1 (14%) | 0 (0.0%) | 8 (16%) | |
>400 | 4 (12%) | 0 (0%) | 0 (0%) | 4 (8%) |
Sleep Parameter | Main Effect—Time | Pre-Intervention M(SE) | Post-Intervention M(SE) | Mdiff | |
---|---|---|---|---|---|
t | p | ||||
TST (hrs) | 1.67 | 0.09 | 7.4 (0.38) | 7.5 (0.38) | 0.1 |
SOL (mins) | −2.31 | 0.02 * | 28.3 (9.12) | 25.4 (9.12) | −2.9 |
WASO (mins) | −1.12 | 0.26 | 9.6 (8.67) | 8.2 (8.68) | −1.4 |
SOT (hh:mm) | −2.28 | 0.03 * | 03:42 (00:38) | 03:30 (00:37) | −00:12 |
WUT (hh:mm) | −1.45 | 0.15 | 11:06 (00:30) | 10:54 (00:33) | −00:12 |
SE (%) | 2.88 | 0.004 * | 91.5 (0.03) | 92.6 (0.03) | 1.1 |
Sleep Parameter | Main Effect—Time | Pre-Intervention M(SE) | Post-Intervention M(SE) | Mdiff | |
---|---|---|---|---|---|
t | p | ||||
TST (hrs) | 1.87 | 0.06 | 6.9 (0.31) | 7.05 (0.32) | 0.15 |
SOL (mins) | −0.77 | 0.44 | 31.6 (4.09) | 30.3 (4.11) | −1.3 |
WASO (mins) | −1.13 | 0.26 | 44.7 (11.4) | 42.5 (11.4) | −2.2 |
SOT (hh:mm) | −2.53 | 0.01 * | 04:00 (00:26) | 03:42 (00:26) | −00:18 |
WUT (hh:mm) | −1.17 | 0.24 | 11:36 (00:23) | 11:24 (00:23) | −00:12 |
SE (%) | 1.18 | 0.24 | 80.3 (2.84) | 80.8 (2.84) | 0.5 |
Measure | Main Effect—Time | Pre-Intervention M (SE) | Post-Intervention M (SE) | Effect Size (95% CI)/Mdiff | |
---|---|---|---|---|---|
F | p | ||||
ISI | 12.79 | 0.001 * | 10.50 (1.52) | 8.47 (1.47) | 0.47 (0.08, 0.84) ** |
PDSS | 5.32 | 0.02 * | 14.75 (1.81) | 16.07 (1.82) | −0.23 (−0.61, 0.14) |
STAI-Y | 1.03 | 0.31 | 44.96 (3.30) | 43.78 (3.39) | 0.12 (−0.26, 0.49) |
CES-D | 0.01 | 0.94 | 27.33 (1.85) | 27.40 (1.99) | −0.009 (−0.38, 0.36) |
Mean reaction time (msecs) | 0.26 | 0.61 | 251.3 (10.90) | 249.6 (11.11) | −1.7 |
Lapses(≥500 ms) | 2.04 | 0.16 | 3.0 (1.03) | 2.5 (1.02) | 0.2 (−0.18, 0.58) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnar, D.; Lee, S.; Roane, B.M.; Blum, D.J.; Kahn, M.; Jang, E.; Dunican, I.C.; Gradisar, M.; Suh, S. Evaluation of a Brief Sleep Intervention Designed to Improve the Sleep, Mood, and Cognitive Performance of Esports Athletes. Int. J. Environ. Res. Public Health 2022, 19, 4146. https://doi.org/10.3390/ijerph19074146
Bonnar D, Lee S, Roane BM, Blum DJ, Kahn M, Jang E, Dunican IC, Gradisar M, Suh S. Evaluation of a Brief Sleep Intervention Designed to Improve the Sleep, Mood, and Cognitive Performance of Esports Athletes. International Journal of Environmental Research and Public Health. 2022; 19(7):4146. https://doi.org/10.3390/ijerph19074146
Chicago/Turabian StyleBonnar, Daniel, Sangha Lee, Brandy M. Roane, Daniel J. Blum, Michal Kahn, Eunhee Jang, Ian C. Dunican, Michael Gradisar, and Sooyeon Suh. 2022. "Evaluation of a Brief Sleep Intervention Designed to Improve the Sleep, Mood, and Cognitive Performance of Esports Athletes" International Journal of Environmental Research and Public Health 19, no. 7: 4146. https://doi.org/10.3390/ijerph19074146
APA StyleBonnar, D., Lee, S., Roane, B. M., Blum, D. J., Kahn, M., Jang, E., Dunican, I. C., Gradisar, M., & Suh, S. (2022). Evaluation of a Brief Sleep Intervention Designed to Improve the Sleep, Mood, and Cognitive Performance of Esports Athletes. International Journal of Environmental Research and Public Health, 19(7), 4146. https://doi.org/10.3390/ijerph19074146