Efficacy and Safety of Transvenous Lead Extraction at the Time of Upgrade from Pacemakers to Cardioverter-Defibrillators and Cardiac Resynchronization Therapy
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Lead Extraction Procedure
2.3. Dataset and Statistical Methods
2.4. Approval of the Bioethics Committee
3. Results
4. Discussion
5. Conclusions
- Upgrading a patient from an existing pacemaker to an ICD/CRT-P/CRT-D is feasible in 100% of cases, provided that transvenous lead extraction is performed for venous access, if necessary.
- In clinical practice, most upgrades from PM to ICD/CRT coincide with system revision/lead extraction due to lead failure. A separate indication for upgrading is less frequent (under 60%).
- Lead extraction at the time of upgrade prevents superfluous lead abandonment.
- Major complications of lead extraction for device upgrades are rare (0% at experienced centers) and, if present, do not result in death.
Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moura-Ferreira, S.; Gonçalves, H.; Oliveira, M.; Primo, J.; Fonseca, P.; Ribeiro, J.; Santos, E.; Pelicano, N.; Martins, D.; Gama, V. A devices’ game of thrones: Cardiac resynchronization therapy vs. pacemaker. Europace 2017, 19, 2042–2046. [Google Scholar] [CrossRef]
- Wunderlich, E.; Schindler, H.; Hetze, A.; Wunderlich, C. Maintenance of AAI(R) mode at the time of generator replacement. Herzschrittmacherther Elektrophysiol. 2010, 21, 196–199. [Google Scholar] [CrossRef]
- Teno, L.A.; Costa, R.; Martinelli Filho, M.; Castilho, F.C.; Ruiz, I. Upgrading from VVI to DDD pacing Mode during elective replacement of pulse generator: A comparative clinical-functional analysis. Arq. Bras. Cardiol. 2007, 88, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, Y.; Suzuki, T.; Yasuda, M.; Daida, H. Manifestation of Brugada syndrome after pacemaker implantation in a patient with sick sinus syndrome. J. Cardiovasc. Electrophysiol. 2004, 15, 1328–1330. [Google Scholar] [CrossRef]
- Sulke, N.; Dritsas, A.; Bostock, J.; Wells, A.; Morris, R.; Sowton, E. “Subclinical” pacemaker syndrome: A randomised study of symptom free patients with ventricular demand (VVI) pacemakers upgraded to dual chamber devices. Br. Heart J. 1992, 67, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Wilkoff, B.L.; Love, C.J.; Byrd, C.L.; Bongiorni, M.G.; Carrillo, R.G.; Crossley, G.H., 3rd; Epstein, L.M.; Friedman, R.A.; Kennergren, C.E.; Mitkowski, P.; et al. Transvenous lead extraction: Heart Rhythm Society expert consensus on facilities, training, indications, and patient management: This document was endorsed by the American Heart Association (AHA). Heart Rhythm. 2009, 6, 1085–1104. [Google Scholar] [CrossRef]
- Kusumoto, F.M.; Schoenfeld, M.H.; Wilkoff, B.; Berul, C.I.; Birgersdotter-Green, U.M.; Carrillo, R.; Cha, Y.M.; Clancy, J.; Deharo, J.C.; Ellenbogen, K.A.; et al. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 2017, 14, e503–e551. [Google Scholar] [CrossRef] [Green Version]
- Al-Maisary, S.; Romano, G.; Karck, M.; De Simone, R.; Kremer, J. The use of laser lead extraction sheath in the presence of supra-cardiac occlusion of the central veins for cardiac implantable electronic device lead upgrade or revision. PLoS ONE 2021, 16, e0251829. [Google Scholar] [CrossRef]
- Sohal, M.; Williams, S.; Akhtar, M.; Shah, A.; Chen, Z.; Wright, M.; O’Neill, M.; Patel, N.; Hamid, S.; Cooklin, M.; et al. Laser lead extraction to facilitate cardiac implantable electronic device upgrade and revision in the presence of central venous obstruction. Europace 2014, 16, 81–87. [Google Scholar] [CrossRef]
- Witte, O.A.; Adiyaman, A.; van Bemmel, M.W.; Smit, J.J.J.; Ghani, A.; Misier, A.R.R.; Elvan, A.; Delnoy, P.P.H.M. Mechanical power sheath mediated recanalization and lead implantation in patients with venous occlusion: Technique and results. J. Cardiovasc. Electrophysiol. 2018, 29, 316–321. [Google Scholar] [CrossRef]
- Nobre Menezes, M.; Bernardes, A.; de Sousa, J.; Marques, P. Overcoming a subclavian complete occlusion: Simple single lead extraction by the subclavian vein allowing implantation of two new leads and upgrade to CRT-P with multi-site pacing. Indian Pacing Electrophysiol. J. 2015, 15, 118–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuśmierski, K.; Syska, P.; Maciąg, A.; Oręziak, A.; Kuśmierczyk, M.; Przybylski, A. Regaining venous access for implantation of a new lead. Postepy Kardiol. Interwencyjnej. 2013, 9, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajkowski, M.; Jacheć, W.; Polewczyk, A.; Kosior, J.; Nowosielecka, D.; Tułecki, Ł.; Stefańczyk, P.; Kutarski, A. Risk Factors for Lead-Related Venous Obstruction: A Study of 2909 Candidates for Lead Extraction. J. Clin. Med. 2021, 10, 5158. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, M.; Jacheć, W.; Polewczyk, A.; Kosior, J.; Nowosielecka, D.; Tułecki, Ł.; Stefańczyk, P.; Kutarski, A. The Influence of Lead-Related Venous Obstruction on the Complexity and Outcomes of Transvenous Lead Extraction. Int J. Environ. Res. Public Health 2021, 18, 9634. [Google Scholar] [CrossRef]
- Albertini, C.M.M.; Silva, K.R.D.; Leal Filho, J.M.D.M.; Crevelari, E.S.; Martinelli Filho, M.; Carnevale, F.C.; Costa, R. Usefulness of preoperative venography in patients with cardiac implantable electronic devices submitted to lead replacement or device upgrade procedures. Arq Bras. Cardiol. 2018, 111, 686–696. [Google Scholar] [CrossRef]
- Suga, C.; Hayes, D.L.; Hyberger, L.K.; Lloyd, M.A. Is there an adverse outcome from abandoned pacing leads? J. Interv. Card. Electrophysiol. 2000, 4, 493–499. [Google Scholar] [CrossRef]
- Kutarski, A.; Małecka, B.; Kołodzinska, A.; Grabowski, M. Mutual abrasion of endocardial leads: Analysis of explanted leads. Pacing Clin. Electrophysiol. 2013, 36, 1503–1511. [Google Scholar] [CrossRef]
- Bongiorni, M.G.; Burri, H.; Deharo, J.C.; Starck, C.; Kennergren, C.; Saghy, L.; Rao, A.; Tascini, C.; Lever, N.; Kutarski, A.; et al. 2018 EHRA expert consensus statement on lead extraction: Recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: Endorsed by APHRS/HRS/LAHRS. Europace 2018, 20, 1217. [Google Scholar] [CrossRef]
- Kutarski, A.; Czajkowski, M.; Pietura, R.; Obszanski, B.; Polewczyk, A.; Jachec, W.; Polewczyk, M.; Mlynarczyk, K.; Grabowski, M.; Opolski, G. Effectiveness, safety, and long-term outcomes of non-powered mechanical sheaths for transvenous lead extraction. Europace 2018, 20, 1324–1333. [Google Scholar] [CrossRef]
- Tułecki, Ł.; Polewczyk, A.; Jacheć, W.; Nowosielecka, D.; Tomków, K.; Stefańczyk, P.; Kosior, J.; Duda, K.; Polewczyk, M.; Kutarski, A. Study of Major and Minor Complications of 1500 Transvenous Lead Extraction Procedures Performed with Optimal Safety at Two High-Volume Referral Centers. Int. J. Environ. Res. Public Health 2021, 18, 10416. [Google Scholar] [CrossRef]
- Tułecki, Ł.; Polewczyk, A.; Jacheć, W.; Nowosielecka, D.; Tomków, K.; Stefańczyk, P.; Kosior, J.; Duda, K.; Polewczyk, M.; Kutarski, A. Analysis of Risk Factors for Major Complications of 1500 Transvenous Lead Extraction Procedures with Especial Attention to Tricuspid Valve Damage. Int. J. Environ. Res. Public Health 2021, 18, 9100. [Google Scholar] [CrossRef] [PubMed]
- Stefańczyk, P.; Nowosielecka, D.; Tułecki, Ł.; Tomków, K.; Polewczyk, A.; Jacheć, W.; Kleinrok, A.; Borzęcki, W.; Kutarski, A. Transvenous Lead Extraction without Procedure-Related Deaths in 1000 Consecutive Patients: A Single-Center Experience. Vasc Health Risk Manag. 2021, 17, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Jacheć, W.; Polewczyk, A.; Polewczyk, M.; Tomasik, A.; Kutarski, A. Transvenous Lead Extraction SAFeTY Score for Risk Stratification and Proper Patient Selection for Removal Procedures Using Mechanical Tools. J. Clin. Med. 2020, 9, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, A.; Pintér, A.; Duray, G.; Lehoczky, D.; Dudás, G.; Tomcsányi, I.; Préda, I. Complications due to abandoned noninfected pacemaker leads. Pacing Clin. Electrophysiol. 2001, 24, 1721–1724. [Google Scholar] [CrossRef]
- Hussein, A.A.; Tarakji, K.G.; Martin, D.O.; Gadre, A.; Fraser, T.; Kim, A.; Brunner, M.P.; Barakat, A.F.; Saliba, W.I.; Kanj, M.; et al. Cardiac Implantable Electronic Device Infections: Added Complexity and Suboptimal Outcomes with Previously Abandoned Leads. JACC Clin. Electrophysiol. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Pokorney, S.D.; Mi, X.; Lewis, R.K.; Greiner, M.; Epstein, L.M.; Carrillo, R.G.; Zeitler, E.P.; Al-Khatib, S.M.; Hegland, D.D.; Piccini, J.P. Outcomes Associated with Extraction Versus Capping and Abandoning Pacing and Defibrillator Leads. Circulation 2017, 136, 1387–1395. [Google Scholar] [CrossRef]
- Boyle, T.A.; Uslan, D.Z.; Prutkin, J.M.; Greenspon, A.J.; Baddour, L.M.; Danik, S.B.; Tolosana, J.M.; Le, K.; Miro, J.M.; Peacock, J.E.; et al. Impact of Abandoned Leads on Cardiovascular Implantable Electronic Device Infections: A Propensity Matched Analysis of MEDIC (Multicenter Electrophysiologic Device Infection Cohort). JACC Clin. Electrophysiol. 2018, 4, 201–208. [Google Scholar] [CrossRef]
- Merchant, F.M.; Tejada, T.; Patel, A.; El-Khalil, J.; Desai, Y.; Keeling, B.; Lattouf, O.M.; Leon, A.R.; El-Chami, M.F. Procedural outcomes and long-term survival associated with lead extraction in patients with abandoned leads. Heart Rhythm 2018, 15, 855–859. [Google Scholar] [CrossRef]
- Jacheć, W.; Polewczyk, A.; Polewczyk, M.; Tomasik, A.; Janion, M.; Kutarski, A. Risk Factors Predicting Complications of Transvenous Lead Extraction. Biomed. Res. Int. 2018, 2018, 8796704. [Google Scholar] [CrossRef]
- Segreti, L.; Rinaldi, C.A.; Claridge, S.; Svendsen, J.H.; Blomstrom-Lundqvist, C.; Auricchio, A.; Butter, C.; Dagres, N.; Deharo, J.C.; Maggioni, A.P.; et al. Procedural outcomes associated with transvenous lead extraction in patients with abandoned leads: An ESC-EHRA ELECTRa (European Lead Extraction ConTRolled) Registry Sub-Analysis. Europace 2019, 21, 645–654. [Google Scholar] [CrossRef]
- Jacheć, W.; Polewczyk, A.; Segreti, L.; Bongiorni, M.G.; Kutarski, A. To abandon or not to abandon: Late consequences of pacing and ICD lead abandonment. Pacing Clin. Electrophysiol. 2019, 42, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Shoda, M.; Saito, S.; Kanai, M.; Kataoka, S.; Yazaki, K.; Yagishita, D.; Ejima, K.; Hagiwara, N. Safety and efficacy of transvenous lead extractions for noninfectious superfluous leads in a Japanese population: A single-center experience. Pacing Clin. Electrophysiol. 2019, 42, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Segreti, L.; Giannotti Santoro, M.; Di Cori, A.; Fiorentini, F.; Zucchelli, G.; Bernini, G.; De Lucia, R.; Viani, S.; Paperini, L.; Barletta, V.; et al. Safety and efficacy of transvenous mechanical lead extraction in patients with abandoned leads. Europace 2020, 22, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Bracke, F.A.; van Gelder, L.M.; Sreeram, N.; Meijer, A. Exchange of pacing or defibrillator leads following laser sheath extraction of non-functional leads in patients with ipsilateral obstructed venous access. Heart 2000, 83, E12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gula, L.J.; Ames, A.; Woodburn, A.; Matkins, J.; McCormick, M.; Bell, J.; Sink, D.; McConville, J.; Epstein, L.M. Central venous occlusion is not an obstacle to device upgrade with the assistance of laser extraction. Pacing Clin. Electrophysiol. 2005, 28, 661–666. [Google Scholar] [CrossRef]
- Nowosielecka, D.; Jacheć, W.; Polewczyk, A.; Tułecki, Ł.; Tomków, K.; Stefańczyk, P.; Tomaszewski, A.; Brzozowski, W.; Szcześniak-Stańczyk, D.; Kleinrok, A.; et al. Transesophageal Echocardiography as a Monitoring Tool During Transvenous Lead Extraction-Does It Improve Procedure Effectiveness? J. Clin. Med. 2020, 9, 1382. [Google Scholar] [CrossRef]
- Nowosielecka, D.; Polewczyk, A.; Jacheć, W.; Tułecki, Ł.; Tomków, K.; Stefańczyk, P.; Kleinrok, A.; Kutarski, A. A new approach to the continuous monitoring of transvenous lead extraction using transesophageal echocardiography-Analysis of 936 procedures. Echocardiography 2020, 37, 601–611. [Google Scholar] [CrossRef]
Upgrade to CRT-D | Upgrade to CRT-P | Upgrade to ICD | All Upgrades (to CRT-D, CRT-P and to ICD-V or ICD-D) | TLE for Other Non-Infectious Indications without Upgrades | ||
---|---|---|---|---|---|---|
Group | 1a | 1b | 1c | 1 | 2 | |
Number of patients | 138 | 33 | 89 | 260 | 2148 | |
Mean ± SD n (%) | Mean ± SD n (%) | Mean ± SD n (%) | Mean ± SD n (%) | Mean ± SD n (%) | ||
Patient age at TLE | [years] | 68.35 ± 10.57 p = 0.149 | 70.70 ± 11.41 p = 0.400 | 63.19 ± 14.66 p = 0.039 | 66.88 ± 12.49 p = 0.555 | 64.69 ± 16.73 |
Patient age at first device implantation | [years] | 60.51 ± 11.69 p = 0.058 | 60.85 ± 14.78 p = 0.215 | 53.54 ± 16.62 p = 0.015 | 58.17 ± 14.30 p = 0.673 | 56.02 ± 18.27 |
Sex (% of female patients) | n (%) | 21 (15.22) p < 0.001 | 16 (48.48) p = 0.880 | 27 (30.34) p = 0.006 | 64 (24.62) p < 0.001 | 980 (45.62) |
Underlying heart disease: IHD | n (%) | 90 (67.22) p = 0.031 | 16 (48.48) p = 0.538 | 53 (59.55) P = 0.507 | 159 (61.15) p = 0.089 | 1190 (54.00) |
NYHA III and IV | n (%) | 78 (56.52) p < 0.001 | 18 (54.55) p = 0.938 | 21 (23.60) p < 0.001 | 117 (45.00) p = 0.002 | 212 (9.870) |
Congestive heart failure (symptomatic before TLE) | n (%) | 98 (71.01) p < 0.001 | 17 (51.52) p = 0.789 | 33 (37.08) p < 0.001 | 148 (56.92) p = 0.689 | 302 (14.06) |
LVEF average | [%] | 28.23 ± 7.96 p < 0.001 | 35.64 ± 10.32 p < 0.001 | 39.46 ± 15.39 p < 0.001 | 33.03 ± 12.44 p < 0.001 | 51.87 ± 14.39 |
Normal LVEF (>50%) | n (%) | 2 (1.460) p < 0.001 | 3 (9.090) p < 0.001 | 24 (26.97) p < 0.001 | 29 (11.20) p < 0.001 | 1286 (60.07) |
LVEF mildly reduced (41–50%) | n (%) | 4 (2.920) p < 0.001 | 3 (9.090) p < 0.001 | 8 (8.990) p < 0.001 | 15 (5.790) p < 0.001 | 330 (15.41) |
LVEF moderately reduced (30–40%) | n (%) | 53 (38.69) p < 0.001 | 19 (57.58) p < 0.001 | 34 (38.20) p < 0.001 | 106 (40.93) p < 0.001 | 339 (15.83) |
LVEF significantly reduced (<30%) | n (%) | 78 (56.93) p < 0.001 | 8 (24.24) p = 0.005 | 23 (25.84) p < 0.001 | 109 (42.08) p < 0.001 | 186 (8.69) |
Renal failure (any) | n (%) | 46 (33.33) p < 0.001 | 10 (30.30) p = 0.068 | 22 (24.72) p = 0.070 | 78 (30.00) p < 0.001 | 360 (16.76) |
Renal failure: severe or hemodialysis (creat. 2.3 and >2.3 mg/dL) | n (%) | 6 (4.350) p = 0.559 | 10 (30.30) p < 0.001 | 4 (4.490) p = 0.304 | 10 (3.850) p < 0.001 | 48 (2.250) |
Renal failure: moderate (create. 1.3–2.2 mg/dL) | n (%) | 40 (28.99) p < 0.001 | 0 (0.00) p < 0.001 | 18 (20.22) p = 0.183 | 68 (26.15) p < 0.001 | 312 (14.53) |
Diabetes | n (%) | 40 (28.99) p < 0.001 | 4 (12.12) p = 0.324 | 16 (17.98) p = 0.633 | 60 (23.08) p < 0.001 | 369 (17.18) |
Charlson comorbidity index | [points] | 6.53 ± 3.82 p < 0.001 | 4.58 ± 3.02 p = 0.374 | 4.701 ± 4.11 p = 0.795 | 5.66 ± 3.93 p < 0.001 | 4.31 ± 3.52 |
Indications for TLE in the study population (primary or secondary/predominant or accompanying) | ||||||
Mechanical lead damage (electrical failure) | n (%) | 9 (6.52) p < 0.001 | 4 (12.12) p < 0.001 | 11 (12.36) p < 0.001 | 24 (9.32) p < 0.001 | 921 (42.88) |
Lead dysfunction (exit/entry block, dislodgement, extracardiac pacing) | n (%) | 6 (4.35) p < 0.001 | 4 (12.12) p < 0.001 | 5 (5.62) p < 0.001 | 15 (5.77) p < 0.001 | 414 (19.27) |
Lead dysfunction caused by (usually dry) perforation | n (%) | 4 (2.90) p < 0.001 | 1 (3.03) p < 0.001 | 2 (2.25) p < 0.001 | 7 (2.69) p < 0.001 | 375 (17.46) |
Change of pacing mode/upgrading, downgrading | n (%) | 92 (66.67) p < 0.001 | 12 (36.36) p < 0.001 | 57 (64.04) p < 0.001 | 161 (61.92) p < 0.001 | 48 (2.23) |
Abandoned lead/prevention of abandonment (AF, multiple leads) | n (%) | 2 (1.45) p = 0.149 | 2 (6.06) p = 0.968 | 2 (2.25) p = 0.481 | 6 (2.31) p = 0.157 | 94 (4.38) |
Threatening/potentially threatening lead (loops, free endings, left heart, LDTVD) | n (%) | 1 (0.72) p = 0.046 | 6 (18.18) p = 0.015 | 3 (3.37) p = 0.239 | 10 (3.85) p = 0.005 | 103 (4.80) |
Other (MRI indications, cancer, painful pocket, pacemaker/ICD no longer needed) | n (%) | 3 (2.17) p = 0.306 | 0 (0.00) p = 0.426 | 0 (0.00) p = 0.081 | 3 (1.15) p = 0.020 | 94 (4.38) |
Reestablishing venous access (symptomatic occlusion, SVC syndrome, lead replacement/upgrading) | n (%) | 21 (15.22) p < 0.001 | 4 (12.12) p < 0.001 | 9 (10.11) p < 0.001 | 34 (13.08) p < 0.001 | 97 (4.52) |
Upgrade to CRT-D | Upgrade to CRT-P | Upgrade to ICD | All Upgrades (to CRT-D, CRT-P and to ICD-V or ICD-D) | TLE for Other Non-Infectious Indications without Upgrades | ||
---|---|---|---|---|---|---|
Group | 1a | 1b | 1c | 1 | 2 | |
Number of Patients | 138 | 33 | 89 | 260 | 2148 | |
n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | ||
Venous patency before lead extraction (maximal narrowing) | ||||||
Patent (no visible stenosis) | n (%) | 21 (18.10) p = 0.975 | 4 (14.29) p = 0.771 | 17 (20.73) p = 0.443 | 42 (18.58) p = 0.855 | 333 (17.54) |
Mild stenosis (<1/3 decrease in the vein diameter) | n (%) | 30 (25.86) p = 0.410 | 4 (14.29) p = 0.474 | 15 (18.29) p = 0.795 | 49 (21.68) p = 0.968 | 398 (20.97) |
Moderate stenosis (1/3 to 2/3 decrease in the vein diameter) | n (%) | 23 (19.83) p = 0.599 | 6 (21.43) p = 0.900 | 18 (21.95) p = 0.853 | 47 (20.80) p = 0.826 | 405 (21.34) |
Severe stenosis (≥2/3 decrease in the vein diameter, but still patent) | n (%) | 18 (15.52) p = 0.151 | 7 (25.00) p = 0.837 | 13 (15.85) p = 0.459 | 38 (16.81) p = 0.171 | 386 (20.34) |
Complete occlusion | n (%) | 24 (20.69) p = 0.974 | 7 (25.00) p = 0.745 | 19 (23.17) p = 0.767 | 50 (22.12) p = 0.547 | 376 (19.81 |
Venograms were not obtained (contraindications and technical problems) | n (%) | 22 (15.94) p = 0.014 | 5 (15.15) p = 0.691 | 7 (7.865) p = 0.390 | 34 (13.08) p = 0.484 | 250 (11.64) |
Venous patency before lead extraction (number of affected veins) | ||||||
Mild narrowing | n (%) | 51 (43.97) p = 0.557 | 8 (28.57) p = 0.315 | 32 (39.02) p = 0.808 | 91 (40.27) p = 0.832 | 733 (38.50) |
One vein significantly affected (moderate/severe stenosis or complete occlusion) | n (%) | 39 (33.62) p = 0.762 | 9 (32.14) p = 0.896 | 32 (39.02) p = 0.264 | 80 (35.40) p = 0.814 | 755 (39.65) |
Two veins are significantly affected (moderate/severe stenosis or complete occlusion) | n (%) | 24 (20.69) p = 0.913 | 11 (39.29) p = 0.032 | 16 (19.51) p = 0.996 | 51 (22.57) p = 0.427 | 374 (19.64) |
Three veins are significantly affected (moderate/severe stenosis or complete occlusion) | n (%) | 2 (1.72) p = 0.782 | 0 (0.00) p = 0.999 | 2 (2.44) p = 0.925 | 4 (1.77) p = 0.792 | 33 (1.73) |
Four veins are significantly affected (moderate/severe stenosis or complete occlusion) | n (%) | 0 (0.00) p = 0.952 | 0 (0.00) p = 0.320 | 0 (0.00) p = 0.808 | 0 (0.00) p = 0.612 | 9 (0.37) |
Venograms were not obtained (contraindications, technical problems) or lack of an appropriate assessment | n (%) | 22 p = 0.136 | 5 p = 0.686 | 7 p = 0.394 | 34 p = 0.474 | 244 |
Risk factors related to pacing history | ||||||
Abandoned leads before TLE | n (%) | 6 (4.35) p = 0.076 | 2 (6.06) p = 0.756 | 11 (12.36) p = 0.407 | 19 (7.31) p = 0.380 | 197 (9.17) |
Number of leads in the heart before TLE | [n] | 1.88 ± 0.68 p = 0.986 | 1.99 ± 0.66 p = 0.718 | 1.86 ± 0.74 p = 0.522 | 1.88 ± 0.70 p = 0.807 | 1.89 ± 0.72 |
4 and >4 leads in the heart before TLE | n (%) | 4 (2.90) p = 0.682 | 1 (3.03) p = 0.836 | 3 (3.37) p = 0.610 | 8 (3.08) p = 0.363 | 43 (2.00) |
Leads on both sides of the chest before TLE | n (%) | 2 (1.45) p = 0.951 | 1 (3.03) p = 0.863 | 3 (3.37) p = 0.559 | 6 (2.31) p = 0.840 | 41 (1.91) |
Number of procedures before TLE | [n] | 1.59 ± 0.74 p = 0.036 | 2.10 ± 1.32 p = 0.181 | 1.738 ± 1.17 p = 0.785 | 1.174 ± 1.02 p = 0.235 | 1.72 ± 0.95 |
Time since last CIED procedure (any) (months) | [months] | 49.25 ± 31.20 p = 0.417 | 59.05 ± 43.83 p = 0.930 | 64.17 ± 35.89 p = 0.016 | 56.86 ± 35.42 p = 0.051 | 50.55 ± 37.25 |
Procedure-related risk factors for major complications and procedure complexity | ||||||
Number of extracted leads per patient | [n] | 1.46 ± 0.61 p = 0.985 | 1.61 ± 0.61 p = 0.188 | 1.63 ± 0.76 p = 0.164 | 1.54 ± 0.66 p = 0.224 | 1.48 ± 0.65 |
Three or more leads extracted | n (%) | 6 (4.35) p = 0.346 | 2 (9.06) p = 0.868 | 9 (10.11) p = 0.320 | 17 (6.54) p = 0.979 | 146 (6.80) |
Approach other than lead implant vein | n (%) | 0 (0.00) p = 0.105 | 1 (3.03) p = 0.696 | 2 (2.25) p = 0.919 | 3 (1.15) p = 0.267 | 53 (2.47) |
Extraction of abandoned lead(s) (any) | n (%) | 5 (3.62) p = 0.065 | 2 (6.06) p = 0.861 | 10 (11.24) p = 0.468 | 17 (6.54) p = 0.348 | 177 (8.24) |
Oldest extracted lead per patient | [years] | 7.80 ± 5.45 p = 0.130 | 9.84 ± 7.06 p = 0.071 | 9.27 ± 4.81 p = 0.085 | 8.57 ± 5.98 p = 0.622 | 8.54 ± 6.36 |
Average lead dwell time per patient | [years] | 7.51 ± 4.95 p = 0.152 | 9.52 ± 6.49 p = 0.058 | 8.43 ± 4.76 p = 0.112 | 8.08 ± 5.15 p = 0.612 | 8.20 ± 5.87 |
Average lead implant duration per group | [years] | 8.21 ± 3.54 p = 0.333 | 10.22 ± 7.35 p = 0.076 | 9.03 ± 5.83 p = 0.058 | 8.77 ± 5.93 p = 0.331 | 8.79 ± 6.23 |
Cumulative lead dwell time per patient | [years] | 12.25 ± 11.84 p = 0.543 | 16.41 ± 14.83 p = 0.084 | 14.77 ± 12.80 p = 0.066 | 13.62 ± 12.62 p = 0.238 | 13.14 ± 12.65 |
SAFeTY TLE score for risk of MC [points] | [points] | 3.07 ± 3.66 p < 0.001 | 7.38 ± 4.78 p = 0.045 | 5.42 ± 4.28 p = 0.501 | 4.94 ± 4.17 p < 0.001 | 5.67 ± 4.14 |
SAFeTY TLE score for risk of MC [%] | [%] | 0.96 ± 1.61 p < 0.001 | 2.58 ± 3.23 p = 0.233 | 1.76 ± 4.84 p = 0.804 | 1.44 ± 3.28 p < 0.001 | 1.61 ± 2.65 |
Upgrade to CRT-D | Upgrade to CRT-P | Upgrade to ICD | All Upgrades (to CRT-D, CRT-P and to ICD-V or ICD-D) | TLE for Other Non-Infectious Indications without Upgrades | ||
---|---|---|---|---|---|---|
Group | 1a | 1b | 1c | 1 | 2 | |
Number of Patients | 138 | 33 | 89 | 260 | 2148 | |
n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | ||
Procedure complexity and outcomes | ||||||
Procedure duration (skin-to-skin) | [minutes] | 83.62 ± 21.88 p < 0.001 | 79.55 ± 17.52 p < 0.001 | 65.60 ± 23.12 p = 0.550 | 76.93 ± 23.27 p < 0.001 | 64.19 ± 24.27 |
procedure duration (sheath-to-sheath) | [minutes] | 12.50 ± 17.81 p = 0.250 | 12.19 ± 11.07 p = 0.489 | 16.19 ± 23.77 p = 0.804 | 13.72 ± 19.45 p = 0.657 | 14.75 ± 23.21 |
Average time of single lead extraction | [minutes] | 8.19 ± 10.76 p = 0.203 | 8.07 ± 9.28 p = 0.781 | 8.72 ± 9.72 p = 0.669 | 8.36 ± 10.20 p = 0.214 | 9.68 ± 14.00 |
Technical problem during TLE (any) | n (%) | 20 (14.49) p = 0.044 | 6 (18.18) p = 0.737 | 18 (20.22) p = 0.746 | 44 (16.92) p = 0.063 | 476 (22.16) |
Need to change venous approach | n (%) | 1 (0.72) p = 0.171 | 2 (6.06) p = 0.661 | 5 (5.62) p = 0.331 | 8 (3.08) p = 0.912 | 68 (3.17) |
Lead-to-lead scarring | n (%) | 6 (4.35) p = 0.318 | 2 (6.06) p = 0.882 | 5 (5.62) p = 0.789 | 13 (5.00) p = 0.295 | 149 (6.94) |
Fracture of extracted lead | n (%) | 2 (1.45) p = 0.034 | 0 (0.00) p = 0.259 | 6 (6.74) p = 0.002 | 8 (3.08 p = 0.151 | 134 (6.24) |
Byrd dilator collapse/torsion | n (%) | 5 (3.62) p = 0.841 | 2 (6.06) p = 0.799 | 3 (3.37) p = 0.891 | 10 (3.85) p = 0.970 | 79 (3.69) |
Obstruction at lead entry site | n (%) | 12 (8.70) p = 0.912 | 3 (9.09) p = 0.801 | 6 (6.74) p = 0.628 | 21 (8.08) p = 0.782 | 186 (8.66) |
Two or more technical problems | n (%) | 8 (5.80) p = 0.769 | 2 (6.06) p = 0.933 | 2 (2.25) p = 0.382 | 12 (4.62) p = 0.994 | 104 (4.84) |
Use of additional tools | ||||||
Evolution (old and R-L) or TightRail | n (%) | 0 (0.00) p = 0.278 | 0 (0.00) p = 0.935 | 0 (0.00) p = 0.410 | 0 (0.00) p = 0.062 | 37 (1.72) |
Metal sheath | n (%) | 11 (7.97) p = 0.977 | 3 (9.09) p = 0.858 | 5 (5.62) p = 0.378 | 19 (7.31) p = 0.618 | 181 (8.43) |
Lasso catheter/snare | n (%) | 2 (1.45) p = 0.172 | 1 (3.03) p = 0.914 | 4 (4.49) p = 0.897 | 7 (2.69) p = 0.321 | 90 (4.19) |
Basket catheter | n (%) | 0 (0.00) p = 0.399 | 0 (0.00) p = 0.835 | 0 (0.00) p = 0.616 | 0 (0.00) p = 0.178 | 24 (1.12) |
Temporary pacing during the procedure | n (%) | 40 (28.97) p < 0.001 | 12 (36.36) p = 0.601 | 18 (20.22) p = 0.196 | 70 (26.92) p < 0.001 | 315 (14.66) |
New lead(s) implantation | ||||||
Reestablished vein access (using lead extraction) | n (%) | 58 (42.028) | 19 (57.576) | 32 (35.955) | 109 (41.923) | 518 (24.154) |
Maintained venous approach (using lead extraction) | n (%) | 75 (54.347) | 11 (33.333) | 49 (55.056) | 135 (51.923) | 1277 (59.451) |
New insertion site parallel to the existing lead | n (%) | 5 (3.623) | 3 (9.091) | 8 (8.989) | 16 (6.154) | 353 (16.433) |
Upgrade to CRT-D | Upgrade to CRT-P | Upgrade to ICD | All Upgrades (to CRT-D, CRT-P and to ICD-V or ICD-D) | TLE for Other Non-Infectious Indications without Upgrades | ||
---|---|---|---|---|---|---|
Group | 1a | 1b | 1c | 1 | 2 | |
Number of Patients | 138 | 33 | 89 | 260 | 2148 | |
n (%) | n (%) | n (%) | n (%) | n (%) | ||
Lead management strategy | ||||||
All leads were extracted | n (%) | 94 (68.12) p = 0.648 | 25 (75.76) p = 0.313 | 68 (76.40) p = 0.059 | 187 (71.92) p = 0.058 | 1414 (65.83) |
Functional lead was left in place | n (%) | 44 (31.88) p = 0.789 | 8 (24.24) p = 0.358 | 18 (20.22) p = 0.013 | 70 (26.92) p = 0.043 | 717 (33.38) |
Non-functional lead was left behind | n (%) | 0 (0.00) p = 0.740 | 0 (0.00) p = 0.490 | 1 (1.12) p = 0.938 | 1 (0.38) p = 0.992 | 13 (0.61) |
Non-functional superfluous lead was extracted | n (%) | 5 (3.62) p = 0.075 | 2 (6.06) p = 0.894 | 10 (11.24) p = 0.421 | 17 (6.54) p = 0.406 | 177 (8.24) |
TLE efficacy and complications | ||||||
Major complication (any) | n (%) | 0 (0.00) p = 0.010 | 0 (0.00) p = 0.690 | 0 (0.00) p = 0.225 | 0 (0.00) p = 0.013 | 57 (2.33) |
Hemopericardium | n (%) | 0 (0.00) p = 0.234 | 0 (0.00) p = 0.945 | 0 (0.00) p = 0.418 | 0 (0.00) p = 0.065 | 36 (1.68) |
Hemothorax | n (%) | 0 (0.00) p = 0.587 | 0 (0.00) p = 0.072 | 0 (0.00) p = 0.383 | 0 (0.00) p = 0.913 | 4 (0.19) |
Tricuspid valve damage during TLE (severe) | n (%) | 0 (0.00) p = 0.698 | 0 (0.00) p = 0.527 | 0 (0.00) p = 0.938 | 0 (0.00) p = 0.382 | 14 (0.65 |
Emergent cardiac surgery | n (%) | 0 (0.00) p = 0.326 | 0 (0.00) p = 0.925 | 0 (0.00) p = 0.532 | 0 (0.00) p = 0.113 | 29 (1.35) |
Death: procedure-related (intra-, post-procedural) | n (%) | 0 (0.00) p = 0.710 | 0 (0.00) p = 0.120 | 0 (0.00) p = 0.490 | 0 (0.00) p = 0.954 | 5 (0.23) |
Death: indication-related (intra-, post-procedural | n (%) | 0 (0.00) MN | 0 (0.00) MN | 0 (0.00) MN | 0 (0.00) MN | 0 (0.00) |
partial radiographic success (retained tip or <4 cm lead fragment) | n (%) | 2 (1.45) p = 0.179 | 0 (0.00) p = 0.453 | 3 (3.37) p = 0.930 | 5 (1.92) p = 0.115 | 89 (4.14) |
Complete clinical success | n (%) | 138 (100.0) p = 0.131 | 33 (100.0) p = 0.764 | 89 (100.0) p = 0.276 | 260 (100.0) p = 0.024 | 2098 (97.67) |
Complete procedural success | n (%) | 136 (98.55) p = 0.096 | 33 (100.0) p = 0.368 | 86 (96.63) p = 0.674 | 255 (98.08) p = 0.042 | 2042 (95.07) |
Mortality after TLE | ||||||
Alive (survival rate) after a mean follow-up of 4.81 ± 3.44 years (1–5394 days) | n (%) | 81 (58.70) p < 0.001 | 25 (75.76) p < 0.001 | 60 (67.42) p < 0.001 | 166 (63.85) p < 0.001 | 1615 (75.19) |
First two-day mortality (first 48 h) | n (%) | 0 (0.00) p = 0.587 | 0 (0.00) p = 0.072 | 0 (0.00) p = 0.383 | 0 (0.00) p = 0.913 | 4 (0.19) |
1-month mortality after TLE; 2–30 days n (% of patients with follow-up longer than 2 days) | n (%) | 3/138 (2.17) p = 0.063 | 0/33 (0.00) p = 0.409 | 0/89 (0.00) p = 0.932 | 3/(1.15) p = 0.393 | 11/2137 (0.51) |
1-year mortality after TLE (31–365 days); n (% of patients with follow-up longer than 30 days) | n (%) | 8/129 (6.20) p = 0.494 | 2/32 (6.25) p = 0.963 | 10/82 (12.20) p = 0.006 | 20/246 (8.13) p = 0.023 | 91/2063 (4.24) |
3-year mortality after TLE (366–1095 days); n (% of patients with follow-up longer than 365 days | n (%) | 20/114 (17.54) p < 0.001 | 1/25 (4.00) p = 0.813 | 6/70 (8.57) p = 0.938 | 27/211 (12.80) p = 0.023 | 138/1839 (7.50) |
Death at >3 years after TLE (after 1095 days); n (% of patients with follow-up longer than 1095 days) | n (%) | 26/114 (22.81) p = 0.839 | 5/16 (31.25) p = 0.641 | 13/56 (32.21) p = 0.901 | 44/128 (34.38) p = 0.012 | 289/1362 (21.22) |
All deaths | n (%) | 57 (41.30) p < 0.001 | 8 (24.24) p = 0.898 | 29 (32.58) p = 0.126 | 94 (36.15) p < 0.001 | 533 (4.81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefańczyk, P.; Nowosielecka, D.; Polewczyk, A.; Jacheć, W.; Głowniak, A.; Kosior, J.; Kutarski, A. Efficacy and Safety of Transvenous Lead Extraction at the Time of Upgrade from Pacemakers to Cardioverter-Defibrillators and Cardiac Resynchronization Therapy. Int. J. Environ. Res. Public Health 2023, 20, 291. https://doi.org/10.3390/ijerph20010291
Stefańczyk P, Nowosielecka D, Polewczyk A, Jacheć W, Głowniak A, Kosior J, Kutarski A. Efficacy and Safety of Transvenous Lead Extraction at the Time of Upgrade from Pacemakers to Cardioverter-Defibrillators and Cardiac Resynchronization Therapy. International Journal of Environmental Research and Public Health. 2023; 20(1):291. https://doi.org/10.3390/ijerph20010291
Chicago/Turabian StyleStefańczyk, Paweł, Dorota Nowosielecka, Anna Polewczyk, Wojciech Jacheć, Andrzej Głowniak, Jarosław Kosior, and Andrzej Kutarski. 2023. "Efficacy and Safety of Transvenous Lead Extraction at the Time of Upgrade from Pacemakers to Cardioverter-Defibrillators and Cardiac Resynchronization Therapy" International Journal of Environmental Research and Public Health 20, no. 1: 291. https://doi.org/10.3390/ijerph20010291
APA StyleStefańczyk, P., Nowosielecka, D., Polewczyk, A., Jacheć, W., Głowniak, A., Kosior, J., & Kutarski, A. (2023). Efficacy and Safety of Transvenous Lead Extraction at the Time of Upgrade from Pacemakers to Cardioverter-Defibrillators and Cardiac Resynchronization Therapy. International Journal of Environmental Research and Public Health, 20(1), 291. https://doi.org/10.3390/ijerph20010291